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A State Space Approach for the Analysis of Doubly Curved Functionally
Graded Elastic and Piezoelectric Shells

Chih-Ping Wu1,2 and Kuo-Yen Liu2

Abstract: Based on the three-dimensional (3D)
piezoelectricity, we present the exact solutions
of simply-supported, doubly curved functionally
graded (FG) elastic and piezoelectric shells using
a state space approach. A set of the dimension-
less coordinates and field variables is introduced
in the present formulation to prevent from the ill-
conditioned problem in the relevant computation.
By means of direct elimination, we reduce the
twenty-two basic differential equations to a set of
eight state variable equations (or state equations)
with variable coefficients of the thickness coor-
dinate. By means of the successive approxima-
tion method, we artificially divide the shell into a
NL-layered shell and the thickness of each layer
is small. That leads to a reasonable manipula-
tion to reduce the state equations of a thickness-
varying system for each individual layer to those
of a thickness-invariant system. Imposition of the
boundary conditions on the lateral surfaces of the
shell, the state variables through the thickness co-
ordinate can then be determined using the method
of propagator matrix. The direct and converse ef-
fects on the static behavior of doubly curved, mul-
tilayered and FG piezoelectric shells are studied.
The accuracy and the rate of convergence of the
present state space approach are evaluated.

Keyword: Piezoelectric material, Shells, 3D
solutions, FG material; Static , Electro-elastic
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1 Introduction

In view of the rapid development on the ad-
vanced materials, the multilayered and function-
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ally graded (FG) piezoelectric materials have
widely been used as intelligent (or smart) struc-
tures for sensing and actuation purposes in recent
years. Three-dimensional (3D) analysis for these
types of structures is of much important for pro-
viding as a reference to develop an approximate
two-dimensional (2D) theory and for assessing a
variety of the relevant approximate theories and
numerical methodologies. Determination of those
3D solutions of FG piezoelectric plates and shells
therefore becomes an attractive research subject.

The state space approach is a conventional and
efficient method for the 3D analysis of an elas-
tic body. It has been successfully applied for the
static, dynamic and buckling analyses of homo-
geneous elastic and laminated composite struc-
tures in the literature (Vlasov, 1957; Bufler, 1971;
Fan and Ye, 1990; Soldatos and Hadjigeorgiou,
1990; Fan and Zhang, 1992). Introduction of the
state space method and comprehensive literature
review on its application to 3D problems of lami-
nated composite plates and shells have been made
by Ye (2003). Other analytical approaches for the
previous 3D analyses of homogeneous elastic and
laminated composite structures have also been
proposed in the literature, such as the method of
power series (Srinivas, 1970; Ren, 1989) and the
method of perturbation (Rogers et al, 1992, 1995;
Wu et al, 1996a, b; Wu and Chiu, 2002; Wu and
Chi, 2005).

With the increase in usage of the intelligent (or
smart) materials and structures, the 3D analysis
of multilayered and FG piezoelectric plates and
shells becomes as a new focus of researchers’
attention. Based on the linear theory of piezo-
electricity, several 3D static, dynamic and buck-
ling analyses of piezoelectric laminates have been
presented using the state space approach (Lee
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and Jiang, 1996; Chen et al, 2001; Kapuria and
Achary, 2004; Han et al, 2006). The aforemen-
tioned 3D electro-elastic problems of piezoelec-
tric laminates have also been studied by means
of the Frobenius method (Heyliger and Brooks,
1996; Heyliger, 1997; Dumir et al, 1997) and the
perturbation method (Wu et al, 2005; Wu and Lo,
2006; Wu and Syu, 2006; Wu et al, 2007). Sev-
eral numerical methodologies, such as the repro-
ducing kernel particle method, the meshless ra-
dial point interpolation method, the local Petrov-
Galerkin method and the element-free Galerkin
method, have been developed for the static and
dynamic analyses of homogeneous piezoelectric
and functionally graded piezoelectric structures
(Wang et al, 2002; Dai et al, 2004, 2005; Sladek
et al, 2006; Ferreira et al, 2005, 2006). Com-
prehensive reviews of theoretical analysis and nu-
merical modeling for piezoelectric laminates have
been presented by Saravanos and Heyliger (1999)
and Gopinathan et al (2000).

The previous literature has reported some draw-
backs of piezoelectric laminates such as huge
inter-laminar stresses induced at interfaces be-
tween adjacent layers constituting the laminates,
etc. This is mainly due to the material proper-
ties of the piezoelectric laminates having a sud-
den change at interfaces between adjacent layers.
A new class of intelligent structures, namely FG
piezoelectric plates and shells, has emerged un-
til quite recently of which material properties are
gradually varied through the thickness coordinate
so that the aforementioned drawback of piezo-
electric laminates can be eliminated. Hence, the
3D analysis of FG piezoelectric plates and shells
becomes important for providing a better design
of this type of intelligent structures.

Several 3D and accurate analyses of FG elas-
tic and piezoelectric plates have been presented.
A state space approach has been used for the
3D static analysis of FG piezoelectric plates by
Zhong and Shang (2003). In their analysis, the
material properties are assumed to obey the same
exponent-law dependence on the thickness coor-
dinate. It has been concluded that the proposed
approach may be valid for arbitrary mechanical
and electric lateral loads. Based on the pseudo-

Stroh formalism, Pan (2003) extended Pagano’s
solution process of laminated composite plates to
the coupled analysis of FG elastic plates. In con-
junction with the pseudo-Stroh formalism and the
method of propagator matrix, Pan and Han (2005)
have studied the exact analysis of FG and lay-
ered magneto-electro-elastic plates. Ramirez et
al (2006) have presented the accurate solutions of
FG elastic anisotropic plates using a discrete layer
theory in combination with the Ritz method. It
has been illustrated that any continuous functions
representing the variation of material properties
along the thickness coordinate may be incorpo-
rated in the discrete layer model.

After a close literature survey, we found that the
literature dealing with the 3D analysis of FG
piezoelectric shells is scarce in comparison with
that of FG piezoelectric plates. The present paper
therefore aims to extendedly apply the state apace
approach to the 3D analysis of doubly curved FG
piezoelectric shells. The material properties are
assumed to obey the identical exponent-law ex-
ponentially varied with the thickness coordinate.
A set of dimensionless field variables is defined
and introduced in the present formulation to pre-
vent from the ill-conditioned problem in the rel-
evant computation. The present formulation in-
cludes the formulation of FG piezoelectric plates
as a special case by letting the curvature radius
an infinitely large value. For the comparison pur-
pose, the present formulation is further reduced
and applied to the 3D analysis of laminated elas-
tic and piezoelectric plates. The accuracy and
convergence rate of present solutions are vali-
dated by making the comparison with the 3D solu-
tions available in the literature. The through-the-
thickness distributions of inter-laminar stresses
are mainly concerned. It is illustrated that the phe-
nomenon of inter-laminar stress concentration is
eliminated in the FG piezoelectric shells. The in-
fluences of the radius-to-thickness ratio, the span-
to-thickness ratio and the material property gra-
dient index on the static behavior of FG piezo-
electric shells under electro-mechanical loads are
studied.
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2 Basic equations of 3D piezoelectricity

Consider a doubly curved functionally graded
piezoelectric shell as shown in Fig. 1 where the
thickness of the shell is 2h. A set of the orthogo-
nal curvilinear coordinates α , β , ζ is adopted and
located on the middle surface of the shell. Rα and
Rβ denote the curvature radii to the middle sur-
face; aα and aβ are the curvilinear dimensions in
α and β directions, respectively.

β

ζ

h
h

βa
αa βR

αR α

Figure 1: The geometry and coordinates of a dou-
bly curved shell.

The linear constitutive equations valid for the na-
ture of symmetry class of the piezoelectric mate-
rial considered are given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σα
σβ
σζ
τβζ
ταζ
ταβ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εα
εβ
εζ
γβζ
γαζ
γαβ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

−

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 e31

0 0 e32

0 0 e33

0 e24 0
e15 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
⎧⎨
⎩

Eα
Eβ
Eζ

⎫⎬
⎭ (1)

⎧⎨
⎩

Dα
Dβ
Dζ

⎫⎬
⎭=

⎡
⎣ 0 0 0 0 e15 0

0 0 0 e24 0 0
e31 e32 e33 0 0 0

⎤
⎦
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εα
εβ
εζ
γβζ
γαζ
γαβ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎣η11 0 0

0 η22 0
0 0 η33

⎤
⎦
⎧⎨
⎩

Eα
Eβ
Eζ

⎫⎬
⎭ , (2)

where (σα , σβ , σζ , ταζ , τβζ , ταβ ) and (εα , εβ , εζ ,
γαζ , γβζ , γαβ ) denote the stress and strain compo-
nents, respectively. (Dα , Dβ , Dζ ) and (Eα , Eβ ,
Eζ ) denote the components of electric displace-
ment and electric field, respectively. ci j , ei j and
ηi j are the elastic coefficients, piezoelectric co-
efficients and dielectric coefficients, respectively,
relative to the geometrical axes of the shell. The
material is regarded to be heterogeneous through
the thickness coordinate (i.e., ci j(ζ ), ei j(ζ ) and
ηi j(ζ )).

The kinematic equations in terms of the curvilin-
ear coordinates α , β and ζ are

εα = (1/γα)
(
uα ,α +uζ /Rα

)
,

εβ = (1/γβ )
(
uβ ,β +uζ /Rβ

)
,

εζ = uζ ,ζ ,

γβζ = (1/γβ )uζ ,β +uβ ,ζ − (uβ /γβRβ ),

γαζ = (1/γα)uζ ,α +uα ,ζ − (uα/γαRα),

γαβ = (1/γα)uβ ,α +(1/γβ )uα ,β ,

(3)

in which γα = 1 +(ζ/Rα); γβ = 1 +(ζ/Rβ); uα ,
uβ and uζ are the displacement components.

The stress equilibrium equations without body
forces are given by

γβ σα ,α + γα ταβ ,β + γα γβ ταζ ,ζ

+
[
(2/Rα)+(1/Rβ )+(3ζ/Rα Rβ )

]
ταζ = 0,

(4)

γασβ ,β + γβ ταβ ,α + γα γβ τβζ ,ζ

+
[
(1/Rα)+(2/Rβ)+(3ζ/Rα Rβ )

]
τβζ = 0,

(5)
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γβ ταζ ,α + γα τβζ ,β + γα γβ σζ ,ζ

+
[
(1/Rα)+(1/Rβ)+(2ζ/Rα Rβ )

]
σζ

− (γβ /Rα)σα − (γα/Rβ )σβ = 0. (6)

The charge equation of the piezoelectric material
in curvilinear coordinates α , β and ζ is

γβ Dα ,α + γα Dβ ,β + γα γβ Dζ ,ζ

+
[
(γβ/Rα)+(γα/Rβ )

]
Dζ = 0. (7)

The relations between the electric field and elec-
tric potential in curvilinear coordinates α , β and
ζ are

Eα = −(1/γα)Φ,α ,

Eβ = −(1/γβ )Φ,β ,

Eζ = −Φ,ζ ,

(8)

where Φ denotes the electric potential.

The boundary conditions of the problem are spec-
ified as follows:

On the lateral surfaces the transverse loads and ei-
ther electric potential or normal electric displace-
ment are prescribed,

[
ταζ τβζ

]
= [0 0] on ζ = ±h, (9a)

σζ = q±ζ (α ,β ) on ζ = ±h, (9b)

either

Φ = Φ±
ζ (α ,β ) or Dζ = D±

ζ (α ,β ) on ζ = ±h.

(10)

The edge boundary conditions of fully simple
supports require the following quantities be sat-
isfied:

σα = uβ = uζ = 0, at α = 0 and α = aα ; (11a)

σβ = uα = uζ = 0, at β = 0 and β = aβ . (11b)

In addition, the edges are suitably grounded so
that the electric potential Φ at the edges are zero
and given by

Φ = 0. (12)

3 Nondimensionalization and the state equa-
tions

To scale the numerical values of all the field vari-
ables in an appropriate range, we define a set of
dimensionless coordinates and variables as fol-
lows.

x = α/
√

Rh, y = β/
√

Rh, z = ζ/h;

u = uα/
√

Rh v = uβ/
√

Rh, w = uζ/R;

Rx = Rα/R, Ry = Rβ/R;

σx = σα /Q, σy = σβ/Q, σz = σζ R/Qh;

τxz = ταζ /Q
√

h/R, τyz = τβζ /Q
√

h/R,

τxy = ταβ/Q; Dx = Dα/e
√

h/R,

Dy = Dβ/e
√

h/R, Dz = Dζ /e;

φ = Φe/Qh;

(13)

where R, Q and e denote a characteristic length
of the shell, the reference elastic and piezoelectric
moduli, respectively.

In the present formulation the elastic displace-
ments (uα , uβ , uζ ), the transverse shear and nor-
mal stresses (ταζ ,τβζ ,σζ ), the electric potential
(Φ) and normal electric displacement (Dζ ) are se-
lected as the primary field variables. The other
field variables such as the in-surface stresses (σα ,
σβ and ταβ ), electric displacements (Dα ,Dβ ), the
components of strain (εα , εβ , εζ , γαζ , γβζ , γαβ )
and electric field (Eα , Eβ , Eζ ) are the secondary
field variables and can be determined from the pri-
mary field variables. In order to make the compli-
cated system of basic 3D equations suitable for
mathematical treatment, we directly eliminate the
secondary field variables from Eqs. (1)-(12) and
then substitute the dimensionless field variables
(Eq. (13)) in the resulting equations. That leads
to a system of state equations with variable coef-
ficients as follows:
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∂
∂ z

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
v
σz

Dz

τxz

τyz

w
φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d11 0 0 0 d15 0 d17 d18

0 d22 0 0 0 d26 d27 d28

d31 d32 d33 d34 d17 d27 d37 0
0 0 0 d44 d18 d28 0 d48

d51 d52 d53 d54 d55 0 d57 0
d61 d62 d63 d64 0 d66 d67 0
d53 d63 d73 d74 0 0 d77 0
d54 d64 d74 d84 0 0 d87 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
v
σz

Dz

τxz

τyz

w
φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14)

where di j are the relevant differential operators
containing the derivatives with respect to the x and
y coordinates only, not z coordinate, and given in
Appendix A.

It is noted that the previous system of state equa-
tions for piezoelectric shells (Eq. (14)) can be fur-
ther reduced as those for piezoelectric plates by
letting 1/Rx = 0 and 1/Ry = 0. They are given as

∂
∂ z

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
v
σz

Dz

τxz

τyz

w
φ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 l15 0 l17 l18

0 0 0 0 0 l26 l27 l28

0 0 0 0 l17 l27 0 0
0 0 0 0 l18 l28 0 l48

l51 l52 l53 l54 0 0 0 0
l61 l62 l63 l64 0 0 0 0
l53 l63 l73 l74 0 0 0 0
l54 l64 l74 l84 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
v
σz

Dz

τxz

τyz

w
φ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15)

where the relevant differential operators li j are
given in Appendix B.

According to Eq. (15), we include the state space
analysis of FG piezoelectric plates as a special
case of the present formulation.

The in-surface stresses and electric displacements
are dependent field variables that can be expressed
in terms of the primary variables in the following
form

σσσ p = B1u +B1w+B3σz +B4Dz (16)

d = B5σσσ s +B6φ , (17)

where

σσσ p =

⎧⎨
⎩

σx

σy

τxy

⎫⎬
⎭ ,

B1 =

⎡
⎣b̃11 b̃12

b̃21 b̃22

b̃31 b̃32

⎤
⎦ , B2 =

⎡
⎣b̃13

b̃23

b̃33

⎤
⎦ ,

B3 =

⎡
⎣b̃14

b̃24

b̃34

⎤
⎦ , B4 =

⎡
⎣b̃15

b̃25

b̃35

⎤
⎦ ,

B5 =
[

b̃41 b̃42

b̃51 b̃52

]
, B6 =

[
b̃43

b̃53

]
,

and b̃i j are given in Appendix C.

The dimensionless form of boundary conditions
of the problem are specified as follows:

On the lateral surface the transverse load and elec-
tric potential are prescribed,

[τxz τy] = [0 0] on z = ±1, (18a)

σz = q±z (x y) on z = ±1, (18b)

either

φ = φ±
z (x, y) or Dz = D±

z (x, y) on z =±1, (19)

where q±z = q±ζ R/Qh; φ±
z = Φ±

ζ e/hQ; D
±
z =

D
±
ζ /e.

At the edges the following quantities is satisfied:

σx = v = w = 0 at x = 0 and x = aα/
√

Rh, (20a)

σy = u = w = 0 at y = 0 and y = aβ/
√

Rh. (20b)

In addition,

φ = 0. (21)
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4 Applications to the benchmark problems

4.1 Double Fourier series expansion

The edge boundary conditions of the shells are
considered as fully simple supports in the analy-
sis. By means of the method of separation of vari-
ables, the primary field variables are expanded as
the following forms of double Fourier series so
that the boundary conditions of simply supported
edges are exactly satisfied.

u =
∞

∑
m=1

∞

∑
n=1

umn(z)cos m̃xsin ñy, (22)

v =
∞

∑
m=1

∞

∑
n=1

vmn(z)sinm̃xcos ñy, (23)

w =
∞

∑
m=1

∞

∑
n=1

wmn(z)sinm̃xsin ñy, (24)

τxz =
∞

∑
m=1

∞

∑
n=1

τxzmn(z)cos m̃xsin ñy, (25)

τyz =
∞

∑
m=1

∞

∑
n=1

τyzmn(z)sinm̃xcos ñy, (26)

σz =
∞

∑
m=1

∞

∑
n=1

σzmn(z)sinm̃xsin ñy, (27)

Dz =
∞

∑
m=1

∞

∑
n=1

Dzmn(z)sinm̃xsin ñy, (28)

φ =
∞

∑
m=1

∞

∑
n=1

φmn(z)sinm̃xsin ñy, (29)

where m̃ = mπ
√

Rh/aα and ñ = nπ
√

Rh/aβ .

Substituting Eqs. (22)-(29) in Eq. (14) yields

∂
∂ z

F(z) = D(z)F(z), (30)

where F(z) is called the state vec-
tor of the shell and given as FT (z) =
[umn vmn σzmn Dzmn τxzmn τyzmn wmn φmn]; the
components of F(z) are state variables; D(z)
is called the coefficient matrix (or the system
matrix) and given as

D(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d11 0 0 0 d15 0 d17 d18

0 d22 0 0 0 d26 d27 d28

d31 d32 d33 d34 −d17 −d27 d37 0
0 0 0 d44 −d18 −d28 0 d48

d51 d52 d53 d54 d55 0 d57 0
d61 d62 d63 d64 0 d66 d67 0
−d53 −d63 d73 d74 0 0 d77 0
−d54 −d64 d74 d84 0 0 −d34 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and di j are functions of z.

Practically, the system of Eq. (30) can be com-
pared to a linear time-varying system in structural
dynamics problems where the prescribed condi-
tions of electric and elastic field variables at the
bottom surface of the shell are regarded as the ini-
tial state of the system. It is well known that a
linear time-varying system is much more difficult
to be solved than a time-invarient system of the
same order. A successive approximation method
(Ye, 2003) is used to solve Eq. (30) by solving
a series of state equations of a time-invarient sys-
tem.

4.2 The method of propagator matrix

Based on the successive approximation method,
we artificially divide the thickness of the shell
into NL layers with a uniform and small thick-
ness. The dimensionless thickness coordinates of
the top and bottom surfaces of a typical kth-layer
are defined as zk and zk−1, and the thickness of the
kth-layer is hk = (zk − zk−1)h = 2h/NL. For the
typical kth-layer, Eq. (30) can be approximately
represented as

∂
∂ z

F(z) = DkF(z) zk−1 ≤ z ≤ zk, (31)

where Dk is a 8×8 constant coefficient matrix and
Dk = D( zk+zk−1

2 ).

With a known state vector at the bottom surface of
the kth-layer (Fk−1), the solution of equation (31)
is

F(z) = eDk(z−zk−1)Fk−1

= MkeΛk(z−zk−1)M−1
k Fk−1,

(32)

where Mk is the modal matrix of Dk consisting of
eight independent eigenvectors; Fk−1 = F(zk−1);
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eΛkz is a 8×8 diagonal matrix and given by

eΛkz =

⎡
⎢⎢⎢⎣

eλ1z 0 · · · 0
0 eλ2z · · · 0
...

...
. . .

...
0 0 · · · eλ8z

⎤
⎥⎥⎥⎦

in which λ1,λ2, · · · ,λ8 are the set of eigen values
of Dk.

According to Eq. (32), the state vector within the
kth-layer can be determined. By using z = zk, the
state vector of the top surface of the kth-layer is
then determined as follows.

Fk = RkFk−1, (33)

where Fk = F(zk); Rk = MkeΛkhkM−1
k .

By analogy, the state vectors between the top and
bottom surfaces of the shell are linked by

FNL = RNLF(NL−1)

= RNLR(NL−1) · · ·R1F0.
(34)

By defining a symbol of consectutive multiplica-
tion, we rewrite Eq. (34) in the form of

FNL =

(
NL

∏
k=1

Rk

)
F0, (35)

where
NL
∏

k=1
Rk = RNLR(NL−1) · · ·R2R1.

Equation (35) represents a set of simultaneous al-
gebraic equations. After imposing the boundary
conditions prescribed on the lateral surfaces, Eqs.
(18) and (19), the other unknowns in state vectors
of lateral surfaces of the shell can then be deter-
mined. After then, the state vector through the
thickness coordinate of the shell can be obtained
by

F(z) = MkeΛk(z−zk−1)M−1
k Fk−1

= MkeΛk(z−zk−1)M−1
k

(
k−1

∏
i=1

Ri

)
F0

. (36)

Equations (35)-(36) provide approximate solu-
tions of a system of the state equations with vari-
able coefficients. The accurate solutions of the
system can be approached by increasing the total
number of artificailly divided layers.

5 Illustrative examples

The 3D static analysis of simply supported,
doubly curved functionally graded piezoelectric
shells under electro-mechanical loads is studied
using the aforementioned formulation. In illustra-
tive examples, we consider five cases of electro-
mechanical loads as follows:

Case 1.

q+
ζ = q0 sin(πα/aα)sin

(
πβ/aβ

)
N/m2,

q−ζ = 0 N/m2.
(37)

Case 2.

q+
ζ = q0 sin

(
πβ/aβ

)
N/m2,

q−ζ = 0 N/m2;

Φ+
ζ = 0 C/m2,

Φ−
ζ = 0 C/m2.

(38)

Case 3.

q+
ζ = 0 N/m2,

q−ζ = 0 N/m2;

Φ+
ζ = Φ0 sin

(
πβ/aβ

)
C/m2,

Φ−
ζ = 0 C/m2.

(39)

Case 4.

q+
ζ = q0 sin

(
πβ/aβ

)
N/m2,

q−ζ = 0 N/m2;

D
+
ζ = 0 C/m2,

D
−
ζ = 0 C/m2.

(40)

Case 5.

q+
ζ = 0 N/m2,

q−ζ = 0 N/m2;

D
+
ζ = D0 sin

(
πβ/aβ

)
C/m2,

D−
ζ = 0 C/m2.

(41)

The structural behavior of three types of piezo-
electric shells are evaluated and the through-the-
thickness distributions of material properties are
described as follows:
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Type 1 single-layer piezoelectric shells

For a Type 1 shell, the material properties are
assumed as homogeneous, independent upon the
thickness coordinate, and are given by

mi j(ζ ) = mi j, (42)

where mi j represent the coefficients of ci j , ei j and
ηi j and are constants.

Type 2 multilayered piezoelectric shells

For a Type 2 shell, the material properties are as-
sumed as the layerwise step functions through the
thickness and are given by

mi j(ζ ) =
NL

∑
k=1

m(k)
i j [H (ζ −ζk−1)−H (ζ −ζk)] ,

(43)

where H(ζ ) is the Heaviside function; ζk−1 and
ζk are the thickness coordinates measured from
the middle surface of the shell to the bottom and
top surfaces of the kth-layer, respectively.

Type 3 exponent-law class of functionally graded
piezoelectric shells

For a Type 3 shell, the material properties are as-
sumed to obey the identical exponent-law varied
exponentially with the thickness coordinate and
are given by

mi j = m(b)
i j eα [(ζ+h)/2h], (44)

where m(b)
i j are the material properties of bottom

surface; α is the material property gradient index
which represents the degree of the material gradi-
ent along the thickness coordinate and is taken as
the values of -3.0, -1.5, 0, 1.5, 3, respectively, in
the present analysis.

As we aforementioned, the FG shell is consid-
ered to be divided into NL individual homoge-
neous layers in the present state space formula-
tion. Hence, for a typical kth-layer the material
properties m(k)

i j are determined in a thickness av-
erage sense and are given as

m(k)
i j =

1
hk

∫ ζk

ζk−1

mi j(ζ )dζ

= (
2h

hkα
)e0.5αm(b)

i j

[
e(α/2h)ζk −e(α/2h)ζk−1

]
(α �= 0), (45a)

m(k)
i j = m(b)

i j (α = 0). (45b)

It is noted that the formulations for static behavior
of single-layer homogeneous piezoelectric shells
and FG elastic shells are also regarded as the spe-
cial cases of the present formulation by letting
α = 0 and ei j = 0, respectively.

5.1 Multilayered Elastic Shells

For the comparison purpose, the present state
space formulation is applied for the analysis
of a simply-supported, [0o/90o] laminated dou-
bly curved shell under the loading condition of
Case 1 in Table 2 where 0o-layer is the upper
layer and 90o-layer is the lower layer. The or-
thotropic material considered is elastic and or-
thotropic and its properties are: EL/ET = 25,
GLT /ET = 0.5, GTT /ET = 0.2, υLT = υT T = 0.25,
ET = 6.89×109N/m2. The geometric parameters
are taken as Rα/aα = 5, Rβ/aβ = 10, aα/aβ = 1
and S = aα/2h = 10. The dimensionless field
variables are defined as σ i j = σi j/q0 and w =
uζ (2h)3ET (103)/q0(aα)4. The accuracy and the
convergence rate of the present solutions are eval-
uated in comparison with the 3D asymptotic solu-
tion available in the literature (Wu et al, 1996a). It
is shown that the convergence rate of the present
solution is rapid and the convergent solution is in
excellent agreement with the 3D asymptotic solu-
tion.

5.2 Single-layer Piezoelectric Shells

The present state space formulation is also used
for the coupled analysis of simply-supported, ho-
mogeneous piezoelectric cylindrical shells under
the cylindrical bending type of applied mechani-
cal load and applied electric potential (Case 2 and
Case 3) in Tables 3-4, respectively. The shells are
considered to be composed of polyvinyledence
fluoride (PVDF) polarized along the radial di-
rection. The elastic, piezoelectric and dielectric
properties of PVDF material are given in Table
1. The dimensionless variables are denoted as the



Approach for the Analysis of Elastic and Piezoelectric Shells 185

Table 1: Elastic, piezoelectric and dielectric properties of composite and piezoelectric materials

Moduli PVDF PZT-4 Orthotropic material
c11(GPa) 3.0 138.499 7.3802
c22 3.0 138.499 173.406
c33 3.0 114.745 7.3802
c12 1.5 77.371 2.3121
c13 1.5 73.643 1.8682
c23 1.5 73.643 2.3121
c44 0.75 25.6 3.445
c55 0.75 25.6 1.378
c66 0.75 30.6 3.445
e24
(
C/m2

)
0.0 12.72 0

e15 0.0 12.72 0
e31 -0.15e-02 -5.2 0
e32 0.285e-01 -5.2 0
e33 -0.51e-01 15.08 0
η11 (F/m) 0.1062e-09 1.306e-08 1.53e-08
η22 0.1062e-09 1.306e-08 1.53e-08
η33 0.1062e-09 1.151e-08 1.53e-08

same forms of those in the Reference (Dumir et
al, 1997) and given as follows:

For the cases of applied mechanical load (Case 2),

(uθ ,ur) =
100Yr

2hS4
R |q0|

(
uβ ,uζ

)
,

(σ x,σθ ,σ r,τθr)

=
(
σα /S2

R,σβ /S2
R,σζ ,τβζ /SR

)
/ |q0| ,(

Dθ ,Dr
)

=
(
Dβ ,Dζ

)
/ |d1|SR |q0| ,

φ = |d1|Yrφ/2hS2
R |q0| ,

(46)

and S2
R = Rβ/2h, Yr = 2.0GPa, d1 = −30 ×

10−12CN−1;

For the cases of applied electric potential (Case
3),

(uθ ,ur) =
100

|d1|SR |φ0|
(
uβ ,uζ

)
,

(σ x,σθ ,σ r,τθr)

=
(
σα ,S2

Rσβ ,S3
Rσζ ,S3

Rτβζ
)

2h/Yr |d1| |φ0| ,(
Dθ ,Dr

)
=
(
SRDβ ,Dζ

)
2h/ |d1|2 Yr |φ0| ,

φ = φ/ |φ0| .

(47)

Tables 3-4 show the present NL-layers solutions
of elastic and electric field variables at crucial po-
sitions in the cylindrical shells. The geometric

parameters are taken as Rβ/2h= 4, 10, 100 and
aβ/Rβ = π/3. It is shown that the convergence
rate of elastic variables is more rapid than that of
electric variables in the cases of applied mechan-
ical load (Case 2). On the contrary, the conver-
gence rate of elastic variables is slower than that
of electric variables in the cases of applied elec-
tric potential (Case 3). The present 100-layers so-
lutions are illustrated to be in excellent agreement
with the 3D piezoelectricity solutions of both Du-
mir et al (1997) using the power series method
and Wu and Syu (2007) using the method of per-
turbation.

5.3 FG Elastic Shells

The static behavior of doubly curved functionally
graded elastic shells under the loading condition
of Case 1 is considered in Figs. 2 and 3. The
material properties of the shells are considered as
orthotropic and obey the identical exponent-law
exponentially varied through the thickness coor-
dinate. The material properties of bottom surface
are considered as othotropic and are given in Ta-
ble 1. The dimensionless field variables are de-
fined as (u,w) = (uα ,uβ )(c∗/2hq0), (σ i,τ i j) =
(σi,τi j)/q0 and c∗ = 1010 N/m2.
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Table
2:

M
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1)
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T
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σ

α (
a
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,

a
β2
,z )

/q
0

σ
β (

a
α2
,

a
β2
,z )

/q
0

σ
ζ (

a
α2
,

a
β2
,z )

/q
0

τ
α

ζ (0
,

a
β2
,z )

/q
0

τ
β

ζ (
a

α2
,0

,z )
/q

0
w (

a
α2
,

a
β2
,z )

1.0
Presentsolution

N
L

=
4

72.2915
8.5832

1.0000
0.0000

0.0000
11.9177

6
72.3661

8.5877
1.0000

0.0000
0.0000

11.9178
8

72.4012
8.5898

1.0000
0.0000

0.0000
11.9178

10
72.4215

8.5910
1.0000

0.0000
0.0000

11.9179
20

72.4603
8.5935

1.0000
0.0000

0.0000
11.9179

3D
asym

ptotic
solution

72.5015
8.8503

1.0000
0.0000

0.0000
11.9190

(W
u

etal.,1996)
0
.0 ±

Presentsolution
N

L
=

4
-55.6223

1.9666
0.4296

1.3964
0.9963

11.9569
(-1.5142)

(62.6979)
(0.4296)
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6
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(11.9570)
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-55.7119
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1.3964
0.9963

11.9570
(-1.5171)

(62.7736)
(0.4296)

(1.3964)
(0.9963)

(11.9570)
3D

asym
ptotic

solution
-55.7425

2.0775
0.4296

1.3965
0.9964

11.9581
(W

u
etal.,1996)

(-1.5182)
(62.9176)

(0.4296)
(1.3965)

(0.9964)
(11.9581)

-1.0
Presentsolution

N
L

=
4

-8.1885
-68.9423

0.0000
0.0000

0.0000
11.8897

6
-8.1944

-68.9639
0.0000

0.0000
0.0000

11.8898
8

-8.1974
-68.9758

0.0000
0.0000

0.0000
11.8898

10
-8.1993

-68.9834
0.0000

0.0000
0.0000

11.8898
20

-8.2031
-68.9994

0.0000
0.0000

0.0000
11.8899

3D
asym

ptotic
solution

-8.2074
-69.0028

0.0000
0.0000

0.0000
11.8910

(W
u

etal.,1996)
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Figure 2: Influence of the material property gradient index on the through-the-thickness distributions of
elastic field variables of FG elastic shells under mechanical load (Case 1).
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Figure 3: Influence of the span-to-thickness ratio on the through-the-thickness distributions of elastic field
variables of FG elastic shells under mechanical load (Case 1).
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The influence of the material property gradient in-
dex on the through-the-thickness distributions of
various elastic field variables is presented in Fig.
2. The geometric parameters are considered as
Rα/aα=5, Rβ/aβ =10, aα/aβ =1 and aα/2h=10;
the material property gradient index is taken as
α=3.0, 1.5, 0.0, -1.5 and -3.0. It is shown that the
through-the-thickness distributions of in-surface
stresses is linear for the single-layer homoge-
neous elastic shell (α=0) and the higher-order
polynomial variations for the FG shells (α �= 0).
The distributions of transverse shear stresss are
the higher-order polynomial variations through
the thickness of the shell. The maximum value
of the transverse shear stress occurs at the middle
surface in the case of single-layer homogeneous
elastic shell (α=0). The position of maximum
value of transverse shear stress is moving toward
the upper surface as α is positive (α > 0) and in-
creases; whereas it is moving toward the lower
surface as α is negative (α < 0) and decreases.

The influence of the span-to-thickness ratio on
the through-the-thickness distributions of various
field variables are given in Fig. 3. The geo-
metric parameters and material property gradient
index are considered as Rα/aα=10, Rβ/aβ =10,
aα/aβ=1, S = aα/2h=4, 10, 20 and α=3.0, re-
spectively. It is shown that the in-surface stresses
and transverse shear produced in the thin shells
(S=20) are much larger than those in the thick
shells (S=4).

5.4 FG Piezoelectric Shells

The direct and converse piezoelectric effects
of FG piezoelectric cylindrical shells under the
cylindrical bending type of electro-mechanical
loads (Cases 4 and 5) are studied in Figs. 4-5 and
Figs. 6-7, respectively. The piezoelectric material
of PZT-4 is used as the material of bottom sur-
face and its material properties are given in Table
1. The dimensionless field variables are given as
follows:

For loading condition of Case 4 (Eq. (40)),

(v,w) = (uβ ,uζ )(c∗/2hq0),

(σ i,τ i j) = (σi,τi j)/q0,

Φ = Φe∗/q0 (2h) ,

Di = Dic∗/q0e∗;

(48)

For loading condition of Case 5 (Eq. (41)),

(v,w) = (uβ ,uζ )(e∗/2hD0),

(σ i,τ i j) = (σi,τi j)(e∗/D0c∗),

Φ = Φ (e∗)2 /D0c∗ (2h) ,

Di = Di/D0;

(49)

where e∗ = 10C/m2.

The geometric parameters and material prop-
erty gradient index are taken as S = aβ/2h=10,
aβ/Rβ = π/3, α=3.0, 1.5, 0.0, -1.5, -3.0 in Figs.
4 and 6; S = aβ/2h= 4, 10, 100, aβ/Rβ = π/3 and
α=3 in Figs. 5 and 7.

The influence of material property gradient in-
dex on the through-the-thickness distributions of
various field variables of the moderately thick
FG shells (S=10) under the applied mechanical
load and applied electric displacement is shown
in Figs. 4 and 6, respectively. It is shown that
the through-the-thickness distributions of electric
field variables change dramatically in the cases
of applied mechanical load as the index α be-
comes a negative value; whereas those of trans-
verse stresses change dramatically in the cases of
applied electric displacement as the index α be-
comes a negative value. It is also shown that the
distributions of various field variables through the
thickness coordinate of the homogeneous shells
(α = 0) reveal different patterns with those of the
FG shells (α �= 0) in the cases of applied electric
displacement.

The influence of the span-to-thickness ratio on
the through-the-thickness distributions of various
field variables of the FG shells (α=3) under the
applied mechanical load and applied electric dis-
placement is shown in Figs. 5 and 7, respec-
tively. It is shown that the transverse stresses
produced in the thick shells (S=4) are larger than
those in the thin shells (S=20) as the shells are un-
der the applied electric displacement; on the con-
trary, the transverse stresses produced in the thick
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Figure 4: Influence of the material property gradient index on the through-the-thickness distributions of
elastic and electric field variables of FG piezoelectric shells under mechanical load (Case 4).
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Figure 5: Influence of the span-to-thickness ratio on the through-the-thickness distributions of elastic and
electric field variables of FG piezoelectric shells under mechanical load (Case 4).
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Figure 6: Influence of the material property gradient index on the through-the-thickness distributions of
elastic and electric field variables of FG piezoelectric shells under electric displacement (Case 5).
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Figure 7: Influence of the span-to-thickness ratio on the through-the-thickness distributions of elastic and
electric field variables of FG piezoelectric shells under electric displacement (Case 5).
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shells are smaller than those in the thin shells in
the cases of applied mechanical load. It is also
shown that the influence of the span-to-thickness
ratio on the electric displacement is minor, but on
other field variables is significant in the cases of
the applied mechanical load and applied electric
displacement.

6 Concluding remarks

A state space formulation is developed for the
static analysis of simply supported, doubly curved
functionally graded piezoelectric shells under var-
ious electro-mechanical loads. Without loss of
generality, the material properties of FG shells are
assumed to obey the exponent-law dependence
through the thickness coordinate. The present for-
mulation includes the previous state space for-
mulations of single-layer homogeneous, multi-
layered and FG piezoelectric plates as well as
FG elastic shells as the special cases by letting
the curvature radius an infinitely large value and
the piezoelectric coefficients zero, respectively.
The present state space solutions are validated by
making the comparisons with the 3D solutions
obtained by both the power series method and
the method of perturbation available in the liter-
ature. A parametric study for the influences of
material property gradient index and the span-to-
thickness ratio on the through-the-thickness dis-
tributions of various field variables is made. It
is noted that the through-the-thickness distribu-
tions of various field variables in FG piezoelec-
tric shells reveal different patterns from those in
homogenous piezoelectric shells in the cases of
applied electric displacement. Based on the pre-
vious illustrations, we suggest that an advanced
2D theory may be necessary to be developed for
the analysis of FG piezoelectric shells.
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Appendix A

The relevant differential operators di j in Eq. (14)
are given as follows:

d11 = h/RRxγα , d15 = hQ/Rc55,

d17 = −(1/γα)∂x,

d18 = −(hQ/Re) [(e15/c55γα)∂x] ,

d22 = h/RRyγβ , d26 = hQ/Rc44,

d27 = −(1/γβ)∂y,

d28 = −(hQ/Re)
[
(e24/c44γβ )∂y

]
,

d31 =
[
(Q̃11/Rxγ2

α)+(Q̃21/Ryγαγβ )
]

∂x,

d32 = −
[
(Q̃12/Rxγαγβ )+(Q̃22/Ryγ2

β )
]

∂y,

d33 =−(h/Rγαγβ )
[
(1/Rx)+(1/Ry)+(2hz/RRxRy)

− (a13γβ/Rx)− (a23γα/Ry)
]
,

d34 = (e/QRxγα)b13 +(e/QRyγβ )b23,

d37 =
[
(Q̃11/R2

xγ2
α)+(Q̃12 + Q̃21)/RxRyγα γβ

+(Q̃22/R2
yγ2

β )
]
,

d44 = −(h/R)
[
(1/Rxγα)+(1/Ryγβ )

]
,

d48 = (hQ/Re2)
[
(1/γ2

α)(e2
15/c55 +η11)∂xx

+(1/γ2
β)(e2

24/c44 + η22)∂yy

]
,

d51 = −
[
(Q̃11/γ2

α)∂xx +(Q̃66/γ2
β )∂yy

]
,

d52 = −[(Q̃12 + Q̃66)/γαγβ
]

∂xy,

d53 = −(h/Rγα)a13∂x, d54 = −(e/Qγα)b13∂x,

d55 = −(h/Rγαγβ )
[
(2/Rx)+(1/Ry)

+ (3hz/RRxRy)
]
,

d57 = −[(Q̃11/Rxγ2
α)+(Q̃12/Ryγα γβ )

]
∂x,

d61 = −[(Q̃21 + Q̃66)/γαγβ
]

∂xy,

d62 = −
[
(Q̃66/γ2

α)∂xx +(Q̃22/γ2
β )∂yy

]
,

d63 = −(h/Rγβ)a23∂y,

d64 = −(e/Qγβ)b23∂y,

d66 = −(h/Rγαγβ )
[
(1/Rx)+(2/Ry)

+ (3hz/RRxRy)
]
,

d67 = −
[
(Q̃21/Rxγαγβ )+(Q̃22/Ryγ2

β )
]

∂y,

d73 = (h2/R2)
[
Qη33/(e2

33 +c33η33)
]
,

d74 = (h/R)
[
ee33/(e2

33 +c33η33)
]
,

d77 = −(h/R)(a13/Rxγα +a23/Ryγβ ),

d84 = −(e2/Q)
[
(c33)/(e2

33 +c33η33)
]
,

d87 = −d34,

Q̃i j =
Qi j

Q
, Qi j = ci j −a3 jci3 −b3 je3i

(i, j = 1,2,6);

ai3 =
e33e3i +η33ci3

e2
33 +η33c33

, bi3 =
e33ci3 −e3ic33

e2
33 +η33c33

(i, j = 1,2,6).
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Appendix B

The relevant differential operators li j in Eq. (15)
are given as follows:

l15 = hQ/Rc55, l17 = −∂x,

l18 = −(hQ/Re) [(e15/c55)∂x] ,

l26 = hQ/Rc44, l27 = −∂y,

l28 = −(hQ/Re) [(e24/c44)∂y] ,

l48 = (hQ/Re2)
[
(e2

15/c55 +η11)∂xx

+(e2
24/c44 + η22)∂yy

]
,

l51 = −[Q̃11∂xx + Q̃66∂yy
]
,

l52 = −(Q̃12 + Q̃66)∂xy,

l53 = −(h/R)a13∂x, l54 = −(e/Q)b13∂x,

l61 = −(Q̃21 + Q̃66)∂xy,

l62 = −[Q̃66∂xx + Q̃22∂yy
]
,

l63 = −(h/R)a23∂y, l64 = −(e/Q)b23∂y,

l73 = (h2/R2)
[
Qη33/(e2

33 +c33η33)
]
,

l74 = (h/R)
[
ee33/(e2

33 +c33η33)
]
,

l84 = −(e2/Q)
[
(c33)/(e2

33 +c33η33)
]
.

Appendix C

The relevant coefficients b̃i j in Eqs. (21)-(22) are
given by

b̃11 = (Q̃11/γα)∂x, b̃12 = (Q̃12/γβ )∂y,

b̃21 = (Q̃21/γα)∂x, b̃22 = (Q̃22/γβ )∂y,

b̃31 = (Q̃66/γβ )∂y, b̃32 = (Q̃66/γα)∂x,

b̃13 = (Q̃11/γαRx)+(Q̃12/γβ Ry),

b̃23 = (Q̃21/γαRx)+(Q̃22/γβ Ry), b̃33 = 0

b̃14 = (h/R)a13, b̃24 = (h/R)a23, b̃34 = 0,

b̃15 = (e/Q)b13, b̃25 = (e/Q)b23, b̃35 = 0,

b̃41 = (ee15/Qc55) , b̃42 = 0,

b̃43 = −(Q/e2γα)
[(

e2
15/c55

)
+η11

]
∂x,

b̃51 = 0, b̃52 = (ee24/Qc44) ,

b̃53 = −(Q/e2γβ )
[(

e2
24/c44

)
+η22

]
∂y.




