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Numerical Simulation of Nonlinear Dynamic Responses of Beams
Laminated with Giant Magnetostrictive Actuators

Haomiao Zhou1,2, Youhe Zhou1,3 and Xiaojing Zheng1

Abstract: This paper presents some simulation
results of nonlinear dynamic responses for a lam-
inated composite beam embedded by actuators of
the giant magnetostrictive material (Terfenol-D)
subjected to external magnetic fields, where the
giant magnetostrictive materials utilizing the re-
alignment of magnetic moments in response to
applied magnetic fields generate nonlinear strains
and forces significantly larger than those gener-
ated by other smart materials. To utilize the full
potential application of the materials in the func-
tion and safety designs, e.g., active control of vi-
brations, the analysis of dynamic responses is re-
quested in the designs as accurately as possible
on the basis of those inherent nonlineary constitu-
tive relations among stain, force and applied mag-
netic field existed in the materials. Here, a numer-
ical code for the nonlinear vibration of laminated
beams is proposed on the basis of a nonlinearly
coupling constitutive model which fully behaves
for the characteristics what are measured in exper-
iments. It is found from this code that the natural
frequency of the laminated beams changes with
both the bias magnetic field and the pre-stresses,
and the dynamic responses excited by an alternat-
ing magnetic field of simple harmonic form dis-
play strong nonlinear characteristics, for exam-
ple, the frequency multiplication and the ultrahar-
monic resonance phenomena.
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1 Introduction

With the development of aircraft and space en-
gineering, the structures are requested to be as
light as possible in weigh such that these struc-
tures are usually flexible, thereby some large am-
plitude vibrations are easily excited out [Iura and
Atluri (1988)]. To suppress the undesired vibra-
tions, some smart structures on the basis of active
control of the operating structures associated with
some smart materials, e.g., piezoelectric layers
[Im and Atluri (1989), Cheng and Chen (2004),
Wu, Lo and Chao (2005), Wu and Syu (2006),
Han, Pan, Roy and Yue (2006), Zhou and Wang
et al (2006), Dziatkiewicz and Fedelinski (2007)],
shape memory alloys [Auricchio, Petrini, Pietra-
bissa and Sacco (2003)], and giant magnetostric-
tive materials [Zhou, Zheng and Zhou (2006),
Zhou and Zhou (2007)], et al., either as sensors or
actuators or both are designed in theory and en-
gineering. Among these three materials, the first
two materials have attracted the attention of many
researchers in vibration control of flexible struc-
tures [Bailey and Hubbard (1985), Crawley and
DeLuis (1987), Baz, Imam and Mccoy (1990),
Zhou and Tzou (2000), Zhou and Wang (2004)].
At present, it is found that the giant magnetostric-
tive materials have some advantages over other
smart materials when they are employed as actu-
ators, for example, the smart materials have the
ability to generate large strains and forces, the
ability to fast act to external magnetic field, and
the ability to retain their properties even in the
particle form and easy embeddability into the host
materials such as carbon fiber reinforce plastics
(CFRP) and glass fiber reinforce plastics (GFRP)
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[Marguet, Rozycki and Gornet (2006), Han, Ing-
ber and Schreyer (2006)], as well as being attrac-
tive materials for high ratio of strength to weight
[Subramanian (2002)].

Recently, the actuators of giant magnetostrictive
materials were mainly employed in some expec-
tant operating domain of the constitutive rela-
tions of the materials almost linearly changed
with a magnetic bias field and a pre-stress [An-
janappa and Bi (1993), Krishna, Anjanappa and
Wu (1997), Reddy and Barbosa (2000), Pradhan,
Ng, Lam and Reedy (2001), Subramanian (2002),
Kumar, Ganesan, Swarnamani and Padmanabhan
(2003)]. The experimental measurements, how-
ever, indicate that these materials have strong
nonlinearity among the stain, pre-stress and bias
magnetic field [Moffett, Clark and Wun-Fogle
(1991)], and the resonance frequency changes
with the magnetic bias field for a Terfenol-D rod
actuator [Savage, Clark and Powers (1975)]. The
latter is due to the Young’s modulus of a Terfenol-
D rod changes nonlinearly with the stress and the
magnetic field (the ΔE effect), and it is firstly sim-
ulated by Sun and Zheng [Sun and Zheng (2006)]
after an analytical model of constitutive relations
with close form to the smart materials was pro-
posed by Zheng and Liu [Zheng and Liu (2005)],
from which all characteristics measured in the ex-
periments are fully behaved by the constitutive
model (see Fig. 1). The other researches about
theory and numerical simulation of dynamic re-
sponse of Terfenol-D rod actuator can only simu-
lated dynamic response under preset bias field and
pre-stress[Engdahl and Svensson (1988), Tiberg,
Bergqvist and Engdahl (1993), Freeman and Jr
(1993), Jr and Freeman (1994), Koshi (1997),
Davino, Natale, Pirozzi and Visone (2004)].

Here, we propose a numerical code to analyze
the dynamic responses of beams laminated by
some actuators of giant magnetostrictive mate-
rial layers on the basis of the nonlinear consti-
tutive model proposed by Zheng [Zheng and Liu
(2005)]. In the following section, the theoretical
model employed is introduced, while the numer-
ical approach is presented in section 3. After the
numerical results and discussions are displayed in
section 4, some remarks are concluded in section

Figure 1: Experimental [Moffett, Clark and Wun-
Fogle et al (1991)] and theoretical [Zheng and Liu
(2005)] curves of magnetostrictive strain (hystere-
sis loops: experimental; solid lines: theoretical).

5.

2 Essential dynamic theory of the composite
beam

Here, we consider a laminated composite beam
with n layers in which n−1 layers are CFRP (Car-
bon Fiber Reinforced Plastic) plies and one layer
is Terfenol-D particles (see Fig. 2). Without loss
of generality, a cantilever beam fixed at x = 0 and
free at x = L is dealt with in the following numer-
ical code, and the Terfenol-D particles which are
distributed on the above surface of the beam are
set in a suitable resin, such as epoxy, and bonded
to the neighboring CFRP layers, without any pos-
sibility of slip. In the present analysis, the weight
of the resin is ignored. A series of closely packed
magnetic coils, insulated from each other, enclos-
ing the full beam is used to generate the bias
and excited magnetic fields. Here, all CFRP lay-
ers are assumed to behave as a linear orthotropic
medium, whereas the Terfenol-D layer behaves as
an equivalent isotropic medium. The fiber orien-
tations in CFRP layers are distributed arbitraryly.
It is assumed that the cross-section of the beam
being uniform about the y-axis and the deforma-
tions in the x− y plane are infinitesimally small,
since the beam has very high flexural stiffness in
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the x−y plane compared to the x− z plane.

Figure 2: A typical laminate composite beam with
an embedded magnetostrictive layer.

For the deflection of the composite beam in
transverse or z-direction, the hypothesis of the
Bernoulli-Euler theory of the beam is employed.
Denote the in-plane extension displacement by
u0(x, t) in the middle-plane and the deflection
function by w(x, t) at z = 0. Then, the displace-
ment field can be written as

u(x,y, z, t)= u0(x, t)− z
dw
dx

,

v(x,y, z, t)≡ 0,

w(x,y, z, t) = w(x, t)

(1)

Further, the strain along x-axis is formulated by

ε = ε0 − zκ =
du0

dx
− z

d2w
dx2 (2)

For the CFRP layers, the constitutive relation is of
the form

σ (i) = Q
(i)
11ε (i) (3)

where the superscript i represents the layer num-
ber and
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For the giant magnetostrictive material, e.g.,
Terfenol-D particles layer, the input current of
coil generates a magnetic field to drive the beam
deformation, which yields an output response of
nonlinear displacement varying with the magnetic
field. To this case, the analytical equations of non-
linear constitutive relations of giant magnetostric-
tive material proposed by Zheng [Zheng and Liu
(2005)] are here employed, i.e.,
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where f (x) = coth(x)−1/x, the relaxation factor
k = 3χm/Ms, χm is linear magnetic susceptibility,
Es is the saturation Young’s modulus and E0 is ini-
tial Young’s modulus, σs = λsEsE0/(Es −E0), λs

is the saturation magnetostrictive coefficient,Ms

is the saturation magnetization and μ0 = 4π ×
10−7H/m is the vacuum permeability.

According to Eq.(5), one sees that the first term in
the right hand of it is independent with magnetic
field, and the last two terms is nonlinearly relevant
to the magnetostrictive stain, denoted by λ (σ ,H),
induced by magnetic field. So the nonlinear con-
stitutive equations can be re-written as

ε =
σ

E(σ)
+λ (σ ,H) (7)

According to Eqs. (3) and (7), The constitutive
relation of all layers can be uniformly written as
the form

σ = Qε −Qλ (σ ,H) (8)

where Qλ (σ ,H) is the equivalent stress induced
by Terfenol-D layer. Here, Q = E(σ) when the
layer is made of the Terfenol-D materials, and
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Q = Q
(i)
11 and Qλ (σ ,H) = 0 in CFRP ones. Sub-

stitution Eq. (2) into Eq. (8) and integrating the
resulting equation along z-direction, we get the
matrix form of the constitutive relations as fellows{

N
M

}
=
[

A C
C D

]{
ε0

κ

}
−
{

NΛ
MΛ

}
(9)

in which A =
∫ h/2
−h/2 Qdz, B =

∫ h/2
−h/2 Qzdz, D =∫ h/2

−h/2 Qz2dz, N =
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h {σ}dz, M =
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Qλ (σ ,H)dz and MΛ =
∫
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Here, the thickness of the beam and the Terfenol-
D layer are respectively h and ha. From the physi-
cal meaning, we know that N and M are the inter-
nal force and moment, respectively; while NΛ and
MΛ are their parts contributed by the Terfenol-D
layer.

After that, the strain energy of laminate beam un-
der an applied magnetic field can be expressed by
the form

U =
1
2
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where S stands for the area of cross-section of the
beam. Denote {r}= [ u0 w ]T . We have

{
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}
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Then, the displacement vector at any point of the
laminate beam can be written as,{

X
Z

}
=
[
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]{
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}
= [Ψ]{r} (12)

Thus, the kinetic energy and the work of external
forces of laminate beam can be respectively for-
mulated as the matrix forms, i.e.,
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∫∫∫
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Ẋ Ż
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l
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N

∑
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Here, f indicates the plane distributed force or
moment, f is the line distributed force or moment,
and F denotes the concentrated force or moment.

Dividing the beam with n beam elements with
two nodes along longitudinal direction, and ev-
ery node with three freedom (u0,w,α), where
α = dw/dx. Denote δi = [ ui wi αi ] (i = 1,2), and
{δ e}= [ δ1 δ2 ]T . Then applying the Lagrangian in-
terpolation polynomial to the displacement func-
tion, we get the displacement in each element that
may be expressed in the terms of the node dis-
placement column, i.e.,

{r}=
[
N1 N2

]{δ T
1

δ T
2

}
= [N]{δ e} (15)

Substituting Eq. (15) into Eq. (11), one obtains{
ε0

κ

}
= [L]{r}= [L][N]{δ e} = [B]{δ e} (16)

Substituting Eqs. (15), (16) into Eqs. (10), (13)
and (14), then we get the element energy func-
tional in the form,
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Applied the Halmiltonian principle δ
∫ t2

t1 Πdt = 0,
we obtain a system of ordinary differential Equa-
tions of the dynamic system in the matrix form,

[M]{ä}+[C]{ȧ}+[K(σ)]{a} = {F(H,σ)}
(18)

Here, ä and a are respectively the columns of node
acceleration and displacement, M, K, C and F are
respectively the mass matrix, the stiffness matrix,
the damping matrix (looked as linear combination
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of M and K) and the load column. They are ex-
plicitly formulated by

[M] = ∑
e

∫∫
Se

(∫
h
(ΨN)T ρΨNdz

)
dA (19)
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It is noted that the stiffness matrix K(σ) and the
load column F(H,σ) are nonlinearly relative to
stress in the beam at instant, so Eq. (18) is a set of
nonlinear dynamic equations.

3 Numerical approach

In order to solve the nonlinear ordinary differen-
tial equations of Eq. (18), the Newmark method is
here employed. After that, Eq. (18) is converted
into the following difference equation

Mät+Δt +Cȧt+Δt +Kat+Δt = Ft+Δt (23)

where

ȧt+Δt = ȧt +[(1−β )ät +β ät+Δt ]Δt (24)

at+Δt = at + ȧtΔt +
[(

1
2
−α

)
ät +α ät+Δt

]
Δt2
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Here, Δt indicates the time step, α and β are the
parameters of the Newmark method. According
to Eq. (25), we obtain

ät+Δt =
1

αΔt2 (at+Δt −at)− 1
αΔt

ȧt −
(

1
2α

−1

)
ät

(26)

Substituting equation (26) into equation (24) then
the result equation and equation (26) into equation

(23), we get the system of algebraic equations at
time step t +Δt of the form(
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M +

δ
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Once the quantities of at , ȧt , and ät at time step t
are known, it is obvious that at+Δt can be gained
by the above equation. Then ät+Δt and ȧt+Δt are
determined by equations (26) and (24), respec-
tively. In the following calculations, the parame-
ters in the Newmark method are taken as β = 0.5
and α = 0.25(0.5+β )2.

Due to the nonlinear coupling as shown in the pre-
vious section, equation (27) is nonlinear on the
unknowns at each time step, which is relative to
E(σ) and λ (σ ,H), when a bias magnetic field
Hbias and a pre-stress σ0 are specified. In order
to solve this nonlinear coupling, here, an iteration
approach is employed. The main steps of the ap-
proach are briefly introduced as follows:

Step 1 At the initial moment t0, the displacement
a0, velocity ȧ0, acceleration ä0 and the ini-
tial stress σ0i should be given.

Step 2 The mass matrix M, the damping matrix
C and the stiffness matrix K can be inte-
grated based on Eqs. (19)-(21), and there
is σx = σ0i in the stiffness matrix K at
the moment. The time step is chosen as
Δt = 2.5× 10−4. A series of constants
such as c0 = 1

αΔt2 , c1 = δ
αΔt , c2 = 1

αΔt ,

c3 = 1
2α −1, c4 = δ

α −1, c5 = Δt
2

(
δ
α −2

)
,

c6 = Δt (1−δ ), c7 = δΔt are calculated.

Step 3 After the effective stiffness matrix K̂ =
K + c0M + c1C is gained, the load col-
umn Ft+Δt at the moment t + Δt can
be integrated based on Eq. (22), i.e.,
F̂t+Δt = Ft+Δt + M (c0at +c2ȧt +c3ät) +
C (c1at +c4ȧt +c5ät) is obtained, and
there are σx = σ0i and H = Ht+Δt in the
load array Ft+Δt at the moment.
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Figure 3: The curves of resonance frequency with
magnetic bias field.

Figure 4: The curves of resonance frequency with
compression pre-stress.

Step 4 The displacement at+Δt at the moment
t + Δt is solved based on K̂at+Δt =
F̂t+Δt , then the accelerationät+Δt and the
velocityȧt+Δtare gained respectively based
on the expressions ät+Δt = c0(at+Δt −
at)− c2ȧt − c3ät and ȧt+Δt = ȧt + c6ät +
c7ät+Δt . The iteration process should
be used in calculating the stiffness ma-
trix K and the load array Ft+Δt for the
stress σx. The strain εt+Δt at the mo-
ment t + Δt is got based on equation (2)
when u is replaced by at+Δt , thus a mod-
ified stress σ0(i+1) = Ei(σ0i)ε0(i+1) at the
moment is got based on the expression
ε0(i+1) = εt+Δt − λ (σ0i,Ht+Δt). If σ0(i+1)
does not satisfy precision ‖Δσ0‖< δ (δ =
1 × 10−5), replacing σ0i by σ0(i+1) and
going to step 2) until it satisfies the pre-
cision condition, otherwise σ0(i+1) is the
true stress of the rod at the moment. Re-
placing σ0i by σ0(i+1), t by t + Δt and go-
ing to step 2), the next step is going on.

Repeating the steps (2)-(4), the deflection of the
beam at any moment t are reached.

4 Numerical Results and Discussion

Here, we give a case study of a laminated beam
which has the length of 1m, the width of 10mm,

and considered beam have ten layers of 1mm
thickness each. The magnetostrictive layer is lo-
cated in above surface of the laminated beam, and
the fiber angle with respect to the x-axis in the
x-y plane is zero degree in the other CFRP lay-
ers. The material properties of the CFRP lay-
ers are E11 = 138.6GPa, E22 = 138.6GPa, G12 =
138.6GPa, v12 = v21 = 0.26 and ρ = 1824kg/m3.
The properties of the Terfenol-D layer are respec-
tively taken as ρ = 9250kg/m3, λs = 1300ppm,
μ0Ms = 0.8T, Es = 110Gpa, σs = 200Mpa and
χm = 80 when σ = 0. External magnetic field in
constitutive equation (8) are composed of mag-
netic bias field Hbias and simple harmonic mag-
netic fields H0 sin(2πωt), so the total magnetic
field is expressed as H(t) = Hbias +H0 sin(2πωt).

First of all, we give the vibration characteris-
tic of the beam structure without application of
magnetic field and pre-stress. The numerical re-
suts display that the first five natural frequency of
laminated beam at the initial moment are f1 =
11.35Hz, f2 = 71.15Hz, f3 = 199.26Hz, f4 =
390.696Hz and f5 = 646.74Hz respectively. In
fact, the natural frequency change nonlinearly
with the stress and the magnetic field, it is due
to ΔE effect. Fig. 3 is the curves of first-order
resonance frequency changing with the magnetic
field for given pre-stresses. It can be seen that
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Figure 5: The response curves of amplitude of the
free end of the beam when Hbias ≡ 0, σ0 = 0Mpa
and the amplitude of excited magnetic field H0 =
0.1KOe.

Figure 6: The response curves of amplitude of the
free end of the beam when Hbias ≡ 0, σ0 = 0Mpa
and the amplitude of excited magnetic field H0 =
0.4KOe.

Figure 7: The response curves of amplitude of
the free end of the beam when Hbias ≡ 0, σ0 =
−6.94Mpa and the amplitude of excited magnetic
field H0 = 0.1KOe.

Figure 8: The response curves of amplitude of
the free end of the beam when Hbias ≡ 0, σ0 =
−6.94Mpa and the amplitude of excited magnetic
field H0 = 0.4KOe.
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Figure 9: The response curves of amplitude of the
free end of the beam when Hbias = 0.4KOe, σ0 =
0Mpa and the amplitude of excited magnetic field
H0 = 0.4KOe.

Figure 10: The response curves of amplitude of the
free end of the beam when Hbias = 0.4KOe, σ0 =
0Mpa and the amplitude of excited magnetic field
H0 = 0.8KOe.

Figure 11: The response curves of amplitude of the
free end of the beam when Hbias = 0.4KOe, σ0 =
−6.94Mpa and the amplitude of excited magnetic
field H0 = 0.4KOe.

Figure 12: The response curves of amplitude of the
free end of the beam when Hbias = 0.4KOe, σ0 =
−6.94Mpa and the amplitude of excited magnetic
field H0 = 0.8KOe.
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the resonance frequency decreases up to a critical
value rapidly and then slightly increases with the
further increase of magnetic field, and the criti-
cal magnetic field will increase with the increase
of compressive pre-stress. Fig. 4 is the curves
of resonance frequency change with the compres-
sive pre-stress for given magnetic field. It can be
seen that the resonance frequency decreases up to
a critical value slightly and then rapidly increases
with the further increase of pre-stress except the
curve of H = 0KOe. Then we can calculate the
dynamic response of beam under external mag-
netic field with variant frequency and amplitude.
In Figs. 5-8 are shown the results of displace-
ment response of the free end of the composite
beam when Hbias ≡ 0, and the frequency of exter-
nal magnetic field are ω = 5.68Hz, ω = 2.84 Hz
and ω = 1.50Hz respectively. Here, Figs. 5-6 are
the response results when pre-stress σ0 = 0Mpa
and the amplitude of external magnetic field are
respectively H0 = 0.1KOe and H0 = 0.4KOe. And
Figs. 7-8 are the response results when σ0 =
−6.94Mpa and the amplitude of external mag-
netic field are respectively H0 = 0.1KOe and H0 =
0.4KOe. It can be seen from Fig. 5 that the fun-
damental natural vibration will appear when the
frequency of external magnetic field ω = 5.68Hz
(the frequency of external magnetic field is equal
to half of first-order natural frequency of beam),
that is, the frequency multiplication phenomena.
We can see also that the ultraharmonic resonance
phenomena when the frequency of external mag-
netic field ω = 2.84Hz (the frequency of exter-
nal magnetic field is equal to quarter of first-
order natural frequency of beam). The results of
Fig. 6, the amplitude of external magnetic field
is 0.4KOe, are similar with Fig. 5. The ampli-
tude of displacement response in Fig. 6 is larger
than the result in Fig. 5, but this augmentation of
amplitude is nonlinear with the augmentation of
magnetic field. Figs 7-8 have applied pre-stress
σ0 = −6.94Mpa compared with Figs. 5-6. It can
be seen from comparison of those figures that am-
plitude of vibration will decreased and the ultra-
harmonic resonance phenomena will weaken in
low field because of pre-stress (see Fig. 5 and Fig.
7, or see Fig. 6 and Fig. 8).

Frequency multiplication and ultraharmonic res-
onance phenomena will almost vanish if applied
bias field in the Terfenol-D layer of beam, that is,
it correspond linear piezomagnetic model. Figs.
9-12 showed the dynamic response of free end of
laminated beam when bias magnetic field Hbias =
0.4KOe, the amplitude of external magnetic field
are respectively H0 = 0.4KOe and H0 = 0.8KOe,
the frequency of external magnetic field are ω =
11.35Hz, ω = 5.68Hz and ω = 3Hz. Here,
Figs. 9-10 are the response results when pre-
stress σ0 = 0Mpa and the amplitude of exter-
nal magnetic field are respectively H0 = 0.4KOe
and H0 = 0.8KOe. And Figs. 11-12 are the re-
sponse results when σ0 = −6.94Mpa and the am-
plitude of external magnetic field are respectively
H0 = 0.4KOe and H0 = 0.8KOe. It can be seen
from Fig. 9 that the fundamental natural vibra-
tion will appear when the frequency of external
magnetic field ω = 11.35Hz (the frequency of ex-
ternal magnetic field is equal to first-order natu-
ral frequency of beam), and also the response fre-
quency will equal to frequency of external mag-
netic field when ω = 5.68Hz and ω = 3Hz. That
is, The dynamic response of Fig. 9 is linear. Com-
pared with Fig. 9 we can see from Fig. 10 more
visible high-order harmonic component because
of excite field H0 = 0.8KOe larger than bias field
Hbias = 0.4KOe in Fig. 10. Figs 11-12 have pre-
stress σ0 =−6.94Mpa compared with Figs. 9-10.
It can be seen from comparison of those figures
(see Fig. 9 and Fig. 11, or see Fig. 10 and Fig.
12) that amplitude of vibration will decrease, re-
sponse curve will more smooth and more similar
with linear vibration because of applied pre-stress
(show in Fig. 11).

5 Conclusions

Based on a new nonlinear constitutive relation,
a nonlinear dynamic model of composite beam
with one magnetostrictive layer actuator is pre-
sented. This dynamic model can predicted the
resonance frequency change with bias magnetic
field and pre-stress. Moreover the simulation re-
sults of dynamic response show obvious nonlinear
characteristics, such as the frequency multiplica-
tion and the ultraharmonic resonance phenomena,
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when have not applied bias field. So, it is nec-
essary for us to consider the nonlinear character-
istics of magnetostrictive materials and dynamic
response in industrial application, such as sensor
and actuator in vibration active control, and this
research will provide theory base for application.
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