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A Meshless Local Petrov-Galerkin Method for the Analysis of Cracks in the
Isotropic Functionally Graded Material

K.Y. Liu1,2,3, S.Y. Long1,2,4 and G.Y. Li1

Abstract: A meshless local Petrov-Galerkin
method (MLPG) [Atluri and Zhu (1998)] for the
analysis of cracks in isotropic functionally graded
materials is presented. The meshless method
uses the moving least squares (MLS) to approx-
imate the field unknowns. The shape function has
not the Kronecker Delta properties for the trial-
function-interpolation, and a direct interpolation
method is adopted to impose essential boundary
conditions. The MLPG method does not involve
any domain and singular integrals to generate the
global effective stiffness matrix if body force is
ignored; it only involves a regular boundary in-
tegral. The material properties are smooth func-
tions of spatial coordinates and two interaction
integrals [Rao and Rahman (2003a,b)] are used
for the fracture analysis. Two numerical examples
including both mode-I and mixed-mode problems
are presented to calculated the stress intensity fac-
tors (SIFs) by the proposed method. Example
problems in functionally graded materials are pre-
sented and compared with available reference so-
lutions. A good agreement obtained show that the
proposed method possesses no numerical difficul-
ties.

Keyword: MLPG; functionally graded mate-
rial; interaction integral; Stress intensity factor

1 Introduction

The functionally graded material (FGM) has been
applied in the development of structure compo-
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nents in the aeronautic and astronautic domains,
which possesses gradually and continuously vary-
ing composition and structure, and its correspond-
ing properties vary gradually along thickness.
This material gradient can relax the stress concen-
tration, weak the residual stress and improve the
resistive ability of heat impact. Due to the reasons
of technology, working conditions and some other
factors, lots of cracks easily appear in a structure
with FGM. The crack initiation and growth is the
dominant type of failure in FGM. Hence, It’s very
important to design the components of FGM and
improve the fracture toughness. Since material
parameters of FGM are the function of spatial co-
ordinates, this makes it difficult to obtain the ana-
lytic solutions for complex problems. Many engi-
neering problems should be solved by numerical
methods.

At present, the finite element method (FEM) is
used generally for analysis of FGM [Eischen
(1987); Gu and Asaro (1999); Anlas et al (2000);
Kim and Paulino (2002)]. FEM has a big limi-
tation continuously remeshing the finite element
model involving a crack propagation. In recent
years, various meshless methods have been devel-
oped to solve fracture mechanics problems [Rao
and Rahman (2000); Belytschko et al (1995);
Belytschko and Tabbara (1996)]. The Mesh-
less methods use a set of nodes scattered within
the problem domain and on boundaries of do-
main. These nodes do not form a mesh meaning
it does not need any information on the relation-
ship between nodes for the interpolation of the un-
known field variables. Since no element connec-
tivity data is required, the remeshing characteris-
tic of FEM is avoided. So, the meshless methods
show a great potential to solve problems involving
cracks.
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Figure 1: Crack geometry in FGM

The MLPG method, presented by Atluri and Zhu
[Atluri and Zhu (1998)], is a very promising
method for solving partial differential equations.
Remarkable successes of the MLPG method
have been reported in solving the problems in
anisotropic medium [Sladek et al (2004a,b)], the
3-dimensional elasto-statics and elasto-dynamics
[Han and Atluri (2004a,b)], the dynamic frac-
ture problems [Gao et al (2006)], the ther-
moelastic and heat transfer problems [Ching and
Chen (2006); Wu et al (2007); Sladek et al
(2006a)], the piezoelectricity problems [Sladek et
al (2006b, 2007a,b)], the impact response prob-
lems [Han et al (2006); Liu et al (2006)], the
structure of shell problems [Sladek et al (2006c);
Jarak et al (1998)] and other problems [Johnson
and Owen (2007)]. In this paper, the MLPG
method is used to analyze cracks in Isotropic
functionally graded materials.

2 Crack-tip fields in FGM [Suresh and
Mortensen (1998)]

Consider a plane elasticity problem with a fi-
nite crack of length 2a lying in a medium with
modulus of elasticity E∗(x,y) and Poisson’s ra-
tio ν∗(x,y) varying with spatial coordinates, as
shown in Fig.1. The governing equation of the
Airy’s stress function φ is
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where E∗(x,y), ν∗(x,y) are given by E(x,y) and
ν(x,y) under a plane stress condition and by
E(x,y)/

[
1−ν(x,y)2

]
, ν(x,y)/[1−ν(x,y)] under

a plane strain condition, and ∇2 is a Laplacian op-
erator. Upon expanding the above equation, the
first term in the governing equation involves the
bi-harmonic term identical to the homogeneous
material, and the remaining terms involve the spa-
tial derivatives of the material properties [Rao and
Rahman (2003a)]. The elastic stress and dis-
placement fields in FGM can be derived using
the stress function in variable separable form, the
same as the homogenous case. Hence, the singu-
lar stress field near the crack tip can be given as

σ11(r,θ ) =
KI√
2πr

f I
11(θ )+

KII√
2πr

f II
11(θ ) (2)

σ12(r,θ ) =
KI√
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KII√
2πr

f II
12(θ ) (3)

σ22(r,θ ) =
KI√
2πr

f I
22(θ )+

KII√
2πr

f II
22(θ ) (4)

where r and θ are polar coordinates with the
crack tip as an origin, KI and KII are the SIF
of mode-I and mode-II, respectively, and f I

i j(θ ),
f II
i j (θ )(i, j = 1,2) are the standard angular func-

tions identical to homogeneous case.

The strain singular fields near the crack tip can be
obtained by Eq.(2)–Eq.(4)

εi j = Si jkl(0)σkl (5)

where Si jkl(0) is a component of flexibility ten-
sor near the crack tip. Similarly, the displacement
field can be written as

u1(r,θ ) =
1

Gtip

√
r

2π
[
KIg

I
1(θ )+KIIg

II
1 (θ )

]
(6)

u2(r,θ ) =
1

Gtip

√
r

2π
[
KIgI

2(θ )+KIIgII
2 (θ )

]
(7)

where Gtip = Etip/[2(1+νtip)] is shear modulus,
Etip, νtip are elastic modulus and Poisson’s ratio,
respectively, all calculated at the crack tip, and the
gI

i j(θ ), gII
i j(θ ) (i, j = 1,2) are the standard angular

functions identical to homogeneous case. Even
though the material gradient does not influence
the stress field distribution near the tip, but it in-
fluences distinctly the magnitude of SIFs.
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The energy release rate for a crack in FGM is
given by

G =
K2

I

Etip
+

K2
II

Etip
(8)

It should be noted that the material gradient af-
fects size of the region in which homogeneous so-
lution is valid, and so the stress field distribution is
different at the location far from the crack tip for
homogeneous and non-homogeneous materials.

3 J-integral and M-integral in FGM [Rice
(1968)]

A key of the research of fracture problems is how
to computer J-integral. In homogeneous materi-
als, J-integral is path independent. However, in
FGM it is path dependent.

J-integral in homogeneous materials can be writ-
ten as

J =
∫

Γ

(
Wδ1 j −σi j

∂ui

∂x1

)
n jdΓ (9)

where W = σi jεi j/2 = εi jDi jklεkl/2 is a strain en-
ergy density for the linear elastic material model,
n j is an unit outward normal to a contour Γ around
the crack tip, and Di jkl is a constitutive tensor. Us-
ing the divergence theorem, Eq.(9) can be con-
verted into an equivalent domain form written as
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where A is area inside the contour and q is an arbi-
trary differentiable function. Expanding the above
equation is given as
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Considering equilibrium equation (∂σi j/∂x j =

0), compatibility conditions ∂ui
∂x j

= 1
2

(
∂ui
∂x j

+ ∂u j

∂xi

)
and ∂Di jkl

∂x1
= 0 in homogenous materials, the sec-

ond integrand of Eq. (11) vanishes, and it reduce
to

J =
∫

A
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)
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∂x j

dA (12)

Consider two independent equilibrium states of a
cracked body. Assume state 1 to be an actual state
with specified boundary conditions, and state 2 to
be an auxiliary state. Superposition of J-integrals
of two states leads to another J-integral for state S

J(S) =
∫

A

([
(σ (1)

i j +σ (2)
i j )

] ∂ (u(1)
i +u(2)

i )
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where W (S) = 1
2

(
σ (1)

i j +σ (2)
i j

)(
ε (1)

i j +ε (2)
i j

)
.

For FGM, equilibrium equation and compatibility
conditions are still satisfied, the material gradient
term is not constant any more and is a function of
spatial coordinates. The second integrand of Eq.
(11) does not entirely vanish. So Eq. (11) can be
rewritten as

J̃ =
∫

A

(
σi j

∂ui

∂x1
−W δ1 j

)
∂q
∂x j
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+
∫

A

1
2

εi j
∂Di jkl

∂x1
εklqdA (14)

By comparing Eq. (14) to Eq. (12), J-integral for
FGM is in addition of the second domain integral
in Eq. (14). The integrands in the second domain
integral have singularity of order r−1 when an in-
tegral path is very close to the crack tip, but the
total integral term has order r1. In this case, the
second integral can be negligible. The evaluation
of J̃-integral is almost the same as that of homo-
geneous materials. J̃-integral must be accurately
calculated for a relative large integral domain.

When the direction of a crack is not parallel to
the direction of the material gradient, even under
symmetric loads, stress and displacement fields at
the crack tip are mixed-mode due to un-symmetry
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of FGM. For this situation, M-integral is generally
adopted to calculate SIFs. J̃-integral Eq. (13) for
the state S can be rewritten as

J̃(S) =
∫
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According Eq. (15), the evaluation of J̃-integral
depends on how the auxiliary field is selected.
In this study, the homogeneous and the non-
homogeneous auxiliary fields are adopted to cal-
culate J̃-integral.

Firstly, consider a homogeneous auxiliary field,
and select Eqs. (2)-(4) and Eqs. (6)-(7) as the aux-
iliary stress and displacement fields, respectively.
Thus Di jkl is a constant constitutive tensor eval-
uated at the crack tip. Hence, both equilibrium
equation and compatibility condition are satisfied
in the homogeneous auxiliary field. Then, Eq.(15)
can be written as
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Eq. (16) can be rewritten as

J̃(S) = J̃(1) + J̃(2) +M̃(1,2), (17)

where
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are J̃-integral for state 1 and state 2, respectively,
and
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is the interaction integral defined for FGM.

Secondly, consider a non-homogeneous auxil-
iary field, and still select Eqs. (2)-(4) and Eqs.
(6)-(7) as the auxiliary stress and displacement
fields, respectively. Thus Di jkl is not a con-
stant tensor and varies with the spatial coordi-
nates. The auxiliary stress field satisfies the equi-
librium equation and the auxiliary strain field is
not compatible with the auxiliary displacement
field

(
∂ui/∂x j �= 1

2 (∂u j/∂xi +∂ui/∂x j)
)
. Then,

Eq.(15) can be rewritten as
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where
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are J̃-integral for state 1 and state 2, respectively,
and
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is the interaction integral for FGM.

4 Stress intensity factor

For linear elastic solids, J-integral represents an
energy release rate, and similarly, J̃-integral for
FGM can be represented as

J̃ =
1

Etip
(K2

I +K2
II) (25)

Regardless of what auxiliary fields are selected,
Applying Eq. (25) to state 1, 2, and S yields

J̃(1) =
1

Etip

[(
K(1)

I

)2
+
(

K(1)
II

)2
]

(26)

J̃(2) =
1

Etip

[(
K(2)

I
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+
(

K(2)
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)2
]

(27)

J̃(S) = J̃(1) + J̃(2) +
2

Etip
(K(1)

I K(2)
I +K(1)

II K(2)
II )

(28)

Comparing Eq. (17) to Eq. (28), we have

M̃(1,2) =
2

Etip
(K(1)

I K(2)
I +K(1)

II K(2)
II ) (29)

Selecting state 1 as an actual state of the consid-
ered problem, and using asymptotic solutions of
model-II as the auxiliary state 2, SIFs for FGM
can be derived as

K(1)
I =

M̃(1,I)E∗
tip

2
(30)

or

K(1)
II =

M̃(1,II)E∗
tip

2
(31)

where M̃(1,I) and M̃(1,II) are two interaction inte-
grals for model-I and II, respectively, and can be
calculated using either Eq. (20) or Eq. (24).

5 The moving least square approximation
and meshless shape function

Consider an unknown function of a field variable
u(x) in a domain, Ωx. The moving least squares
approximation of u(x) is defined at x as

uh(x) = pT(x)a(x), ∀x ∈ Ωx (32)

where pT(x) is a complete monomial basis func-
tion of order m and a(x) is a vector containing co-
efficients a j(x), j = 1,2, · · · ,m, which are func-
tions of the space coordinates x = [x,y, z]T . For
the two-dimensional problem, a complete mono-
mial basis function is chosen as linear basis func-
tion:

pT(x) = [1 x y], m = 3 (33)

quadratic basis function:

pT(x) = [1 x y x2 xy y2], m = 6 (34)

When solving problems involving cracks,
√

r, the
triangular function and its combinations in lin-
ear elastic fracture mechanics [Belytschko et al
(1995)] are included in the basis, i.e.

pT(x) =
[

1 x y
√

rcos
θ
2

√
r sin

θ
2

√
r sin

θ
2

sinθ

√
r cos

θ
2

sinθ
]

(35)
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The coefficient vector a(x) in Eq. (32) can be
obtained by minimizing a weighted, discrete L2

norm as follows

J(x) =
N

∑
n=1

w(xn,x)[pT(xn)a(x)− ûn]2 (36)

where N is the number of points in the neigh-
borhood of x for which the weigh function w(xn,
x) > 0, and ûn is the fictitious nodal value of u.
This neighborhood of x is called the influence do-
main of x, or influence circle in the two dimen-
sional problem. In this study, a Gaussian weight
function is chosen to approximate the function
u(x).The Gaussian weight function are written as

w(xn,x) =⎧⎨
⎩

exp[−(dn/cn)2k]−exp[−(rn/cn)2k]
1−exp[−(rn/cn)2k] , 0 ≤ dn ≤ rn

0, dn ≥ rn

(37)

where dn = ‖x−xn‖ is the distance from the sam-
pling point x to a node xn, and rn is a radius of the
influence domain for the weight function w(xn,x).
Parameters cn and k in Eq. (37) control the shape
of the Gaussian weight function w(xn,x). The pa-
rameter k can be taken as 1, and cn = rn/4.

The stationarity of J in Eq. (36) with respect to
a(x) leads to the following linear relation between
a(x) and ûn

A(x)a(x) = B(x)û (38)

where matrices A(x) and B(x) are defined by

A(x) = PTWP = B(x)P

=
N

∑
n=1

w(xn, x)p(xn)pT(xn)
(39)

B(x) = PTW = [w(x1, x)p(x1),
w(x2,x)p(x2), · · · , w(xN ,x)p(xN)] (40)

ûT = [û1 û2 · · · ûN ] (41)

Hence, we have

uh(x) =
N

∑
n=1

ϕn(x)ûn, uh(x)≡ un �= ûn,x ∈ Ωx

(42)

where the shape function ϕn(x) is defined by

ϕn(x) =
M

∑
m=1

pm(x)
[
A−1(x)B(x)

]
mn (43)

The partial derivatives of ϕn(x) can be obtained as
follows

ϕn,k =
M

∑
m=1

[pm,k(A−1B)mn + pm(A−1B,k +A−1
,k B)mn]

(44)

where

A−1
,k = −A−1A,kA−1 (45)

6 The MLPG Formulation

Consider the following two-dimensional elasto-
static problem on a domain Ω bounded by a
boundary Γ

σi j, j +bi = 0, in Ω (46)

where σi j is a stress tensor, bi is a body force.
Boundary conditions are given as follows

ui = ui, on Γu, (47a)

ti = σi jn j = ti, on Γt (47b)

where ui and ti are the prescribed displacement
and traction on the boundary Γu and Γt , respec-
tively. n j is an unit outward normal to the bound-
ary Γ. Γu and Γt are complementary subsets of
Γ.

In MLPG method, the system equation is con-
structed node by node, which makes it possible to
use different sets of equations for different nodes.
In this study, we use two different sets of equa-
tions for the essential boundary nodes and not es-
sential boundary nodes, respectively.

For a node x not located on the essential bound-
ary, we start from a weak form over a local sub-
domain Ωs and use the MLS approximation to de-
velop the present meshless local Petrov-Galerkin
formulation in which the local sub-domain Ωs is
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set to β d1
i , β is a scaling factor for determining

the sub-domain and d1
i is the distance to the near-

est neighboring point from node i. Here we set
β ≤ 1.0 to make the sub-domain Ωs not intersect
with the essential boundary Γu, so a generalized
local weak form of Eq. (46) over the local sub-
domain Ωs can be written as follows

∫
Ωs

(σi j, j +bi)vidΩ = 0 (47)

where vi is a test function. Using the following
relationship

σi j, jvi = (σi jvi), j −σi j vi, j (48)

and the divergence theorem in Eq. (47) leads to

∫
Ωs

(−σi jvi, j +bivi)dΩ+
∫

∂Ωs

tividΓ = 0 (49)

where ∂Ωs is the boundary of sub-domain Ωs,
ti = σi jn j, and n j is a unit outward normal to the
boundary ∂Ωs. In general, ∂Ωs = Γs ∪Ls with Γs

being the part of the local boundary located on the
global boundary and Ls being the other part of the
local boundary over which no boundary condition
is specified, i.e., Γs = ∂Ωs∩Γ and Γs = ∂Ωs−Ls.

It should be mentioned that Eq. (49) holds re-
gardless of the size and the shape of Ωs provided
that Ωs is smooth enough for the divergence theo-
rem to apply. So, the shape of the sub-domain Ωs

can be taken to be a circle in the two-dimensional
problem without loosing generality.

Applying the natural boundary condition, ti =
σi jn j = t i on Γst where Γst = ∂Ωs ∩Γt , we get

∫
Ωs

σi jvi, jdΩ−
∫

Γsu

tividΓ =
∫

Γst

tividΓ+
∫

Ωs

bividΩ

(50)

In order to obtain the discretized system equa-
tions, the global problem domain Ω is represented
by properly distributed field nodes. Using the
MLS shape function to approximate the trial func-

tion for the displacement at a point x

uh(x) =
{

u
v

}
=
[

ϕ1 0 · · · ϕn 0
0 ϕ1 · · · 0 ϕn

]
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1

v1
...

un

vn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= ΦΦΦu (51)

where n is the number of nodes in the support do-
main of a sampling point at x, and ΦΦΦ is the matrix
of the MLS shape functions.

Substitution of the MLS approximation Eq. (51)
into Eq. (50) leads to the following nodal dis-
cretized system equation of MLPG for the Ith
field node.∫

Ωs

GT (x,xI)σdΩ−
∫

Γsu

WT (x,xI)tdΓ =∫
Γst

WT (x,xI)tdΓ+
∫

Ωs

WT (x,xI)bdΓ (52)

where

σ =

⎧⎨
⎩

σ11

σ22

σ12

⎫⎬
⎭ , W(x,xI) =

[
w1(x,xI) 0

0 w2(x,xI)

]

and G =

⎡
⎢⎣

∂w1
∂x1

0

0 ∂w2
∂x2

∂w1
∂x2

∂w2
∂x1

⎤
⎥⎦ (53)

Using constitutive and strain-displacement equa-
tions, we can have

σ = D(x)ε =
n

∑
j=1

DB jû j,

t =
{

t1
t2

}
= nσ =

n

∑
j=1

nDB jû j,

(54)

where B j is the strain matrix about the jth node,
n is a matrix of the unit outward normal to the
boundary Γst and Γsu, and D(x) is the material
matrix for the plane stress problem. They are
given by

B j =

⎡
⎢⎣

∂ϕ1
∂x1

0

0 ∂ϕ2
∂x2

∂ϕ1
∂x2

∂ϕ2
∂x1

⎤
⎥⎦

j

, n =
[

n1 0 n2

0 n2 n1

]
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and

D(x) =
E(x)

1−ν2(x)

⎡
⎣ 1 ν(x) 0

ν(x) 1 0

0 0 1−ν(x)
2

⎤
⎦ (55)

Substitution of Eq. (54) into Eq. (52) leads to the
following discretized systems of equations for the
Ithfield node.

n

∑
j=1

KI û j = fI (56)

where KI is a matrix called the nodal stiffness ma-
trix for the Ith field node, which is computed us-
ing

KI j =
∫

Ωs

GT DB jdΓ−
∫

Γsu

WT NDB jdΓ (57)

fI is a nodal force vector, which is computed using

fI =
∫

Γst

WT tdΓ+
∫

Ωs

WT bdΓ (58)

For the nodes located on the essential boundary,
a direct interpolation method for the imposition
of essential boundary conditions is introduced in
this paper. This method was proposed by G.R.
Liu and L. Yan [Liu and Yan (2000)] to sim-
plify the MLPG formulation. The direct inter-
polation method enforces the essential boundary
conditions using the equation of the MLS approx-
imation

uh
I (x) =

n

∑
i=1

φi(x)ui = uI (59)

Eq. (59) is assembled directly into the system
equations for field nodes to obtain the global sys-
tem equation of

KÛ = F (60)

Note also that this direct approach of imposing es-
sential boundary conditions destroys the symme-
try of the stiffness matrix. Fortunately, this does
not create additional problems, because the stiff-
ness matrix created using MLPG is not symmetric
originally.

7 Numerical examples

MLPG method with two interaction integrals is
applied to calculate SIFs of cracks in FGM. In
all examples, the elastic modulus is assumed to
be spatially variable, and the Poisson’s ratio is
assumed to be constant. A fully enriched basis
function is adopted in a part of domain around the
crack tip, and a linear basis function is adopted in
the rest of domain. For the numerical integration,
8×8 Gauss points are assigned in a sub-domain
for the domain integral, and 9 Gauss points are
assigned in a sub-boundary for the boundary inte-
gral.

7.1 Example 1: an edge-cracked plate under
mode-I

An edge-cracked plate with length L = 8 unit,
width W = 1 unit , and crack length a, subjected
to the constant tensile stress loading, the linear
stress loading and the constant strain loading, re-
spectively, as shown in Fig.2, was discussed. The
elastic modulus was assumed to be

E(x) = E1 exp(ηx), 0 ≤ x ≤ W (61)

where E1 = E(0), E2 = E(W), and η = ln(E2
E1

). In
computation, E1 = 1 unit,
E2
E1

= exp(η) = 0.1, 0.2, 5, and 10, anda =
0.2, 0.4, 0.5 and 0.6 are used. The Poisson’s ratio
was held constant with ν = 0.3. A plane strain
condition was assumed.

Due to symmetry of geometry and load, one half
of the plate was analyzed by the MLPG method
shown in Fig. 3. Fig. 4 shows a meshless dis-
cretization consisting of 272 nodes. The shadow
of domain with size c × b, as shown in Fig.(3),
was used to calculate M-integral.

Table 1-3 show the normalized mode-I SIFs
KI/σt

√
πa, KI/σb

√
πaandKI/σ0

√
πa for three

types of loadings, respectively, whereσt = σb =
1unit, σ0 = E1ε0(1− ν2), ε0 = 1unit. The inte-
gral domain with size c = 0.2 and b = 0.1 unit
was used and the homogeneous auxiliary field is
adopted for M-integral. The results show that
SIFs obtained by the proposed method agree well
with the solutions of references [Rao and Rahman
(2003a); Erdogan and Wu (1997)] for various
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combinations of E2/E1 and a/W . Table 4-6 show
the results of the normalized mode-I SIFs with the
different integral domain size under three types of
loadings and two types of auxiliary fields. The re-
sults are accurate and independent of the size of
the integral domain and the type of the auxiliary
fields.

7.2 Example 2: a slanted edge-cracked plate
under mixed mode

Consider a slanted edge-cracked plate with length
L = 2 units, width W = 1 unit, and crack length
a = 0.4

√
2 unit, inclination angle α = 45◦, as

shown in Fig. 5. The elastic modulus was as-
sumed to be

E(x) = E1 exp [η (x−0.5)] , 0 ≤ x ≤W (62)

where E1 and η are two material parameters.
In computation, E1 = 1, η = 0, 0.25, 0.5,
0.75, and 1.0 ,and the Poisson’s ratio ν = 0.3
are used. A plane stress condition was as-
sumed. The upper edge of the plate was sub-
jected to the normal stress load σ22(x,L/2) =
εE1 exp [η(x−0.5)], where ε = 1 unit. The dis-
placement constraint in y direction is applied to
the bottom edge, i.e. ν (x,L/2) = 0(0 ≤ x ≤ W).
Besides, the displacement constraint in x direction
is applied to a right node at the bottom edge, i.e.
u(W,−L/2) = 0. Fig. 6 shows a meshless dis-
cretization consisting of 1004 nodes.

Table 7 shows the normalized SIFs KI/εE1
√

πa
and KII/εE1

√
πa obtained by the proposed

method with two types of auxiliary fields for sev-
eral values of η and the integral domain sizeb×
b = 0.1×0.1. The results obtained by the MLPG
method agree well with that of Rao BN [Rao and
Rahman (2003a)]. Table 8 shows the results of
the normalized SIFs with the different integral do-
mains and two types of auxiliary fields. The re-
sults are accurate and independent of the size of
the integral domain and the type of the auxiliary
fields.

8 Summary and conclusions

In this study, the MLPG method was used to cal-
culate SIFs of cracks in FGM. In FGM, the elas-
tic modulus is a function of spatial coordinates.

Two interaction integral methods were applied to
calculate M-integral. In two numerical examples,
several material parameters and different integral
domain sizes are considered to evaluate SIFs. The
comparisons have been made between SIFs ob-
tained by the proposed method and that by other
methods. A good agreement obtained shows that
the proposed method possesses no numerical dif-
ficulties in the analysis of cracks in FGM.
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Figure 3: Half model and a domain for M-
integral

Figure 4: A meshless discretization (272 nodes)
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Table 1: The normalized mode-I SIF for an edge-cracked under the constant tensile stress loading

Method E2
E1

KI/σt
√

πa
0.2 0.4 0.5 0.6

MLPG

0.1 1.3201 2.5809 3.5543 5.1205
0.2 1.4023 2.4551 3.3209 4.7231
5 1.1294 1.7502 2.3689 3.4610

10 0.9976 1.5878 2.1797 3.2305

[Rao and Rahman (2003a)]

0.1 1.3374 2.5938 3.5472 4.9956
0.2 1.4193 2.4657 3.3297 4.6905
5 1.1269 1.7576 2.3772 3.4478

10 0.9958 1.5890 2.1889 3.2167

[Liu and Yan (2000)]

0.1 1.2965 2.5699 3.5701 5.1890
0.2 1.3956 2.4436 3.3266 4.7614
5 1.1318 1.7483 2.3656 3.4454

10 1.0019 1.5884 2.1762 3.2124

Table 2: The normalized mode-I SIF for an edge-cracked under the linear stress loading

Method E2
E1

KI/σb
√

πa
0.2 0.4 0.5 0.6

MLPG

0.1 1.9102 1.9904 2.1734 2.5891
0.2 1.6031 1.7413 1.9117 2.3837
5 0.6798 0.9115 1.1728 1.5901

10 0.5583 0.7986 1.0731 1.4410

[Rao and Rahman (2003a)]

0.1 1.9029 1.9539 2.1547 2.5484
0.2 1.5976 1.7150 1.9322 2.3347
5 0.6865 0.9319 1.1666 1.5626

10 0.5635 0.8120 1.0447 1.4340

[Liu and Yan (2000)]

0.1 1.9040 1.9778 2.2151 2.1770
0.2 1.5925 1.7210 1.9534 2.4037
5 0.6871 0.9236 1.1518 1.5597

10 0.5648 0.8043 1.0350 1.4286

Table 3: The normalized mode-I SIF for an edge-cracked under the constant strain loading

Method E2
E1

KI/σ0
√

πa
0.2 0.4 0.5 0.6

MLPG

0.1 1.3112 1.8310 2.2917 3.0621
0.2 1.3205 1.8903 2.3808 3.2332
5 1.4904 2.5687 3.6781 5.5103

10 1.5692 2.8410 4.3412 6.5112

[Rao and Rahman (2003a)]

0.1 1.3118 1.8241 2.2800 3.0100
0.2 1.3186 1.8837 2.3966 3.2274
5 1.4835 2.5819 3.6698 5.5708

10 1.5557 2.8789 4.2234 6.6266

[Liu and Yan (2000)]

0.1 1.2963 1.8246 2.3140 3.1544
0.2 1.3058 1.8751 2.4031 3.2981
5 1.4946 2.5730 3.6573 5.5704

10 1.5740 2.8736 4.2140 6.6319
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Table 4: The normalized mode-I SIF for an edge-cracked under the constant tensile stress loading with two
types of auxiliary fields and three different sizes of the integral domain

b×c E2
E1

KI
σt
√

πa(a = 0.5)
Homogeneous auxiliary field Non-homogeneous auxiliary field

0.1×0.2

0.1 3.5543 3.5597
0.2 3.3209 3.3271
5 2.3689 2.3710

10 2.1797 2.1823

0.1×0.3

0.1 3.5710 3.5735
0.2 3.3352 3.3387
5 2.3810 2.3841

10 2.1903 2.1940

0.15×0.3

0.1 3.5823 3.5870
0.2 3.3407 3.3462
5 2.3894 2.3925

10 2.1987 2.2003

Table 5: The normalized mode-I SIF for an edge-cracked under the linear stress loading with two types of
auxiliary fields and three different sizes of the integral domain

b×c E2
E1

KI
σb

√
πa

(a = 0.5)
Homogeneous auxiliary field Non-homogeneous auxiliary field

0.1×0.2

0.1 2.1734 2.1785
0.2 1.9117 1.9148
5 1.1728 1.1750

10 1.0731 1.0762

0.1×0.3

0.1 2.1841 2.1895
0.2 1.9226 1.9265
5 1.1819 1.1850

10 1.0810 1.0832

0.15×0.3

0.1 2.1950 2.2003
0.2 1.9318 1.9364
5 1.1902 1.1946

10 1.0887 1.0913
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Table 6: The normalized mode-I SIF for an edge-cracked under the constant strain loading with two types
of auxiliary fields and three different sizes of the integral domain

b×c E2
E1

KI
σ0

√
πa

(a = 0.5)
Homogeneous auxiliary field Non-homogeneous auxiliary field

0.1×0.2

0.1 2.2917 2.2951
0.2 2.3808 2.3858
5 3.6781 3.6826

10 4.3412 4.3490

0.1×0.3

0.1 2.3013 2.3052
0.2 2.3891 2.3947
5 3.6890 3.6981

10 4.3572 4.3630

0.15×0.3

0.1 2.3095 2.3142
0.2 2.3985 2.4035
5 3.7012 3.7088

10 4.3706 4.3721

Table 7: The normalized SIFs for a slanted edge-cracked plate with two types of auxiliary fields

Method η
Homogeneous auxiliary field Non-homogeneous auxiliary field
KI/εE1

√
πa KII/εE1

√
πa KI/εE1

√
πa KII/εE1

√
πa

MLPG

0 1.462 0.621 1.462 0.621
0.25 1.320 0.553 1.331 0.560
0.5 1.209 0.498 1.215 0.502
0.75 1.094 0.450 1.098 0.453

1 0.995 0.407 0.998 0.409

[Rao and Rahman (2003a)]

0 1.448 0.610 1.448 0.610
0.25 1.313 0.549 1.312 0.549
0.5 1.193 0.495 1.190 0.495
0.75 1.086 0.447 1.082 0.446

1 0.990 0.405 0.986 0.404

Table 8: The normalized SIFs for a slanted edge-cracked plate with two types of auxiliary fields and three
different sizes of the integral domain

b×b
Homogeneous auxiliary field Non-homogeneous auxiliary field
KI/εE1

√
πa KII/εE1

√
πa KI/εE1

√
πa KII/εE1

√
πa

0.10×0.10 1.209 0.498 1.215 0.502
0.12×0.12 1.215 0.502 1.223 0.507
0.15×0.15 1.218 0.503 1.228 0.510
0.10×0.10 0.990 0.405 0.998 0.409
0.12×0.12 0.994 0.407 1.002 0.412
0.15×0.15 0.997 0.409 1.005 0.414



56 Copyright c© 2008 Tech Science Press CMC, vol.7, no.1, pp.43-57, 2008

a
045=α

2
L

2
L

b b

W

x

y
)5.0(

122
−= xeE ηεσ

Figure 5: A slanted edge-cracked plate

Figure 6: A meshless discretization (1004
nodes)
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