
Copyright c© 2008 Tech Science Press CMC, vol.7, no.2, pp.109-118, 2008

Computer Simulation of Random Sphere Packing in an Arbitrarily Shaped
Container

S.X. Li1, L. Zhao1 and Y.W. Liu2

Abstract: Most simulations of random sphere
packing concern a cubic or cylindric container
with periodic boundary, containers of other
shapes are rarely studied. In this paper, a new
relaxation algorithm with pre-expanding proce-
dure for random sphere packing in an arbitrarily
shaped container is presented. Boundaries of the
container are simulated by overlapping spheres
which covers the boundary surface of the con-
tainer. We find 0.4∼0.6 of the overlap rate is
a proper value for boundary spheres. The algo-
rithm begins with a random distribution of small
internal spheres. Then the expansion and relax-
ation procedures are performed alternately to in-
crease the packing density. The pre-expanding
procedure stops when the packing density of in-
ternal spheres reaches a preset value. Following
the pre-expanding procedure, the relaxation and
shrinking iterations are carried out alternately to
reduce the overlaps of internal spheres. The pre-
expanding procedure avoids the overflow problem
and gives a uniform distribution of initial spheres.
Efficiency of the algorithm is increased with the
cubic cell background system and double link
data structure. Examples show the packing results
agree well with both computational and experi-
mental results. Packing density about 0.63 is ob-
tained by the algorithm for random sphere pack-
ing in containers of various shapes.
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1 Introduction

The packing of spheres has long been of interest
since the Kepler’s conjecture in 1611. It is not
only a basic problem of mathematics and physics,
but also has been extensively applied in many
branches of science, engineering and even in or-
dinary life. These applications range from atomic
level to celestial bodies. With the rapid progresses
in computer technology, computer simulation has
been widely used in the study of random sphere
packing and become a powerful means besides
theoretical and experimental research. Bernal
(1959) was among the first to simulate random
packing of equal spheres using computer. Com-
prehensive remarks and classification of simula-
tion models have been given by Yu et al. (2003),
He, Ekere and Cai (1999) and other scholars.

In the light of new approaches reported in re-
cent years, the simulation models of random
sphere packing can be classified into four cat-
egories, sequential addition [Visscher and Bol-
sterli (1972); Han, Feng and Owen (2005); San-
tiso and Muller (2002)], collective rearrangement
[Li, Zhao and Zhou (2008); Yu et al (2003); He,
Ekere and Cai (1999); Yang, Miller and Turco-
liver (1996); Clarke and Wiley (1987); Nolan
and Kavanagh (1993); Lubachevsky and Still-
inger (1990); Kansal, Torquato and Stillinger
(2002); Yang, Zuo and Yu (2000); Stroeven and
Stroeven (1999)], advancing front [Lohner and
Onate (2004); Feng, Han and Owen (2003)] and
optimization approaches [Sutou and Dai (2002);
Li and Ng (2003)]. The sequential addition mod-
els have a high packing speed but give low pack-
ing density (<0.6) and mean coordinate number
(about 4). The collective rearrangement mod-
els give high packing density (>0.62) and rea-
sonable coordinate number (5.6∼6), but are rel-
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atively slow. Mostly used models of collective
rearrangement are relaxation approach [Li, Zhao
and Zhou (2008); He, Ekere and Cai (1999);
Yang, Miller and Turcoliver (1996); Clarke and
Wiley (1987); Nolan and Kavanagh (1993)], L-
S approach [Lubachevsky and Stillinger (1990);
Kansal, Torquato and Stillinger (2002)] and dis-
crete element method [Yang, Zuo and Yu (2000);
Stroeven and Stroeven (1999)]. The idea of ad-
vancing front comes from mesh generation in fi-
nite element method. The advancing front ap-
proaches have a very high packing speed but
generally give a packing density less than 0.5.
The optimization approaches provide global op-
timized solution of sphere locations by optimiza-
tion algorithm, however it can only be applied to
a small number of spheres so far.

Most simulations of random sphere packing con-
cern a cubic or cylindric container with periodic
boundary, containers of other shapes are rarely
studied. Although infinite domain is studied in
some cases and periodic boundary simplifies the
boundary treatment, practical packings of spheres
usually involve a real container with more com-
plex shape. Sphere packing in polytope is stud-
ied by Sutou, Dai (2002) and Li, Ng (2003). In
these researches, boundary of the polytope is rep-
resented by a set of inequalities. However, in-
equalities can be hardly established for the con-
tainers of irregular shapes.

To simulate random sphere packing in a real con-
tainer, sequential addition approaches are not suit-
able because no obvious dropping direction can
be found. Advancing front approaches have been
applied to fill the space in complex shaped con-
tainers with spheres. Although high speed pack-
ing is attractive, fairly low packing density may
be unacceptable for some applications. Moreover,
optimization approaches heretofore do not have
the ability to simulate packings of large amount
spheres. Therefore, collective rearrangement ap-
proaches are considered as a better choice to sim-
ulate random sphere packing in a real container.
Since only geometric packing and hard sphere
model are involved, the relaxation approach is ap-
plied in this study.

2 Boundary simulation

Boundary treatment is the main problem for
sphere packing simulation with nonperiodic
boundaries. In previous study [Han, Feng and
Owen (2005)], special detecting algorithm is de-
veloped to deal with the collision between spheres
and boundaries. It can be more complicated in a
corner, where two or more boundaries are con-
tacted with a sphere. In this paper, hard nonperi-
odic boundaries of real containers are simulated
by overlapping spheres. Therefore, collisions
with boundary can be treated in the same way
as collisions with spheres. In this way, spheres
are classified into boundary spheres and internal
spheres. Boundary spheres are introduced to con-
fine the internal spheres within a specified do-
main. They can be overlapped but are fixed in
position. Internal spheres can be adjusted in po-
sition and they construct the final packing. Only
internal spheres are calculated in packing density
and coordinate number.

Definitions of packing density and coordinate
number should be redefined in the hard nonperi-
odic boundary composed of overlapping spheres.
Figure 1 shows the definition of packing den-
sity with nonperiodic boundary in 2D case. The
boundary of the container is simulated by over-
lapping boundary spheres. The packing density

is defined as
n
∑

i=1
Vi/V , where n is the number of

spheres, Vi is the volume of each sphere, V is the
volume of the container (hatch area in Figure 1).
Although this definition is simple and easy to cal-
culate, the small gaps between boundary spheres
will increase the packing density since the inter-
nal spheres may take up these small spaces. High
overlap rate of the boundary spheres will decline
this tendency.

The mean coordinate number is the average con-
tact number of the internal spheres. If the smallest
distance between two spheres is less than 0.2% of
the sum of their radii, we consider that they con-
tact each other [He, Ekere and Cai (1999)]. The
contact number includes the contacts between in-
ternal spheres and also the contacts between inter-
nal spheres and boundary spheres.

The overlap rate of two spheres is defined as
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Array of  boundary spheres
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Figure 1: Definition of packing density with non-
periodic boundary

ri+r j−di j

ri+r j
, where ri and r j are the radii of sphere

i and j respectively, di j is the distance between
the centers of sphere i and j. The overlap rate
of boundary spheres is an important parameter
and should be carefully chosen. Large overlap
rate is preferred since tightly arranged boundary
spheres prevent the boundary crossing of the in-
ternal spheres more effectively. Moreover, large
overlap rate decreases the gaps between bound-
ary spheres and lead to a more precise value of
packing density. Figure 2 shows the relationship
between the overlap rate and the packing den-
sity. Unfortunately, large overlap rate increases
the number of boundary spheres and the CPU time
cost as well. Figure 3 gives the relationship be-
tween the overlap rate and the CPU time. The
figure demonstrates the computing time will in-
crease rapidly when the overlap rate is larger than
60%. When the overlap rate reaches 90%, the
number of boundary spheres will be 45 times than
the internal spheres, and the CPU time cost is
15 times comparing to 50% of the overlap rate.
Hence, we believe 40% to 60% of the overlap
rate of boundary spheres is a proper value since
the CPU time cost can be afforded. From Fig-
ure 2, we know there is only 1% increment in the
packing density from 90% of the overlap rate to
50%. Therefore, the overlap rate of the boundary
spheres is set to 50% in this paper, and the preci-
sion of the packing density is acceptable.
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Figure 2: Packing density vs. overlap rate
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Figure 3: CPU time vs. overlap rate

3 Relaxation algorithm with pre-expanding

Relaxation algorithm [He, Ekere and Cai (1999);
Yang, Miller and Turcoliver (1996); Clarke and
Wiley (1987)] takes a geometric consideration of
spheres packing and was successfully applied in
periodic boundary condition. The initial stage of
the algorithm is a small cubic region with large
overlapping spheres. A relaxation algorithm is
applied to gradually reduce the overlaps between
spheres, and the cubic space expands at the end
of each step. When there are no overlaps between
spheres, the algorithm stops and the final pack-
ing is achieved. However, some difficulties arise
when applied in the nonperiodic boundary condi-
tion. One is the “overflow” problem. The bound-
aries of the container are simulated by bound-
ary spheres in the nonperiodic boundary condi-
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tion. In the initial stage, density of the internal
spheres is much higher than that of the boundary
spheres. The initial packing density is 0.86 for
random close packing in the study of He, Ekere
and Cai (1999). Therefore, some of the inter-
nal spheres near the boundary will be pushed out
of the boundary by repulsions of others, and this
leads to failure of the sphere packing. Another
problem is the real boundary does not allow ex-
panding. For a substitution, the internal spheres
are shrunk at each step.

Pre-expanding procedure is presented in this
study to overcome the “overflow” problem. The
procedure begins with a random distribution of
small internal spheres and there are large spaces
between spheres. Radius of the small internal
spheres is set to 10% of the radius of internal
spheres in final packing which can be estimated
by Eq. (5). Then each internal sphere expands by

r(k+1) = [1.0+
0.2

lg(k +2)
]r(k) (1)

r(k+1), r(k) are radii of the spheres at step k+1 and
k respectively. Following the expansion, a spec-
ified number of relaxation iterations are applied
to rearrange each internal sphere. The relaxation
procedure relocates a sphere by repulsions from
spheres which overlap with it. A new position of
sphere i is calculated by

Rnew
i =

1
ni

ni

∑
j=1

Ri j (2)

where Rnew
i is the aggregate vector indicating the

new position of sphere i, ni is the number of
spheres overlapping with sphere i, Ri j is the vec-
tor indicate the position of sphere i repulsed by
sphere j. Ri j is calculated by

Ri j = Ri +(R j −Ri)
ri + r j

di j
(3)

where Ri, R j are vectors of the centers of sphere
i and j. The expansion and relaxation proce-
dures are performed alternately to increase the
packing density of the internal spheres. The pre-
expanding procedure stops when the packing den-
sity reaches ϕ0. ϕ0 is the initial packing density

and is set to 0.68 for random close packing in this
study. It is not necessary to completely eliminate
the overlaps in this stage.

After the pre-expanding procedure, relaxation it-
erations and sphere shrinking are carried out al-
ternately. Each internal sphere shrinks by

r(k+1) = r(k)(1.0−molr ·β ) (4)

where molr is the maximum overlap rate of in-
ternal spheres at step k, β is the shrinking factor
which is set to 0.015 in this study after a num-
ber of tests. The algorithm is completed when
the molr is below 2.0×10−4 [He, Ekere and Cai
(1999)]. Figure 4 shows the packing process of
the internal spheres with this algorithm. The pro-
cess is demonstrated with three stages which are
the initial stage of the pre-expending procedure,
the finial stage of the pre-expending procedure
and the final packing of the internal spheres from
left to right in Figure 4.

Figure 4: Packing process of the internal spheres

The benefits coming with the pre-expanding pro-
cedure are in two aspects. One is the reduce
of initial packing density which drops from 0.86
[He, Ekere and Cai (1999)] to 0.68 in this study.
Low initial packing density avoids “overflow” of
the internal spheres. Another benefit is the in-
ternal spheres are well distributed after the pre-
expanding procedure, and this will speed up the
following packing procedures.

4 Contact detection and data structure

Contact detection is the operation to identify the
overlaps between two spheres. It is the most
time consuming operation in the algorithm. The
efficiency of the contact detection is one of the
main contributions to the efficiency of the algo-
rithm, especially when large number of spheres
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are involved. A background system of cubic cells
is used in this study to register both boundary
spheres and internal spheres to cells. The back-
ground system is constructed within the mini-
mal enclosing box of the container and is divided
into cubic cells. Size of the cubic cell should be
slightly larger than the diameter of the spheres in
final packing. A sphere is register to a cell when
its center is in the cell. With this system, there
will be no need to search through all the spheres
for detecting the overlaps of a sphere. Instead,
only 27(33) neighborhood cells should be exam-
ined since the overlap only occurs in these cells.

Date structure is also a main factor to the effi-
ciency of the algorithm. In the relaxation algo-
rithm, positions of the internal spheres are ad-
justed in each iteration, and they are frequently
pushed into another cell by repulsions of others.
Therefore, inserting and deleting operations in the
sphere list of cells are frequent. To eliminate
the location search in the inserting and deleting
operations, a double link data structure is pre-
sented. Figure 5 shows the data structure of the
background system. It can be regarded as a two-
dimensional array, the first dimension stores head
addresses of sphere lists of each cell, and the sec-
ond dimension is implemented by a double link
with forward and backward pointer in each ele-
ment. Hence, the location search can be avoided
in the inserting or deleting of an element, only
pointer adjustment is required. The algorithm is
implemented by C++ codes and compiled with
Microsoft Visual C++.

With the cubic cell background system and the
double link data structure, time complexity of the
algorithm is O(N) in both random close packing
and random loose packing, where N is the num-
ber of spheres. Figure 6 shows the time complex-
ity of the algorithm. It costs 217s of CPU time
to achieve a packing density of 0.64 for 10,000
equal spheres in random close packing with peri-
odic boundary on an AMD Athlon 3200+ PC.

5 Generation of initial spheres

The shape of a real container can be very compli-
cated. Analytical description of a real container
is usually unavailable. In this study, contain-
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Figure 5: Data structure of the background system
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Figure 6: Time complexity of the algorithm

ers are modeled in an AutoCAD system and ini-
tial spheres are generated using Brep (Autodesk
boundary representation library) functions.

Boundary spheres should be uniformly distributed
and cover the whole surface of the container. Po-
sitions of boundary spheres are obtained from the
nodes of triangles on surface mesh of the con-
tainer. The positions can also be derived from
STL (stereolithography) file which can be gen-
erated by most CAD software [Bechet, Cuilliere
and Trochu (2002)]. Size of the surface mesh
should be set to a proper value to ensure the over-
lap rate of boundary spheres is 50%. Radius of the
boundary spheres should be equal to radius of the
internal spheres in the final packing. The radius
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can be estimated by

rbs =
(

3ϕV
4πn

) 1
3

(5)

Where rbs is the radius of the boundary spheres, V
is the volume of the container, n is the number of
spheres in packing, ϕ is the final packing density
which is about 0.64 for random close packing. Po-
sition and radius of the boundary spheres are both
unchangeable in the packing procedures.

Positions of internal spheres are randomly gener-
ated in the region of the background system. The
sphere inside the container is reserved, otherwise
it will be deleted. A function of Brep is applied to
determine the inclusion or exclusion of a point to
the container. For the relaxation algorithm with
pre-expanding, the radius of the initial internal
spheres is set to 10% of the radius of the final
spheres which can be estimated by Eq. (5). Fig-
ure 7 gives a local view of initial internal spheres
and boundary spheres in a cube.

Figure 7: Local view of initial internal spheres
and boundary spheres in a cube

6 Examples

A number of examples applying the proposed
simulation approach have been worked out for
evaluation. These examples also demonstrate the
ability of the algorithm to fill containers of any

shape with random packed spheres as well. Ran-
dom close packing with equal spheres is simu-
lated in these examples.

Example 1 is a cube packed with 10,000 equal
spheres. This example is presented to evaluate the
results with previous studies. Figure 8 shows the
cube and its final packing of internal spheres. The
packing density of random close packing obtained
by the algorithm mentioned above is 0.633. This
value agrees well with the simulation results of
He, Ekere and Cai (1999) (0.627), Yang, Miller
and Turcoliver (1996) (0.637) and Nolan and Ka-
vanagh (1993) (0.64), and also the experiment re-
sults of Scott (1960) and Ye, Han and Zeng (1986)
(0.633∼0.634). For comparison, the packing den-
sity obtained by advancing front method under
nonperiodic boundary condition is 0.552 [Lohner
and Onate (2004)]. The mean coordinate num-
ber of this study is 0.5781 which is close to the
value of He, Ekere and Cai (1999) (5.68), but is
lower than the value of Yang, Miller and Turcol-
iver (1996) (6.0).

Example 2 is a gourd packing with 10,000 equal
spheres. The gourd is a revolved object with
cross sections of various radii. Figure 9 shows
the gourd and its final packing of internal spheres.
The packing density reaches 0.629 and the mean
coordinate number is 5.656.

Example 3 is a typical civil engineering structure
with columns and floors which have many right
angles. This example is come from Lohner and
Onate (2004). The object is packed with 41,883
equal spheres. The packing density obtained in
this study is 0.623 while the result from advanc-
ing front method is 0.505 [Lohner and Onate
(2004)]. The mean coordinate number of this
study is 5.563 which is close to the value of ad-
vancing front method (5.71) [Lohner and Onate
(2004)]. Figure 10 and Figure 11 show the object
and its final packing of internal spheres.

Example 4 is an axle sleeve with complex exter-
nal and internal boundary. The object is packed
with 10,000 equal spheres. This example is de-
signed to evaluate the algorithm applying to the
objects with holes and detail boundaries. The
packing density is 0.607 which is 3% lower than
other examples. This is due to the detail bound-



Computer Simulation of Random Sphere 115

aries on surface of the object. The mean coordi-
nate number is 5.72. The example indicates that
complex and detail boundaries may reduce the
packing density. Figure 12 shows the axle sleeve
and its final packing of internal spheres, Figure 13
shows a cross section view of the final packing.

Example 5 is a button with four cylindric holes.
The object is also packed with 10,000 equal
spheres. Packing density of 0.628 is reached by
the algorithm and the mean coordinate number is
5.703. Figure 14 shows the button and its final
packing of internal spheres. Figure 15 gives a lo-
cal view of sphere packing around a hole.

Table 1 gives the results of the five examples.
These results indicate the algorithm gives reason-
able packing configurations of spheres in the con-
tainers of various shapes.

Table 1: Results of random sphere packing in con-
tainers of various shape

Examples Number Packing Mean
of density coordinate

spheres number
cube 10000 0.633 5.781
gourd 10000 0.629 5.656
civil structure 41883 0.623 5.563
axle sleeve 10000 0.607 5.720
button 10000 0.628 5.703

7 Conclusions

A new relaxation algorithm with pre-expanding
procedure is presented to simulate sphere pack-
ing in an arbitrarily shaped container. The pre-
expending procedure avoids overflow of the in-
ternal spheres and generates a more uniform dis-
tribution of initial spheres comparing to random
distribution. Boundaries of the container are dis-
tributed and simulated by overlapping spheres.
Definition of packing density and coordinate
number under nonperiodic boundary condition is
presented. The overlap rate of boundary spheres
is suggested to 40%∼60% and the radius can be
estimated. A cubic cell background system and
double link data structure are applied to increase

Figure 8: Cube and its final packing of internal
spheres

Figure 9: Gourd and its final packing of internal
spheres

Figure 10: Civil engineering structure and its final
packing of internal spheres (upper part)

Figure 11: Final packing of internal spheres of
civil engineering structure (lower part)
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Figure 12: Axle sleeve and its final packing of
internal spheres

Figure 13: Cross section view of the final packing
of axle sleeve

the efficiency of contact detection. Time com-
plexity of the algorithm is O(N), where N is the
number of spheres in packing. Examples show
the simulation results are in good agreement with
previous studies, and packing density about 0.63
is obtained by the algorithm for random sphere
packing in containers of various shapes. The fi-
nal packing of the algorithm gives a description of
the packing structure in a real container which is
considerablely important in many research fields

Figure 14: Button and its final packing of internal
spheres

Figure 15: A local view of sphere packing around
a hole

of physics and mechanics. It also provides the
optimized positions of uniform point distribution
within any shaped region. The distribution can be
directly applied to mesh generation in finite ele-
ment method [Yokoyama, Cingoski, Kaneda and
Yamashita (1999)] and grid generation in mesh-
less approaches [Atluri, Liu and Han (2006); Han,
Liu, Rajendran and Atluri (2006); Liu, Han, Ra-
jendran and Atluri (2006)].
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