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An Analytical Model for Explosive Compaction of Powder to Cylindrical
Billets through Axial Detonation

B. Srivathsa1 and N. Ramakrishnan2

Abstract: An analytical model, describing an
explosive compaction process performed axially
on a powder assembly of cylindrical geometry, is
discussed. The powder is encapsulated in a cylin-
drical metal container surrounded by an explo-
sive pad, which is detonated parallel to the ma-
jor axis of the compact. The pressure generated
in the powder is a function of the nature and the
thickness of the explosive material as well as the
powder characteristics. The model is based on the
principle of shock propagation in powder aggre-
gate and, the detonation as well as the refraction
wave characteristics of the explosives. For the
purpose of validation and illustration, this investi-
gation considers the explosive compaction of alu-
minium powder particles for different explosive
pad thicknesses. The model brings-out a closed-
form solution for densification of powders. The
density of the final powder compact depends on
the pad thickness. Inadequate pad thickness leads
to under compacted core, while higher pad thick-
ness leads to melting at the core leading to over
all low density. The optimum pad thickness of the
explosive to produce the highest densification is
thus determined using the model. The densifica-
tion depends on the size of the powder particles
also, since; the heat generated by the high pres-
sure shock wave melts the surface of the powder
particles depending on the specific heat, thermal
conductivity and the latent heat of the powder ma-
terial. The study essentially covers the effect of
the explosive pad thickness and the particle size
of the powder on densification. The analytical re-
sults are compared with a few experimental data
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and the comparison is found to be satisfactory.
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propagation, and densification of powder.

Nomenclature

a sound speed in the gaseous state of explosive
a j sound speed in the Chapmann-Jouguet state
cv specific heat at constant volume of the

material
bk constant appearing in Equation (5)
g0 material parameter in a dense medium

(for zero porosity)
gθ material parameter in a porous medium

(for porosity θ )
k thermal conductivity of the material
r radius of the powder particle
t time taken by the shock wave to travel through

one powder particle
u f final particle velocity
ui initial particle velocity
C0 sound speed in the powder material

(for zero porosity)
Cθ effective bulk sound speed (for porosity θ )
E f final internal energy after the passage of the

shock wave
Ei initial internal energy before the passage of

the shock wave
K0 bulk modulus of the material

(for zero porosity)
L Latent heat of the powder material
Pf final pressure
Pi initial pressure
Pj Chapman-Jouguet pressure
Tf final temperature of the material
Tm melting or softening temperature of the

material
Tr room temperature
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U shock velocity in dense material
Uθ shock velocity in the porous material

(for porosity θ )
V0 specific volume of the dense solid
Vf final specific volume
Vi initial specific volume
Vθ volume of the pores per unit mass

(for porosity θ )
α a fraction less than one used in

Equation (18)
γ adiabatic coefficient

(gaseous state of explosive)
η the energy deposited on the particle surface

given by Equation (10)
ν Poisson’s ratio
θ f final porosity
θ porosity at any instant
ρ0 density of the powder material

(for zero porosity)
ρe density of the explosive
ρs f final density of the powder due to shock

loading
ρsi initial density of the powder due to shock

loading
ρt f final density of the powder due to thermal

loading
ρti initial density of the powder due to thermal

loading
ρ j Chapman-Jouguet density
ψ pore collapse function used in Equation (5)
ω thickness of the surface layer through

which deposited heat energy is conducted
ω∗ thickness of the surface layer which gets

melted by the energy deposition
Δρ increase in density due to surface melting
ΔVθ melted surface volume that fills the pores per

unit mass
ΔV change of volume due to sock loading per

unit mass

1 Introduction

Explosive compaction of powder has emerged as
an important technique and preferred to conven-
tional ones in certain cases where (i) powders
cannot be compacted through conventional routes
due to their high strength and (ii) post compaction

sintering has a deteriorating effect on the me-
chanical properties and the desired shapes. In
explosive compaction, densification of powder is
achieved by a high-pressure shock wave induced
by an explosive. Although, densification of pow-
der is mainly due to the deformation of the par-
ticles during the shock loading, the surface melt-
ing caused by the heat generated by the particle
deformation also contributes significantly to the
densification (James, 1972; Prummer RA, 1972;
LLNL report, 1981; NMAB report, 1983; Gohl
WB, 2000).

Models for shock densification have been pro-
posed in the past based on shock induced par-
ticle deformation (Bergmann OR, 1965, Carlson
RJ, 1966; Grover R, 1974; Lennon CRA, 1978;
Raybould D, 1981; Lee YK, 1985; Rajendran
AM, 2002; Liu HT, 2006) as well as energy
deposition on the surface of the particle caus-
ing melting (Bogdanov, 1969; Raybould D 1980;
Gourdin, 1984; Schwartz RB 1984; Maksimenko
LA, 1991; Byvshikh AI, 1991; Benson, 1994;
Prummer, 2004). Yukio Sano (1977) suggested
a model based on continuum approach assum-
ing the powder to be in a compressed state un-
der a plane shock wave. Jump conditions, rep-
resenting the conservation equations, are used to
calculate the density of the compacts. He spe-
cially discussed the effect of velocity on the den-
sity of the compacts. Lotrich et al (1986) pro-
posed a one-dimensional model to describe the in-
homogeneous temperature distribution in dynam-
ically compacted powders. The model considered
the effect of shock compression of the gas in the
voids upon pore collapse on the thermal depo-
sition. Raybould (1980) suggested an empirical
model using discrete shock wave approach and
calculated compact density and over-all temper-
ature rise. He assumed the heat deposition to take
place instantaneously on the surface of the spheri-
cal particles when the shock wave passes through
a particle. Schwarz et al (1984) analysed the tem-
perature kinetics pertain to shock consolidation
of powder particles of various sizes. The model
is based on heat deposition, and the time scales
were calculated for the consolidation of the pow-
der particles. This model provides an upper bound
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to the melt fraction of the powder particles and
the rise in temperature at the surface as a func-
tion of particle size. Gourdin (1984) described a
model for the deposition of heat at powder par-
ticle surfaces during compaction. The average
energy flux incident on the surface of a powder
particle is estimated to be a fraction (about 90%)
of the specific energy and this flux is assumed
to be constant over the time taken for the shock
wave to cross one powder particle. Local temper-
ature distribution during compaction of various
powders like steel, aluminium, and copper is also
discussed. He noticed that the surface tempera-
ture increases with particle size. Roshan Kumar
et al (1999) carried-out FEM simulation studies
on dynamic compaction of metal powders. This
study employs micro-mechanics of inter particle
friction to discuss surface temperature rise. Shu-
jie et al (1994) described a semi-empirical com-
paction equation for powder materials, which de-
scribes the relationship between the green density
of compacts and applied external pressure.

In this paper, we present a model taking the
shock induced particle deformation as well as sur-
face melting due to the shock energy deposition.
The model is based on conservation equations of
shock propagation in porous materials (Ramakr-
ishnan, 1988) and also due to surface melting
similar to that presented by Gourdin (1984). We
consider a typical cylindrical geometry as shown
in Figure 1. The model describes the tempera-
ture rise during compaction and the particle sur-
face melt zone and relates them to the initial par-
ticle size of the powder. Although, this model
is similar to the model described by the earlier
researcher (Raybould, 1980), this work presents
a closed form solution for densification due to
shock loading as well as melting of the powder
surface layer. Combining the densification due to
loading as well as melting makes the model com-
prehensive and realistic. Densification variation
in spatial as well as temporal scales can be com-
puted using the model. These results are validated
with the published results for shock consolidation
pertaining to the effect of particle size and also
densification due to melting into account.

2 Densification due to shock induced defor-
mation

The model assumes that the powder encapsulated
in the cylindrical metal container to be a statis-
tically homogeneous continuum. An explosive
pad, placed circumferentially as shown in Figure
1 is detonated parallel to the major axis of the
cylinder using a lens arrangement placed at the
top of the upper plug. On initiation, the detona-
tion wave propagates parallel to the axis (Figure
2a) and the rarefaction wave generated at the free
surface of the explosive pad propagates towards
the axis of the cylinder (Figure 2b) and the explo-
sion induces a shock into the powder. A reflection
wave is introduced into the gaseous explosive at
the explosive-powder interface (Figure 2b). Both
the shock and the reflection waves are assumed to
be radial in the model. The particle velocity and
the pressure associated with the shock wave can
be determined using impedance matching tech-
nique, where the particle velocity and the pres-
sure are considered continuous across the powder-
explosive interface. The shock thus introduced at
the interface propagates into the powder aggregate
radially, densifying the powder. The compressive
wave reflected from the interface propagates ra-
dially outwards and on meeting the incoming rar-
efaction wave, vanishes as shown in Figure 2c. Fi-
nally the pressure in the compact reduces to zero
when the rarefaction wave releases the shock in
the compact as shown in Figure 2d.

High loading rate associated with a shock pulse
causes temperature to rise, sometimes, even to the
order of the melting point of the material. In this
case if the pressure at the surface of the container
is less than the required pressure for uniform com-
paction, we get compacts of lesser density due to
under compaction and if the pressure is more, we
may again end up getting low density compacts
apparently due to melting and crack formation at
the core of the cylinder. In an ideal condition,
with a suitable explosive of optimum pad thick-
ness, we get uniform compacts. The model fo-
cuses on the determination of various parameters
to calculate the ideal condition.
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Figure 1: Schematic diagram of explosive compaction
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Figure 2: Schematic diagram of the model
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2.1 Calculation of the pressure and the parti-
cle velocity at the explosive-powder inter-
face using impedance matching technique

The Rankine-Hugoniot equations for conserva-
tion of mass and momentum are given by

ρsi(U −ui) = ρs f (U −u f ) (1)

Pf −Pi = ρsi(U −ui)(u f −ui) (2)

where U is shock wave velocity, u is particle ve-
locity, P is pressure and ρ is density; the sub-
scripts ‘si’ and ‘s f ’ denote the values of these
variables before and after the passage of the shock
wave respectively.

The equation of state of the gaseous explosive for
adiabatic condition is

P(1/ρ)γ = constant (3)

where γ is adiabatic constant, eliminating U , ρ f

from equations (1), (2) and (3) and assuming
Chapmann-Jouguet initial conditions, we get

(u f −u j)2 =
Pj

ρ j

[
Pf

Pj
−1

][
1−

(
Pj

Pf

) 1
γ
]

(4)

where subscript ‘ j’ corresponds to Chapmann-
Jouguet condition.

The shock velocity in porous materials (Ramakr-
ishnan, 1988) is given by

Uθ = ψθCθ +gθ ui (5)

where ui is the initial particle velocity. The pore
collapse function ψθ , material parameter gθ and
the effective bulk sound speed Cθ are

ψθ =

[√
3ui

Cθ

]1.5θ

;

gθ =
[

gθ

1+θ (g−1)

]
;

Cθ = C

√[
1−θ

1+bKθ

]

where C =
√

K
ρ0

, bK = 1+ν
2(1−2ν) and the porosity

θ = 1− ρsi
ρ0

. ρsi is the initial density of the power
or the partially densified material as the case may

be just before the shock wave entering into the
medium. It has to be appropriately substituted
in these equations. For example, in the case of
reflected shock wave through partially densified
material, the initial porosity refers to the poros-
ity of the material prior to a shock propagation in
this medium and is valid only for θ > 0. The sub-
script θ corresponds to the effective porous ma-
terial with porosity θ . Effective porosity is the
porosity of power/partially-densified material. K
is the bulk modulus; ρ0 is the density of the pow-
der material with zero porosity. ν is the Poisson’s
ratio, and g is a material parameter for dense ma-
terial that appears in the linear equation of the
state. Therefore the pressure generated by the
shock in the powder material is

P = ρ0(1−θ )uiUθ (6)

Equations (4) and (6) essentially relate the pres-
sure and the particle velocity in the explosive and
the powder material, which are continuous across
the interface.

2.2 Speeds of reflection and rarefaction waves
in explosive

Using Equation (3) in the gaseous explosive for
adiabatic conditions, the speed of the reflection
and the rarefaction wave to be,

a =

√
dP
dρ

=

√
γPj

ρ j

(
ρe

ρ j

)γ−1

(7)

where Pj and ρ j are Chapmann-Jouguet pressure
and density respectively; ρe is the density of the
gaseous form of the explosive. The density of
the explosive in this medium from Equation (3)
is given by

ρe = ρ j

(
P
Pj

) 1
γ

(8)

where P is the pressure at the interface. For
Chapmann-Jouguet state i.e. when ρe = ρ j the
Equation (7) reduces to

a j =

√
γPj

ρ j
(9)
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Equation (9) is the speed of the rarefaction wave
at the free surface propagating towards the axis
and the reflection wave generated at the interface
moving towards the outer surface. Speeds be-
ing nearly equal these are assumed to intersect
at the mid-point of the explosive pad. This re-
flection wave weakens with the incoming rarefac-
tion wave moving finally towards the centre of the
cylinder with a speed given by Equation (9).

2.3 Calculation of the intersection point and
the distance of the rarefaction wave and
the shock wave in the powder

In the gaseous explosive, the reflection and the
rarefaction waves are assumed to be moving with
the same speed but in the opposite directions
meeting each other at the mid point of the explo-
sive pad because pressure-volume state is same
for both the cases as shown in Figure 2(b). Then
this rarefaction wave moves towards the centre of
the cylinder through the compacted dense mate-
rial as shown in the Figure 2(c). The rarefaction
wave intersects with the preceding shock wave
in the powder, which is propagating towards the
center of the cylinder. This rarefaction wave re-
leases the shock in the powder compact. De-
pending on the thickness of the compact and the
wave speed, the rarefaction wave may catch-up
with the shock wave before it reaches the cen-
ter of the cylinder, in which case, the rod end-up
under-compacted. This happens when the pres-
sure is applied for insufficient duration on the
porous material, which is related to the insuffi-
cient explosive pad thickness. On the other hand
the rods are over-compacted leading to melting at
the core, when there is enough time for the un-
loading shock wave to get reflected at the core.
This reflection wave meets the release wave, ap-
parently, which also results in lower density, be-
cause of melting due to the high pressure at the
core. Ideally, the rods will be of uniform density
if the release wave meets the shock wave exactly
at the central axis of the cylinder and terminates
the shock compression.

The densification of the compact due to shock
loading is obtained using Equation (1). The den-
sity of the compact due to unloading decreases

when the rarefaction wave sweeps through the ra-
dius. The final density is calculated using Equa-
tions (1) and (2) and by substituting Pf = 0 in
Equation (2). A detailed algorithm for the numeri-
cal computations is presented in the form of a flow
diagram shown in Figure 3.

3 Densification due to melting

This part of the model describes the tempera-
ture distribution in the shock induced dynami-
cally compacted powder particles. This model is
a modified form of that by Gourdin (1984). As
shown in Figure (4), the powder is subjected to
a shock wave and a fraction of the dissipation
energy is deposited at the interface between the
powder particles. As observed experimentally by
Gourdin (1984), a uniform energy deposition at
the particle surface is assumed and the net energy
deposited at the surface of the powder particles
during compaction is expressed in terms of the en-
ergy deposited per unit mass. Heat transfer equa-
tion is employed to get the temperature variation
from the surface to the center of the powder par-
ticle. The model includes the effect of latent heat
also.

The specific energy carried by the shock is given
by the Rankine-Hugoniot relation

E f −Ei = (Pf +Pi)(Vi−Vf )/2 (10)

where E, P and V are energy, pressure and specific
volume respectively and the subscripts ‘i’ and ‘ f ’
refer to the initial and final states. The net energy
deposited on the surface of the particle is assumed
to be 90% of the area under the pressure-volume
curve of the material. The inter-particle bonding
in dynamically compacted materials is a result of
localized melting at the interfaces. It is assumed
that the net shock energy deposited at the parti-
cle interface is uniform (Raybould, 1980; Ray-
bould, 1981; Gourdin, 1984) as shown schemat-
ically in Figure 4, where ω is the thickness of the
surface layer up-to which the deposited energy is
conducted and ω∗ is the thickness of the surface
layer which gets melted.
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Figure 3: Flow diagram to compute the densification during explosive loading
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tion of the interface pressure and the speed

3.1 Calculation of Temperature distribution

Let ρti and ρt f be the initial and final densities
of the powder corresponding to before and after
melting. Therefore

ρti =
1

V0 +Vθ
(11)

where V is the volume per unit mass. The sub-
script ‘0’ and ‘θ ’ correspond to dense and porous
states respectively. Here, the porous state corre-
sponds to that prevailing after the shock loading
(i.e ρti = ρs f )

ρt f =
1

V0 +Vθ −ΔVθ
(12)

where ΔVθ is the volume of the melted powder
that contributes to the densification of the com-
pact due to melting alone. If Vθ < ΔVθ then natu-
rally it has to be reset as ΔVθ = Vθ .

Subtracting Equation (11) from Equation (12) and
using Equation (11) we get

ρt f −ρti =
1

V0 +Vθ −ΔVθ
− 1

V0 +Vθ
(13)

Δρt =
ΔVθρ2

ti

(1−ρtiΔVθ )
(14)

It is assumed that from each particle the volume
that melts at the surface goes into the pores to the

extent that it does not exceed the available pore
volume. The volume of the melted portion of
the particle that fills the pore is given by 4πr2ω∗,
where r is the radius of the powder particle and
ω∗ is thickness of the surface layer, which gets
melted.

Therefore the volume which fills the pores per
unit mass is

ΔVθ = 4πr2ω∗ × 3
4πr3ρ0

=
3ω∗

rρ0
for Vθ > ΔVθ

= Vθ for Vθ < ΔVθ

(15)

Let cv be the specific heat at constant volume,
ω be the thickness of the surface layer through
which the deposited heat has been conducted and
K is the thermal conductivity of the material. Tm

and Tr are the melting and room temperatures of
the material. Let Tf be the maximum tempera-
ture that is developed on the surface of the mate-
rial. Using the steady state thermal conductivity
equation, the heat flux through the surface of the
powder particle is given by

k4πr2(Tf −Tr)
ω

=
k4πr2(Tf −Tm)

ω∗ (16)

The above equation assumes uniform conduction
through only a thin layer on the surface. From the
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above equation we get

ω∗ = ω
(

1− Tm −Tr

Tf −Tr

)
(17)

Equating the energy deposited on the surface of
the particle in time ‘t’ to flux rate we get

k4πr2(Tf −Tr)
ω

=
αη4πr3ρ0

3t
(18)

where α is a fraction less than one and η is the
energy deposited on the particle surface as given
by Equation (10).

η =
1
2

PΔV (19)

where P is the maximum pressure and ΔV is the
change in powder volume per unit mass of the
powder and t ′ is the time taken by the shock wave
to travel through the diameter of one particle in
the effective porous medium; it is given by

t =
2r

(1−θ )Uθ
(20)

Substituting Equations (19) and (20) in Equation
(18) we get

Tf −Tr = ξω (21)

where

ξ =
αP(ΔV)ρ0Uθ (1−θ )

12K
(22)

The porosity ‘θ ’ here corresponds to the poros-
ity at the end of the shock loading. The heat de-
posited on the surface of the powder particles of
unit mass is

ρ0ω4πr2cv(Tf −Tr)+ρ0ω∗4πr2L

=
1
2

P(ΔV)α
4
3

πr3ρ0 (23)

where ‘L’ is the latent heat of the melting powder
material.

On simplifying the above equation we get,

ρ0ωcv(Tf −Tr)+ρ0ω∗L = ξ 2Kr
(1−θ )Uθ

(24)

Using Equations (17) and (21) in Equation (23)
we get

ω2 +
(

L
cvξ

)
ω

−
[

L(Tm −Tr)
cvξ 2 +

(
2rK

(1−θ )cvρ0Uθ

)]
= 0 (25)

On solving the above quadratic equation in ω we
get

ω = −1
2

L
cvξ

+
1
2

√
L2

c2
vξ 2 +4

[
L(Tm −Tr)

c2
vξ 2 +

2rK
(1−θ )ρ0Uθ cv

]
(26)

The final density ρ f is calculated using Equation
(13) along with Equations (14), (15), (17), (21)
and (25).

4 Results

4.1 Validation

In this model, a cylindrical container of diame-
ter 16mm and height 60mm is filled with different
types of powders (listed in Table 1) that measures
to ∼40% porosity. For this investigation trimonite
explosive is considered as an illustrative explosive
material for calculations, same as in the experi-
mental work carried out by Siva Kumar (1996)
for compaction of aluminium powder. The den-
sity of this explosive is 1080 kg/m3. Detonation
velocity and Chapmann-Jouguet pressure of the
explosive are 4300 m/s and 7.11 GPa respectively
(Siva Kumar; 1996). The explosive pad of thick-
ness varying from 1mm to 25mm is mantled to
this cylinder to study the effect of pad thickness
on compact densities so as to find the ideal pad
thickness for a given material.

The model takes into account the effect of particle
size also on densification as discussed in section
3. But in this paper, the discussions are restricted
to the optimum size of the particle and ideal pad
thickness of the explosive pad. The graphs plotted
in Figures (6) and (7) correspond to optimum size
of the particle and ideal thickness of the explosive
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Explosive: Trimonite
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Initial porosity: 40 %

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 1 2 3 4 5 6 7 8 9

Stages

N
or

m
al

is
ed

 d
en

si
ty

Magnesium (4.99 micro sec)
aluminium (2.96 micro sec)
Copper (8.22 micro sec)
Iron ( 9.12 micro sec)
Tungsten (6.43 micro sec)

*

*

*
*

+ +
+

(a)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 1 2 3 4 5 6 7 8 9

Stages

N
or

m
al

is
ed

 d
en

si
ty

Boron nitride(5.23 micro sec)

Silicon nitride ( 4.24 micro sec)

silicon carbide ( 4.07 micro sec)

 Tungsten carbide  ( 5.72 micro sec)

(b)

Figure 6: Progressive densification for different materials during explosive compaction
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Table 1: Material properties (Metals reference; 1993)

Powder
Material

Density
(Kg/m3)

Young’s
Modu-
lus
(GPa)

Poisson’s
ratio

Thermal
conduc-
tivity
(W/m.
K)

Melting/
soft-
ening
temper-
ature
(K)

Specific
heat
(J/Kg.K)

Com-
pression
factor g

Bulk
sound
speed
C0

(m/sec)

Latent
heat
(J/Kg)
(X104)

Mg 1740 44 0.29 157.3 923.2 1046 1.263 4492 44
Al 2785 69 0.29 205 933.25 913 1.338 5328 38
Cu 8930 119.5 0.3 380.8 1356.15 385 1.489 3940 21.17
Iron 7850 115 0.27 47.71 1373 497.9 1.92 3574 9.63
W 19400 390 0.3 200.8 3653 125.5 1.237 4029 65
BN 2270 176 0.25 6.97 3000 730 1.0 6530 122.6
Si3N4 3310 311 0.27 7 2173 740 1.0 8000 125
SiC 3120 400 0.27 60 2473 670 0.95 8000 183.52
WC 15800 669 0.25 25.3 2900 740 1.339 4920 70

Explosive
material

Density
(Kg/m3)

Detonation
Velocity
(m/sec)

Energy
(KJ/Kg)

γ Chapmann-
Jouguet
Pressure (GPa)

Chapmann-
Jouguet
Density
(Kg/m3)

Trimonite 1100.0 4300 5500 1.64 7.01 2000

pad. The effect of particle size on densification
will be discussed more elaborately in our next pa-
per (Srivathsa and Ramakrishnan). The ‘depth of
densification’ in our study refers to the thickness
of the cylinder up to which the densification has
taken place; in other words, it is the distance at
which the shock pressure is annulled by the re-
lease wave.

The model is validated for final compaction den-
sity as well as the surface temperature and the
melted surface thickness of the powder particle
with the available experimental results. The com-
puted optimum pad thickness of trimonite explo-
sive for compaction of aluminium powder with 40
% porosity is ∼ 5 mm as shown in Figure (8),
which is in good agreement with experimental re-
sults of Siva Kumar (1996). Further, micro struc-
tural studies carried-out by Siva Kumar (1996)
with varying pad thickness reveal that pad thick-
ness less than 5 mm results in under-compaction
at the core and above that causes melting at the
core, which is in line with the model predic-
tion. The computed surface temperature of the

aluminium particle is 951 oK, where the melting
point of aluminium is∼ 933 oK, that is marginally
higher than its melting temperature at the atmo-
spheric pressure. Therefore, the contribution for
densification due to melting can’t be significant
because the thickness at the particle surface that
is melted is very small as shown in Figure (7).
The computed thickness of the aluminium parti-
cle that is melted due to high temperature is ∼
0.25 mm, which is also in agreement with ex-
perimental results of Lotrich (1986). The com-
puted surface temperature and the melted surface
thickness of the copper particle are compared with
the experimental results of Gourdin (1984) and
Bergmann (1973). Unlike aluminium, the contri-
bution for densification due to melting in copper
is very significant. The computed surface tem-
perature of copper particle is 1415 oK, where the
melting point of copper is ∼ 1356 oK, which is
significantly higher than its melting temperature.
Also the conductivity of copper is higher than the
conductivity of aluminium. Similarly the specific
heat of copper is less than the specific heat of
aluminium; therefore the contribution for densi-
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Figure 7: Effect of particle size on the densification and temperature at the surface of the powder particles
for different materials

fication due to melting should be high for cop-
per. This is also reflected by the surface thick-
ness melted on copper particle, which is ∼ 0.7
mm. These values are in good agreement with
the experimental results of Gourdin (1984) and
Bergmann (1973).

4.2 Discussions

The interface pressure and the particle velocity
are independent of the explosive pad thickness,

but depend on the characteristics of the powder as
well as the explosive material. As an illustration,
the pressure and the particle velocity at the alu-
minium powder-explosive interface is shown in
Figure (5). These curves are obtained from Equa-
tion (4) that is a well-known reflection Hugoniot
relation. Equation (6) relates the pressure and the
particle velocity in a porous medium (Ramakrish-
nan; 1988). The pressure and the particle veloc-
ity at the interface of the aluminium powder that
measures to 40% porosity and the trimonite ex-
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Figure 8: Effect of pad thickness on densification

plosive are ∼ 3.7 GPa and 900 m/s respectively.

The computed final density due to shock as well
as thermal loading for different metallic materials
is shown in Figure 6(a) and for ceramics in Figure
6(b). The diameter of the powder agglomerate is
taken as 16 mm and the thickness of the explo-
sive pad used for optimum densification is differ-
ent for different materials. The positions of crests
(*) shown in Figure 6(a) denote the densities ob-
tained by compression wave originated from the
interface and the positions of troughs (+) denote
the densities realized by the release wave origi-
nating from the center of the cylinder. It can be
observed that, with the initial shock wave itself
the density of the compacts of these powders ex-
ceeds the original density (except tungsten) sub-
sequently the release wave relaxes the material,
reaching the positions of troughs below the base
density, but to a density higher than the initial
density (i.e. 0.6ρ0). This process continues till
the pressure becomes zero that is the rarefaction
wave approaching the center of the cylinder at-
tenuating the shock wave. Figure 6(b) the con-
vergence effect and also the propagation of the

shock, reflection as well as rarefaction and release
wave phenomena explicitly. Figure 6 specially
corresponds to the optimum pad thickness and
specific particle size. The convergences shown
for each material is different for different parti-
cle size and also pad thicknesses. Therefore, the
time required for convergence is also different,
which are shown within brackets in Figure 6(a).
For example, the optimum particle size for mag-
nesium powder is 10 μm (Figure 7) and the opti-
mum explosive pad thickness is ∼ 4.5 mm (Fig-
ure 8). The optimum particle size and optimum
explosive pad thickness for ideal compaction are
shown separately in Figures (7) and (8). From
Figure 6(a) it can be observed that low to moder-
ate density materials converge to a higher theoret-
ical density, whereas higher density material like
tungsten converges to a lower theoretical density.
It is also clear that low-density materials densify
with greater speed compared to moderate density
materials. One of the reasons to this variation is
low specific heat of the material in addition to its
bulk density. And also lower compression factor
of tungsten can be attributed to low compacted
density. Never the less, the change in explosive
material will change the optimum parameters. It
is this nature of the explosive compaction makes
this modelling highly relevant.

Similar trend, as seen in metallic materials, is ob-
served in ceramic materials also. In the set of
composites considered in this study, Low-density
ceramics densify faster than that of the high-
density ones. The convergence time for densifi-
cation of boron nitride is marginally high com-
pared to the other low-density ceramics. Boron
Nitride converges very close to original density
and the time to converge is marginally high un-
like metallic powders. Otherwise, higher density
ceramics Tungsten Carbide is falling in line with
that of metallic powders. The variations in den-
sification of these ceramics are attributed to the
complex combination of bulk sound speed, ther-
mal conductivity, latent heat, specific heat capac-
ity and compression factor etc.

Figure 7 provides a broader idea of the model in
terms of the effect of the particle size, surface
temperature of the particle on densification due to
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shock loading as well as thermal loading. This
figure consists of three plots; i) the density ob-
tained due to shock and thermal loading, ii) the
optimum particle size and iii) the temperature de-
veloped at the surface of the particle. The percent-
age contribution due to the combined effect of the
shock loading as well as the melting for different
materials using optimum pad thickness is shown
in Figure 7. The over all densification is close to
99% for almost all materials listed in Figure 7, ex-
cept Tungsten Carbide and Iron. Interestingly, it
can be observed that among the materials listed
the contribution to densification due to melting
is significant in Silicon Carbide, Copper, Tung-
sten and Silicon Nitride. It is moderate in Tung-
sten Carbide, Iron and Magnesium. In the case
of Boron Nitride and Aluminium it is negligible.
For the given explosive material and the other pa-
rameters naturally for the materials for which the
temperature attained is significantly higher than
their respective melting or softening temperature,
the thermally induced densification turns out to
be higher. Second plot of Figure 7 contains the
optimum particle size. The optimum size of the
powder particle is below 6 μm for silicon carbide,
silicon nitride, Iron and aluminium. In case of
the tungsten carbide and magnesium the optimum
size fall in the range of 6 μm – 14 μm, and larger
in the case of Boron nitride, copper and tungsten.

Figure 8 shows the effect of the explosive pad
thickness and the depth of densification. The
depth of densification in our study refers to the ra-
dial thickness to which the densification has taken
place; in other words, it is the distance at which
the shock pressure is nullified by the release wave.
It can be observed that for a given pad thickness,
the depth of densification is high for low-density
materials. This graph also throws light on ideal
pad thickness to achieve maximum densification.
For instance, in the case of Boron Nitride if the
radius of the cylindrical container is ∼ 10mm,
the optimum trimonite explosive pad thickness is
around 6mm. Interestingly, the depth of densifica-
tion varies linearly with the explosive pad thick-
ness as per the model.

5 Summary

The paper describes an analytical model of an
explosive compaction of powder with axial det-
onation to obtain cylindrical billets. The model
mainly focuses on two important design param-
eters: i) the explosive pad thickness ii) particle
size. The effect of number of mechanical and
thermal properties of the powder as well as the
properties of the explosive material is incorpo-
rated in the model. Shock dynamics is used for
arriving at the optimum explosive pad thickness.
The shock energy deposition at the particle sur-
face is used for determining the temperature dis-
tribution and melting leading to optimum parti-
cle size. Although, only a few illustrative cases
have been presented in this paper, the model has a
wider applicability.
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