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Elastic Instability of Pseudo-Elastic Rubber Balloons

Ren Jiusheng 1

Abstract: Elastic instability for the inflation
and deflation of a thin-walled spherical rubber
balloon is examined within the framework of fi-
nite pseudo-elasticity. When a spherical rubber
balloon is inflated, it is subject to a complex de-
formation after a pressure maximum has been ob-
tained. One part of the balloon is lightly stretched
while the remainder becomes highly stretched.
So an aspherical deformation is observed after
the initial spherical inflation. A pseudo-elastic
strain energy function including a damage vari-
able which may model the loading, unloading and
reloading of rubber is used. The balloon is ideal-
ized as an elastic membrane and the inflation, de-
flation and re-inflation of the balloon is described
in detail. Instability of solutions is discussed
through energy comparison. Furthermore, the ef-
fect of temperature is discussed with a thermo-
hyperelastic model and the residual strain is ana-
lyzed with a pseudo-elastic strain energy function
including a residual strain variable.

Keyword: rubber balloon, pseudo-elasticity,
thermo-hyperelasticity, aspherical deformation,
instability

1 Introduction

Rubber-like materials such as rubber and poly-
meric materials are using in a broader and broader
range of engineering field in recent years. So such
nonlinear problems as the instability [Fu and Og-
den R.W. (2001); Beatty (1987); Gent (2005)],
cavity formation [[Yuan and Zhang (2005); Yuan
et al (2006)]] and the damage or rupture [Gao
et al (2006); Sharifi and Gahwaya (2006); Le
Phong et al (2007); Timmel et al (2007)] of
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hyper-elastic materials have attracted much atten-
tion as they play a fundamental role on the failure
of materials. Problems with multiple solutions are
an important class of material instability. A well-
known example is the inflation of spherical rub-
ber balloons [Gent (1999); Needleman (1977)].
When a spherical rubber balloon is inflated, it
keeps spherical inflation at the initial stage until
the pressure maximum is attained. After the pres-
sure maximum, the pressure begins to fall with
the increasing inflation. At the same time, one
part of the balloon is lightly stretched while the
remainder becomes highly stretched. So the bal-
loon becomes noticeably aspherical. For a certain
pressure, there exist one or more solutions corre-
sponding to different inflations, so that instability
is encountered.

But hyper-elastic theory is unable to describe such
inelastic effects in the unloading and reloading of
balloons as the notable retracing of a similar curve
in the deflation path [Beatty (1987)]. This occurs
because of the Mullins effect in rubber-like solids,
which is a stress-softening effect induced by dam-
age [Ogden (2003)]. The Mullins effect has been
modeled using the notion of pseudo-elasticity in
papers by Ogden [Ogden (2003)]. The effect
was modeled by incorporating a discontinuous in-
ternal or damage variable into the strain-energy
function of the material. As the damage variable
may be active or inactive, an elastic stress-strain
law is used in the loading path and a different elas-
tic stress-strain law is used in the unloading path.
So the hysteresis effects exhibited by rubber-like
materials may be prescribed.

The importance of gaining a theoretical under-
standing of the thermo-mechanical behavior of
rubber was illustrated by the role of the O-ring
seals in the Challenger shuttle disaster. Not only
the elasticity theory but also extensions of the the-
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ory to account for inelastic effects are involved for
rubber-like materials. Such thermo-mechanical
behavior of rubber-like materials is described as
the thermo-hyperelastic model [Nicholson and
Nelson (1990)].

The purpose of the present paper is to further in-
vestigate the instability of inflation and deflation
of a thin-walled pseudo-elastic spherical rubber
balloon. A pseudo-elastic strain energy function
[Dorfmann and Ogden (2003)] including a dam-
age variable which can model the loading, un-
loading and reloading of rubber is used here. The
balloon is idealized as an elastic membrane and a
simple energy method is used to achieve the gen-
eral formula for the inflation pressure within the
context of membrane theory. The inflation, de-
flation and re-inflation curves of the balloon are
given. Instability of solutions in the inflation-
deflation circle is discussed through energy com-
parison and the material response in the circle is
described in details. Furthermore, the effect of
temperature on the inflation of the balloon is dis-
cussed with a thermo-hyperelastic model. The
residual strain is analyzed with a pseudo-elastic
strain energy function including a residual strain
variable and the basic law for the distribution of
residual strain is given.

2 Formulations

Consider the rubber balloon as an isotropic spher-
ical membrane with undeformed radius r0 and
thickness d0(d0 � r0) and it is in a stress-free
state at initial time t0. Suppose the spherical shape
is preserved as the inflation pressure p deforms
the balloon uniformly to a radius r and thickness
d at time t. The undeformed and deformed con-
figurations are described by the spherical coordi-
nate systems (R,Θ,Φ) and (r,θ ,ϕ), respectively.
Then the deformation function of the balloon is
given as

r = r(R) > 0, θ = Θ, ϕ = Φ (1)

here r(R) is an undetermined function. The asso-
ciated deformation gradient tensor is

F = diag(ṙ(R), r(R)/R, r(R)/R) (2)

The principal stretches are

λr = ṙ(R),λθ = λϕ = r(R)/R (3)

From the incompressibility condition of the mate-
rial, let λθ = λϕ = λ , we have λr = λ−2.

The strain energy function of the rubber mate-
rial is given as the pseudo-elastic constitutive law
used by Dorfmann and Ogden [Dorfmann and
Ogden (2003)] to model the idealized Mullins ef-
fect with no residual strain in the form

W (λ ,η) = ηW0 (λ )+φ (η) (4)

Where, W0 (λ ) is the classical strain energy func-
tion for the rubber material. Here, we consider
a particular constitutive law, namely that of the
Gent material [Gent (1999)],

W0 = −EJm

6
ln

(
1− J1

Jm

)
(5)

Where, J1 = λ 2
r +λ 2

θ +λ 2
ϕ −3,Jm is the maximum

permitted value of J1 corresponding to a maxi-
mum extension. φ (η) is the damage function
depends only on the damage variable η and it is
given in the form

φ (η) = −m(η −1) tanh−1 [r (η −1)]

−Wm (η −1)− m
2r

log
[
1− r2 (η −1)2

]
(6)

Where material constant r = 3.3,m = 0.3Nmm,
Wm = W0 (λm), λm is the value of the principal
stretch attained on the loading path. The damage
variable η is inactive on the loading path, that is
to say η = 1. When η = 1, φ (η) = 0, we may
have the classical strain energy function from the
pseudo-energy function (4). The damage variable
η is active on the unloading path, which is deter-
mined as

1−η =
1
r

tanh

[
Wm −W0 (λ )

m

]
(7)

3 Inflation of the balloon

Following the mechanical energy principle that
the time rate of change of the total mechanical en-
ergy for any part of a body is balanced by the total
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mechanical power [Beatty (1987)], we have∫
V

ΔWdV = 4πr2
0t0W (λ )

= 4π
r∫

r0

r2p(r)dr

= 4πr3
0

λ∫
1

λ 2 p(λ )dλ

(8)

Differentiating it with respect to λ yields

p(λ ) =
t0

r0λ 2

dW (λ )
dλ

(9)

This is the general formula for the inflation pres-
sure for an isotropic hyper-elastic spherical mem-
brane inflated from the initial stress-free state.
When the balloon is primarily inflated, the dam-
age variable η is inactive and we have

p(λ ) =
d0

r0λ
2E
3

1−λ−6

1−J1/Jm
(10)

Numerical result of (10) for the inflation curve
is shown in Fig.1 with material constant Jm =
97.2,E = 3.5 × 106MPa. It is shown that
there exists a maximum inflation pressure p1 =
p(λ = λ1 = 1.4). When the pressure is less than
this maximum pressure, it increases rapidly with
the increasing of stretch. But when the pres-
sure is larger than this maximum pressure, it de-
creases with the increasing of stretch. Finally,
when the pressure is larger than a minimum pres-
sure p2 = p(λ = λ2 = 4.0), it increases with the
increasing of stretch in place of continuously de-
creasing.

For a certain pressure, there exist one or more
solutions corresponding to different inflations, so
that instability is encountered and it is necessary
to compare the total potential energy for the so-
lutions. The total potential energy of the in-
flated balloon with internal pressure from the ini-
tial stress-free state is

E =
∫
V

WdV −
∫
A

p(r− r0)dr

= 4πr2
0d0

(
W (λ )− 1

3
r0

d0
p
(
λ 3 −1

)) (11)
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Figure 1: Inflation curve of the balloon
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Figure 2: Energy curve of the inflated balloon

Numerical result of (11) for the inflated balloon is
shown in Fig.2. It is shown that the total potential
energy of the inflated balloon decreases with the
increasing of stretch when 1 ≤ λ ≤ λ1 = 1.4 or
λ2 = 4.0≤ λ . But it increases with the increasing
of stretch when λ1 = 1.4 ≤ λ ≤ λ2 = 4.0. That is
to say, the balloon attained a stable deformation
state when the pressure is less than the maximum
pressure and it takes up a roughly spherical shape.
But when the pressure is larger than the maximum
pressure, the deformation state is unstable. After a
small inflation, the balloon is subject to a complex
deformation. One part of the balloon is lightly
stretched and the other is highly stretched. So the
balloon becomes noticeably aspherical. When the
pressure is larger than the minimum pressure, the
balloon attains a second stable deformation and
regains its spherical shape. This is accord with
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observation from a typical balloon inflation exper-
iment [Beatty (1987)].

4 Deflation of the balloon

When the primarily inflated balloon is unloaded
from a certain maximum stretch λm, the damage
variable η becomes active and its value may be
given explicitly in terms of λ from (7). Then the
pseudo-energy function during the unloading path
may be given by (4) and (6). Substituting it into
the general formula (9), the inflation pressure dur-
ing the unloading path may be given as

p(λ ) = η
d0

r0λ
2E
3

1−λ−6

1−J1Jm
(12)

Numerical result of (12) for the unloading curve
which is unloaded from the maximum stretch
λm = 6 is shown in Fig.3. The pressure for de-
flation isn’t monotonically decreasing with the
stretch, too. It is shown that there is a notable
retracing of a similar curve in the deflation path
as that in the inflation path and it includes a max-
imum pressure at the same stretch just as that in
the inflation path.

For a certain pressure, there exist one or more so-
lutions corresponding to different inflations, too,
so that instability is encountered in the deflation
path. It is necessary to compare the total potential
energy for the solutions, too. The total potential
energy of the deflated balloon with internal pres-
sure from the maximum stretch λm is

E =
∫
V

WdV −
∫
A

p(r− rm)dr

= 4πr2
0d0

(
W (λ )− 1

3
r0

d0
p
(
λ 3 −λm

)) (13)

Numerical result of (13) for the deflation curve
unloaded from the maximum stretch λm = 6 is
shown in Fig.4. It is shown that the total potential
energy of the deflation balloon decreases with the
decreasing of stretch when 1 ≤ λ ≤ λ1 = 1.4 or
λ2 = 4.0≤ λ . But it increases with the decreasing
of stretch when λ1 = 1.4 ≤ λ ≤ λ2 = 4.0. That is
to say, the deflation balloon attained a stable de-
formation state when the pressure is larger than
the minimum pressure and it takes up a roughly

spherical shape. But when the pressure is less
than the minimum pressure, the deformation state
is unstable. The balloon is subject to a complex
deflated deformation as that in the inflation path
and it becomes aspherical, too. Finally, when the
pressure is less than the maximum pressure, the
deflation balloon attains a second stable deforma-
tion and regains its spherical shape.
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Figure 3: Inflation, deflation and re-inflation
curves of the balloon
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Figure 4: Energy curve of the deflated balloon

5 Re-inflation of the balloon

Re-inflation from a state λu ∈ (1,λm) on the pre-
vious deflation curve is considered now. The
pseudo-energy function during the reloading path
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may be given as [Dorfmann and Ogden (2003)]

Wr (λ ,ηr) = ηrW0 (λ )+φr (ηr) (14)

φr (ηr) is the damage function depends only on
the damage variable ηr during reloading and it is
given in the form

φr (ηr) = φ (ηu)− (ηr −ηu)W0 (λu)

−a1 (ηr −ηu) tanh−1
[
(ηr −ηu)
(1−ηu)

]

− a1

2
(1−ηu) log

[
1− (ηr −ηu)

2

(1−ηu)
2

]
(15)

Where material constant a(W0 (λu)) = c0 +
c1W0 (λu), c0 = 0.2227Nmm, c1 = 0.3723. The
damage variable ηr increases from ηu to the fi-
nal value 1 during reloading and when this final
value is reached the material response switches
from the reloading path to the loading path. It is
determined by

ηr

ηu
−1 =

1−ηu

ηu
tanh

[
W0 (λ )−W0 (λu)

a1

]
(16)

Substituting (14) into the general formula (9), the
inflation pressure during the reloading path may
be given as

p(λ ) = ηr
d0

r0λ
2E
3

1−λ−6

1−J1Jm
(17)

Numerical result of (17) for the reloading curve
is shown in Fig.3 with λu = 1.0. It is shown that
when the pressure is less than the maximum pres-
sure, it increases rapidly with the increasing of
stretch but it is always lightly smaller than that in
the primary inflation. When the maximum infla-
tion pressure p1 = p(λ = λ1 = 1.4) is attained, ηr

reaches the final value 1 and the re-inflation curve
is consonant with the primary inflation curve.

6 Effect of temperature

Now, we consider the effect of temperature on
the inflation of the balloon. Assuming there
is a uniform temperature field T = const for
the balloon and consider the generalized Gent

thermo-hyperelastic material [Nicholson and Nel-
son (1990)],

W = −EJm

6
ln

(
1− J1

Jm

)
+ρC3T ln

(
T
T0

)
+ 2C4(T −T0)J1 (18)

where, C3 = Ce, C4 =−αλ are material constants
[Nicholson and Lin (1996)], Ce, α , λ are the spe-
cific heat at constant strain, the volumetric ther-
mal expansion coefficient and the second Lame
coefficient, ρ is the mass density, T0 is a reference
temperature.

Substituting (18) into the general formula (9), the
inflation pressure during the loading path may be
given as

p(λ ) =

d0

r0λ

(
2E
3

1−λ−6

1−J1Jm
+8C4 (T −T0)

(
1−λ−6))

(19)

Numerical result of (19) for the inflation bal-
loon is shown in Fig.1 with constant [Nichol-
son and Lin (1996)] C3 = 1506Jkg−1K−1, ρ =
950kgm−3, C4 = −6.36 × 0.4245 × 10−4MPa ·
K−1, T0 = 3000K, T0 = 3600K. It is shown that
when the temperature is raised, the inflation curve
is as similar as that under the reference tempera-
ture but the pressure is always lightly smaller than
that under the reference temperature at the same
stretch.

7 Residual strain

To analyze the residual strain of the balloon as
shown in the typical balloon inflation experiment
[Beatty (1987)], a pseudo-elastic constitutive law
used by Dorfmann and Ogden [Dorfmann and
Ogden (2004)] to model the idealized Mullins ef-
fect with residual strain in the following form is
used

W (λ ,η) = η1W0 (λ )+(1−η2)N(λ )
+ φ1(η1)+ φ2(η2) (20)
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Where,

N(λ ) =
1
2

[
ν1

(
λ 2

r −1
)
+ν2

(
λ 2

θ −1
)
+ν3

(
λ 2

ϕ −1
)]
(21)

Material constants ν1,ν2,ν3 only depend on the
value of the principal stretch λm attained on the
loading path. η1 is the damage variable deter-
mined as

η1 = 1− 1
r

tanh

[
Wm −W0 (λ )

μm

]
(22)

φ1 (η1)is the damage function determined as

φ1 (η1) = −μm(η1 −1) tanh−1 [r (η1 −1)]

−Wm (η1 −1)− μm
2r

log
[
1− r2 (η1 −1)2

]
(23)

Material constants r = 1.25, m = 0.965, μ =
1.24MPa. η2 is the residual strain variable de-
termined as

η2 =
1

tanh(1)
tanh

[(
W0 (λ )

Wm

)α(Wm)
]

(24)

Where function

α = 0.3+0.16
Wm

μ
(25)

The residual strain function φ2 (η2) is determined
as

φ ′
2 (η2) = N(λ ) (26)

The two variables are inactive on the loading path,
that is to say η1 = η2 = 1. When η1 = η2 = 1,
φ1 (η1) = φ2 (η2) = 0, we may have the classi-
cal strain energy function from the pseudo-energy
function (20).

For the given material constants ν1 =
0.4μ

[
1− 1

3.5 tanh
(

λm−1
0.1

)]
, ν2 + ν3 = 0.8μ ,

numerical result for the inflation balloon and
deflation balloon from different λm are shown
in Fig.5. Residual strain of the deflated balloon
with variable of λm is shown in Fig.6. It is
shown that the residual strain is depend on the
maximum value of the principal stretch attained
on the loading path and there is an asymptotic
value when λm is larger than 2.0. This is accord
with observation from a typical balloon inflation
experiment [Beatty (1987)], too.
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Figure 5: Deformation curves of the balloon
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8 Conclusions

When a spherical pseudo-elastic rubber balloon is
inflated, there exist one or more solutions corre-
sponding to different inflations for a certain pres-
sure. When the pressure is larger than the max-
imum pressure, the deformation state is unstable
and it is subject to a complex deformation. One
part of the balloon is lightly stretched while the re-
mainder becomes highly stretched and an aspheri-
cal deformation is observed after the initial spher-
ical inflation. When the primarily inflated bal-
loon is unloaded from a certain maximum stretch,
there is a notable retracing of a similar curve in
the deflation path. When the deflation balloon is
re-inflated from a state on the previous deflation
curve, the pressure is always lightly smaller than
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that in the primary inflation until the maximum
inflation pressure is attained and finally the re-
inflation curve is consonant with the primary in-
flation curve. Furthermore, the pressure is always
lightly smaller than that under the reference tem-
perature as the temperature is raised. The resid-
ual strain is analyzed with a pseudo-elastic strain
energy function including a residual strain vari-
able and it is depend on the maximum value of
the principal stretch attained on the loading path
and there is an asymptotic value.
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