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Simultaneously Estimating the Time-Dependent Damping and Stiffness
Coefficients with the Aid of Vibrational Data

Chein-Shan Liu1, Jiang-Ren Chang2, Kai-Huey Chang2 and Yung-Wei Chen2

Abstract: For the inverse vibration problem a
mathematical method is required to determine
unknown parameters from the measurement of
vibration data. When both damping and stiff-
ness functions are identified, it is a rather diffi-
cult problem. In this paper we will propose a
feasible method to simultaneously estimate both
the time-dependent damping and stiffness coef-
ficients through three mathematical transforma-
tions. First, the second-order equation of mo-
tion is transformed into a self-adjoint first-order
system by using the concept of integrating fac-
tor. Then, we transform these two ODEs into
two hyperbolic type PDEs. Finally, we apply a
one-step group preserving scheme for the semi-
discretizations of PDEs to obtain two uncoupled
algebraic equations, of which the first one is used
to estimate the damping coefficient while the sec-
ond one is used to estimate the stiffness coeffi-
cient. The estimated results are acceptable for that
used in vibrational engineering. We also discuss
the use of velocity and acceleration data as inputs
in the estimation. However, it leads to a bad result,
and is not suggested for the use in estimation.

Keyword: Inverse vibration problem, Time-
dependent damping and stiffness coefficients, In-
tegrating factor, Lie-group estimation method

1 Introduction

Many research and effort have been involved in
the science of vibrations. The solution of di-
rect problem of forced vibration is concerned with
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the determination of system’s displacement, ve-
locity and acceleration evolving in time when ini-
tial conditions, external forces and system param-
eters are specified exactly. Sometimes we may en-
counter the problem that some parameters in the
system we consider are unknown, and then the re-
sulting problem is an inverse vibration problem. It
is concerned with the estimations of damping co-
efficient [Adhikari and Woodhouse (2001a); Ad-
hikari and Woodhouse (2001b); Ingman and Suz-
dalnitsky (2001); Liang and Feeny (2006); Liu
(2008a)], stiffness [Huang (2001); Shiguemori,
Chiwiacowsky and de Campos Velho (2005); Liu
(2008a)], as well as external force [Huang (2005);
Feldman (2007)] with the aid of measurable vi-
bration data, such as frequency, mode shape, dis-
placement or velocity at different time.

The parameters’ identification problem is known
to be highly ill-posed in the sense that a small dis-
turbance of measured data may result in a tremen-
dous error in the parameters’ estimation. In order
to overcome this problem, there have appeared
many studies in this field. Although the system
we consider is linear, we may require to treat a
nonlinear inverse vibration problem.

Let us consider a second-order ordinary differen-
tial equation (ODE) describing the forced vibra-
tion of a linear structure with time-dependent pa-
rameters:

φ̈ +c(t)φ̇ +k(t)φ = F(t), 0 ≤ t ≤ t f , (1)

φ (0) = A0, (2)

φ̇ (0) = B0. (3)

The direct problem is for the given conditions in
Eqs. (2) and (3) and the given functions c(t), k(t)
and F(t) in Eq. (1) to find the response of φ (t) in
a time interval of t ∈ [0, t f ]. However, our present
inverse vibration problem is to estimate c(t) and
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k(t) with t ∈ [0, t f ] by using some measured data
of φ (t) and φ̇ (t) in a time interval of t ∈ [0, t f ].
The present approach is based on three different
transformations, and is novel. The readers may
appreciate that the present approach is very in-
teresting, which resulting to a closed-form esti-
mating equation without needing of any iteration
and initial guess of coefficient functions. More
importantly, the novel method does not require to
assume a priori the functional forms of unknown
coefficients.

Recently, Liu (2006a, 2006b, 2006c) has ex-
tended the group preserving scheme (GPS) de-
veloped previously by Liu (2001) for ODEs to
solve the boundary value problems (BVPs), and
the numerical results revealed that the GPS is
a rather promising method to effectively solve
the two-point BVPs. In the construction of Lie-
group method for the calculations of BVPs, Liu
(2006a) has introduced the idea of one-step GPS
by utilizing the closure property of Lie groups,
and hence, the new shooting method has been
named the Lie-group shooting method (LGSM).
Remarkably, Liu (2008b,2008c) has explored its
superiority by using the LGSM to estimate param-
eters in parabolic type PDEs.

On the other hand, in order to effectively solve
the backward in time problems of parabolic type
PDEs, a past cone structure and a backward group
preserving scheme have been successfully devel-
oped, such that the one-step Lie-group numeri-
cal methods have been used to solve the back-
ward in time Burgers equation by Liu (2006d),
and the backward in time heat conduction equa-
tion by Liu, Chang and Chang (2006a).

The Lie-group method is originally used for the
BVPs as designed by Liu (2006a, 2006b, 2006c)
for direct problems. In a series of papers by
the first author and his coworkers, the Lie-group
method reveals its excellent behavior on the nu-
merical solutions of different problems, for ex-
ample, Chang, Liu and Chang (2005) to calculate
the sideways heat conduction problem, Chang,
Chang and Liu (2006) to treat the boundary layer
equation in fluid mechanics, and Liu (2004),
Liu, Chang and Chang (2006a), and Chang, Liu
and Chang (2007a, 2007b) to treat the backward

heat conduction equation, Liu, Chang and Chang
(2006b) to treat the Burgers equation, and Liu
(2008d) to treat an inverse Sturm-Liouville prob-
lem.

It should be stressed that the one-step Lie-group
property is usually not shared by other numerical
methods, because those methods do not belong to
the Lie-group types. This important property as
first pointed out by Liu (2006d) was employed
to solve the backward in time Burgers equation.
After that, Liu (2006e) has used this concept to
establish a one-step estimation method to esti-
mate the temperature-dependent heat conductiv-
ity, and then extended to estimate heat conduc-
tivity and heat capacity by Liu (2006f, 2007) and
Liu, Liu and Hong (2007). The Lie-group method
possesses a great advantage than other numerical
methods due to its group structure, and is a pow-
erful technique to solve the inverse problems of
parameters’ identification.

This paper will extend those parameters’ identi-
fication techniques to the inverse vibration prob-
lems, which is arranged as follows. We intro-
duce a novel approach of inverse vibration prob-
lem in Section 2 by transforming it into a self-
adjoint first-order ODEs system, then an identi-
fication problem of hyperbolic type PDEs, and
then the discretizations of PDEs into a system of
ODEs at the discretized times. In Section 3 we
give a brief sketch of the GPS for ODEs for a
self-content reason. Due to the good property of
Lie-group, we will propose an integration tech-
nique, such that the one-step GPS can be used
to identify the parameters appeared in the intro-
duced PDEs. The resulting algebraic equations
are derived in Section 4 when we apply the one-
step GPS to identify c(t) and k(t). We demon-
strate that how the Lie-group theory can help us
to solve these parameters’ estimation equations in
closed-form. In Section 5 numerical examples are
examined to test the Lie-group estimation method
(LGEM). Finally, we give some conclusions in
Section 6.
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2 A novel approach

2.1 Transformation into a self-adjoint system
of ODEs

For the second-order ODE in Eq. (1) many teach-
ers may teach the students to write it as a 2D sys-
tem of ODEs by

d
dt

[
φ (t)
φ̇ (t)

]
=

[
0 1

−k(t) −c(t)

][
φ (t)
φ̇ (t)

]

+
[

0
F(t)

]
. (4)

In the calculation of direct problem this transfor-
mation may be helpful and workable; however,
this transformation gives no any help in the cal-
culation of inverse vibration problem.

By letting

p(t) := exp

[
−

∫ t

0
c(ξ )dξ

]
, (5)

from Eq. (1) we may have a self-adjoint system:

d
dt

[
φ (t)
φ̇(t)
p(t)

]
=

[
0 p(t)

− k(t)
p(t) 0

][
φ (t)
φ̇(t)
p(t)

]

+

[
0

F(t)
p(t)

]
. (6)

Upon defining

y1(t) := φ (t), (7)

y2(t) :=
φ̇ (t)
p(t)

, (8)

from Eq. (6) we have

ẏ1(t) = p(t)y2(t), (9)

ẏ2(t) = − k(t)
p(t)

y1(t)+
F(t)
p(t)

. (10)

The above two equations are our starting point.
Eq. (6) is superior than Eq. (4), because it has a
Lie-group transformation of SL(2,R).

2.2 Transformation into a system of PDEs

In the solutions of linear PDEs, a common tech-
nique is the seperation of variables, from which

the PDEs are transformed into some ODEs. We
can reverse this process by considering

u(x, t) := (1+x)y1(t), (11)

v(x, t) := (1+x)y2(t), (12)

such that Eqs. (9) and (10) are changed to a hy-
perbolic system of PDEs:

∂u(x, t)
∂x

=
∂u(x, t)

∂ t
− p(t)v(x, t)+y1(t), (13)

∂v(x, t)
∂x

=
∂v(x, t)

∂ t
+

k(t)
p(t)

u(x, t)− (1+x)F(t)
p(t)

(14)

+y2(t),
u(0, t) = φ (t), (15)

v(0, t) =
φ̇ (t)
p(t)

, (16)

u(x,0) = A0(1+x), (17)

u(x, t f ) = φ (t f )(1+x), (18)

v(x,0) = B0(1+x), (19)

v(x, t f ) =
φ̇(t f )
p(t f )

(1+x), (20)

where φ (t f ) and φ̇(t f ) are respectively the mea-
sured displacement and velocity at time t f . In
Eqs. (13) and (14), k(t) and p(t) are time-
dependent functions to be identified, where the
domain we consider is 0 ≤ t ≤ t f , 0 < x ≤ x f .
In order to estimate k(t) and c(t) we suppose that
φ (t) and φ̇ (t) are measurable in a time interval of
0 ≤ t ≤ t f . The coordinate x is a fictitious one;
however, from it together with t we can work in a
two-dimensional domain and we can find the vari-
ations of c(t) and k(t) more easily in that domain.

2.3 Semi-discretizations

Applying a semi-discrete procedure on the above
PDEs yields a coupled system of ODEs. For
Eqs. (13) and (14), we adopt the numerical
method of line to discretize the time coordinate
t by

∂u(x, t)
∂ t

∣∣∣∣
t=iΔt

=
ui+1(x)−ui(x)

Δt
, (21)

∂v(x, t)
∂ t

∣∣∣∣
t=iΔt

=
vi+1(x)−vi(x)

Δt
, (22)
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where Δt = t f /(n + 1) is a uniform time incre-
ment, and ui(x) = u(x, iΔt) and vi(x) = v(x, iΔt)
are used for simple notations. Consequently,
Eqs. (13) and (14) can be approximated by

u′i(x) =
1
Δt

[ui+1(x)−ui(x)]− pivi(x)+yi
1, (23)

v′i(x) =
1
Δt

[vi+1(x)−vi(x)]+
ki

pi
ui(x) (24)

− (1+x)Fi

pi
+yi

2,

where i = 1, . . .,n, ki = k(ti), pi = p(ti), Fi = F(ti),
yi

1 = y1(ti) and yi
2 = y2(ti).

In this section we have transformed the inverse
vibration problem of the second-order ODE in
Eq. (1) into an inverse problem for the PDEs in
Eqs. (13) and (14) by estimating k(t) and p(t), and
finally an estimation of 2n coefficients ki and pi in
the 2n-dimensional ODEs system in Eqs. (23) and
(24). However, Eq. (23) is a consequence of the
definition φ̇ = p · φ̇/p coming from the first equa-
tion in Eq. (6), which will be no useful in the fol-
lowing estimation. Therefore, basing on Eq. (1)
we will derive another PDE directly as a supple-
mented equation in Section 4.

3 GPS for differential equations system

3.1 Group-preserving scheme

Upon letting w = (u1,v1, . . . ,un,vn)T and f denot-
ing the right-hand sides of Eqs. (23) and (24) we
can write them as a vector form:

w′ = f(w,x), w ∈ R
2n, x ∈ R. (25)

Liu (2001) has embedded Eq. (25) into an aug-
mented differential equations system as follows:

d
dx

[
w

‖w‖
]

=

⎡
⎣ 02n×2n

f(w,x)
‖w‖

fT(w,x)
‖w‖ 0

⎤
⎦[

w
‖w‖

]
.

(26)

It is obvious that the first row in Eq. (26) is the
same as the original equation (25), but the in-
clusion of the second row in Eq. (26) gives us
a Minkowskian structure of the augmented state

variables of X := (wT,‖w‖)T, which satisfies the
cone condition:

XTgX = 0, (27)

where

g :=
[

I2n 02n×1

01×2n −1

]
(28)

is a Minkowski metric, I2n is the identity matrix of
order 2n, and the superscript T stands for the trans-
pose. In terms of (wT,‖w‖), Eq. (27) becomes

XTgX = w ·w−‖w‖2 = ‖w‖2−‖w‖2 = 0, (29)

where the dot between two vectors denotes their
inner product.

Consequently, we have a 2n+1-dimensional aug-
mented system:

X′ = AX (30)

with a constraint (27), where

A :=

⎡
⎣ 02n×2n

f(w,x)
‖w‖

fT(w,x)
‖w‖ 0

⎤
⎦ , (31)

satisfying

ATg+gA = 0, (32)

is a Lie algebra so(2n,1) of the proper or-
thochronous Lorentz group SOo(2n,1). This fact
prompts us to devise the group-preserving scheme
(GPS), whose discretized mapping G must ex-
actly preserve the following properties:

GTgG = g, (33)

det G = 1, (34)

G0
0 > 0, (35)

where G0
0 is the 00th component of G.

Although the dimension of the new system is rais-
ing one more, it has been shown that the new sys-
tem permits a GPS given as follows [Liu (2001)]:

X�+1 = G(�)X�, (36)

where X� denotes the numerical value of X at
x�, and G(�) ∈ SOo(2n,1) is the group value
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of G at x�. If G(�) satisfies the properties in
Eqs. (33)-(35), then X� satisfies the cone condi-
tion in Eq. (27).

The Lie group can be generated from A ∈
so(2n,1) by an exponential mapping,

G(�) = exp[ΔxA(�)]

=

⎡
⎢⎣ I2n + (a�−1)

‖f�‖2 f�fT
�

b�f�
‖f�‖

b�fT�
‖f�‖ a�

⎤
⎥⎦ , (37)

where

a� := cosh

(
Δx‖f�‖
‖w�‖

)
, (38)

b� := sinh

(
Δx‖f�‖
‖w�‖

)
. (39)

Substituting Eq. (37) for G(�) into Eq. (36), we
obtain

w�+1 = w� +η�f�, (40)

‖w�+1‖ = a�‖w�‖+
b�

‖f�‖f� ·w�, (41)

where

η� :=
b�‖w�‖‖f�‖+(a�−1)f� ·w�

‖f�‖2 (42)

is an adaptive factor. From f� ·w� ≥ −‖f�‖‖w�‖
we can prove that

η� ≥
[

1−exp

(
−Δx‖f�‖

‖w�‖
)] ‖w�‖

‖f�‖ > 0, ∀Δx > 0.

(43)

This scheme is group properties preserved for
all Δx > 0, and is called the group-preserving
scheme.

3.2 One-step GPS

Applying scheme (40) to Eq. (25) we can compute
w f by GPS. Throughout this paper the superscript
f denotes the value at x = x f , while the superscript
0 denotes the value at x = 0. Assume that the total
length x f is divided by K steps, that is, the stepsize
we use in the GPS is Δx = x f /K.

Starting from X0 = X(0) we want to calculate the
value X(x f ) at x = x f . By Eq. (36) we can obtain

X f = GK(Δx) · · ·G1(Δx)X0, (44)

where X f approximates the real X(x f ) within a
certain accuracy depending on Δx. However, let
us recall that each Gi, i = 1, . . .,K, is an element
of the Lie group SOo(2n,1), and by the closure
property of Lie group, GK(Δx) · · ·G1(Δx) is also
a Lie group denoted by G(x f ). Hence, we have

X f = G(x f )X0. (45)

This is a one-step Lie-group transformation from
X0 to X f .

Usually, it is very hard to find the exact solution of
G(x f ); however, a numerical one may be obtained
approximately without any difficulty. The most
simple method to calculate G(x f ) is given by

G(x f ) =

⎡
⎢⎣ I2n + (a−1)

‖f0‖2 f0(f0)T bf0

‖f0‖

b(f0)T

‖f0‖ a

⎤
⎥⎦ , (46)

where

a := cosh

(
x f‖f0‖
‖w0‖

)
, (47)

b := sinh

(
x f‖f0‖
‖w0‖

)
. (48)

Here, we use the value of w0 = w(0) to calculate
G(x f ). Then from Eqs. (45) and (46) we obtain a
one-step GPS:

w f = w0 +ηf0, (49)

‖w f‖ = a‖w0‖+
bf0 ·w0

‖f0‖ , (50)

where

η =
(a−1)f0 ·w0 +b‖w0‖‖f0‖

‖f0‖2
. (51)

4 Identifying c(t) and k(t) by the LGEM

In this section we will start to estimate the time-
dependent coefficient functions c(t) and k(t).
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By applying the one-step GPS on Eqs. (23) and
(24) from x = 0 to x = x f we obtain two nonlinear
equations for ki and pi:

u f
i = u0

i +
η
Δt

(u0
i+1−u0

i )−η piv
0
i +ηyi

1, (52)

v f
i = v0

i +
η
Δt

(v0
i+1 −v0

i )+
ηki

pi
u0

i −
ηFi

pi
+ηyi

2.

(53)

At the first glance, η in the above seems a non-
linear function of ki and pi as shown by Eq. (51).
However, we will prove below that η is fully de-
termined by x f when using the proportionality of
u0

i , u f
i , v0

i and v f
i .

In order to solve ki and pi, let us return to Eq. (49):

f0 =
1
η

(w f −w0). (54)

Substituting it for f0 into Eq. (50) we obtain

‖w f‖
‖w0‖ = a+

b[w f −w0] ·w0

‖w f −w0‖‖w0‖ , (55)

where

a := cosh

(
x f‖w f −w0‖

η‖w0‖
)

, (56)

b := sinh

(
x f‖w f −w0‖

η‖w0‖
)

. (57)

Let

cosθ :=
[w f −w0] ·w0

‖w f −w0‖‖w0‖ , (58)

S :=
x f ‖w f −w0‖

‖w0‖ , (59)

and from Eqs. (55)-(57) it follows that

‖w f‖
‖w0‖ = cosh

(
S
η

)
+cosθ sinh

(
S
η

)
. (60)

Upon defining

Z := exp

(
S
η

)
, (61)

from Eq. (60) we obtain a quadratic equation for
Z:

(1+cosθ )Z2 − 2‖w f‖
‖w0‖ Z +1−cos θ = 0. (62)

On the other hand, by inserting Eq. (54) for f0 into
Eq. (51) we obtain

‖w f −w0‖2 =

(a−1)(w f −w0) ·w0 +b‖w0‖‖w f −w0‖. (63)

Dividing both sides by ‖w0‖‖w f − w0‖ and us-
ing Eqs. (56)-(59) and (61) we obtain another
quadratic equation for Z:

(1+cosθ )Z2 −2

(
cosθ +

‖w f −w0‖
‖w0‖

)
Z

+ cosθ −1 = 0. (64)

From Eqs. (62) and (64), the solution of Z is found
to be

Z =
(cosθ −1)‖w0‖

cosθ‖w0‖+‖w f −w0‖−‖w f‖ , (65)

and from Eq. (61) we obtain a closed-form solu-
tion of η:

η =
x f‖w f −w0‖
‖w0‖ lnZ

. (66)

Up to here we must point out that for a given x f , η
is fully determined by w0 and w f , which are sup-
posed to be known. Therefore, the original non-
linear equation (53) becomes a linear equation for
ki and pi.

By using Eqs. (11) and (12) we have

u f
i = (1+x f )u0

i , v f
i = (1+x f )v0

i , (67)

and thus the vector w f is proportional to w0 with
a multiplier being 1+x f larger than 1. Under this
condition we have cosθ = 1 and Z is given by

Z = 1+x f , (68)

and hence from Eq. (66) we have

η =
x2

f

ln(1+x f )
. (69)

It is very surprising that η is a constant for a given
x f .

On the other hand, by using Eqs. (8) and (12) on
Eq. (53) we have

x f φ̇i

η pi
=

1
Δt

(
φ̇i+1

pi+1
− φ̇i

pi

)
+

ki

pi
φi − Fi

pi
+

φ̇i

pi
, (70)
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where φi = φ (ti) and φ̇i = φ̇(ti) denote respec-
tively the displacement and velocity at the i-th
time point.

Now, multiplying both the sides of Eq. (70) by pi

and using Eq. (69) we can obtain

φ̇i ln(1+x f )
x f

=

1
Δt

(
pi

pi+1
φ̇i+1 − φ̇i

)
+kiφi −Fi + φ̇i. (71)

In order to obtain an uncoupled equations system
for ki and pi, let us return to Eq. (1), from which
by using Eqs. (11) and (7) we can derive a semi-
discretization for ui:

u′i(x) =
1

(Δt)2 [ui+1(x)−2ui(x)+ui−1(x)]

+ci
ui+1(x)−ui(x)

Δt
+kiui(x)+hi(x), (72)

where hi(x) = φi − (1+x)Fi.

By using the one-step GPS for the above equation
we can get

u f
i = u0

i +
η

(Δt)2 (u0
i+1−2u0

i +u0
i−1)+ηci

u0
i+1−u0

i

Δt

+ ηkiu
0
i + ηhi(0), (73)

where η is defined as that in Eq. (69). After in-
serting Eqs. (11) and (7) for φi and Eq. (69) for η ,
it is not difficult to rewrite Eq. (73) as

kiφi =
φi ln(1+x f )

x f
− 1

(Δt)2 (φi+1−2φi +φi−1)

− ci
φi+1−φi

Δt
−φi + Fi. (74)

Inserting the above equation for kiφi into Eq. (71)
we can obtain

φ̇i ln(1+x f )
x f

=
1
Δt

(
pi

pi+1
φ̇i+1 +Δtφ̇i − φ̇i

)

+
φi ln(1+x f )

x f
− 1

(Δt)2
(φi+1−2φi +φi−1)

− ci
φi+1 −φi

Δt
−φi. (75)

With the aid of Eqs. (75) and (5) we can derive a
nonlinear equation for ci given by

Ai exp

[
Δt
2

(ci +ci+1)
]
+Bici = Di, (76)

where

Ai :=
φ̇i+1

Δt
, (77)

Bi := −φi+1 −φi

Δt
, (78)

Di :=
φ̇i ln(1+x f )

x f
− φ̇i +

φ̇i

Δt
− φi ln(1+x f )

x f

+
1

(Δt)2 (φi+1 −2φi +φi−1)+φi. (79)

Up to this point we have eventually obtained an
uncoupled estimation equation for ci.

Solving Eq. (76) for ci+1, we have

ci+1 =
2
Δt

log

(
Di −Bici

Ai

)
−ci. (80)

Starting from a given c1 we can obtain ci, i =
2, . . .,n, by sequentially using the above equation,
and inserting these ci into Eq. (74) we can obtain
ki.

In the above we have used the vibration data of
displacement and velocity as inputs in the estima-
tions of ci and ki. If the data of velocity and ac-
celeration are available we can replace the term
kiφi − Fi in Eq. (71) by −φ̈i − φ̇i, and a similar
derivation leads to Eq. (80) again. However, we
have the same Ai, but Bi and Di should be replaced
by

Bi = −φ̇i, (81)

Di =
φ̇i ln(1+x f )

x f
− φ̇i +

φ̇i

Δt
+ φ̈i. (82)

Therefore, we also have an estimation method
based on the input data of velocity and acceler-
ation.
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Figure 1: For Example 1 we comparing exact and estimated results by using displacement and velocity as
input (dashed line) and velocity and acceleration as input (dashed-dotted line).

5 Numerical examples

5.1 Example 1

Let us consider

c(t) = 3+2cos(2πt), (83)

k(t) = 20+2sin(2πt), (84)

F(t) = F0 +F1t. (85)

In order to obtain the data of φ (t) and φ̇ (t) we
are applied the fourth-order Runge-Kutta method
(RK4) to Eqs. (1)-(3), where A0 and B0 are speci-
fied.

We first use the vibration data of displacement and
velocity as inputs of the estimations of ci and ki.
In this calculation we have fixed Δt = 1/400, F0 =
17, F1 = 14, A0 = 0.3 B0 = 2 and x f = 0.00001.

The profile of c(t) is plotted in Fig. 1(a) by the
dashed line, which is compared with the exact one
plotted by the solid line. Then, the profile of k(t)
is plotted in Fig. 1(b) by the dashed line, which is
compared with the exact one plotted by the solid
line.

Next, we use the vibration data of velocity and ac-
celeration as inputs of the estimations of ci and ki.
In this calculation we have fixed Δt = 1/200, F0 =
14, F1 = 17, A0 = 0.5 B0 = 1 and x f = 0.0001.
The profile of c(t) is plotted in Fig. 1(a) by the
dashed-dotted line. Then, the profile of k(t) is
plotted in Fig. 1(b) by the dashed-dotted line. It
can be seen that the estimation method based on
the input data of displacement and velocity is fea-
sible, which yields reasonable results. However,
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Figure 2: For Example 2 we comparing exact and estimated results by using displacement and velocity as
input.

the use of velocity and acceleration data as in-
puts in the estimation may suffer the drawback of
providing a non-physical result of negative c as
shown in Fig. 1(a) by the dashed-dotted line.

5.2 Example 2

Then, we consider

c(t) = 3+ t2, (86)

k(t) = 20+ t. (87)

For this example we use the following parameters
Δt = 1/200, F0 = 40, F1 = 28, A0 = 1.6, B0 = 3.5
and x f = 0.05 to estimate ci and ki, of which the
maximum estimation error of ci is about 0.235 as
shown in Fig. 2(a), and the maximum estimation
error of ki is about 0.164 as shown in Fig. 2(b).

6 Conclusions

The inverse vibration problem of simultaneous es-
timation of both the damping and stiffness coef-
ficients is rather difficult. No previous report in
this issue is available. An initial success of the
present paper is that we could offer an acceptable
and simple method without any iteration to esti-
mate both the damping and stiffness coefficients
simultaneously. The key point hinges on three
type transformations. By using the velocity and
acceleration data as inputs is not suggested here
from our numerical simulation. Instead of, when
the displacement and velocity data are chosen as
inputs, the estimation accuracy can be controlled
within the first decimal point. However, there still
leaves a large room to improve the present method
to enhance the estimation accuracy.
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