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The Lie-Group Shooting Method for Solving Classical Blasius Flat-Plate
Problem

Chih-Wen Chang1, Jiang-Ren Chang1 and Chein-Shan Liu2

Abstract: In this paper, we propose a Lie-group
shooting method to deal with the classical Bla-
sius flat-plate problem and to find unknown initial
conditions. The pivotal point is based on the erec-
tion of a one-step Lie group element G(T ) and the
formation of a generalized mid-point Lie group
element G(r). Then, by imposing G(T ) = G(r)
we can derive some algebraic equations to recover
the missing initial conditions. It is the first time
that we can apply the Lie-group shooting method
to solve the classical Blasius flat-plate problem.
Numerical examples are worked out to persuade
that the novel approach has better efficiency and
accuracy with a fast convergence speed by search-
ing a suitable r ∈ (0, 1) with the minimum norm
to fit the targets.

Keyword: One-step group preserving scheme,
Blasius equation, Boundary value problem,
Shooting method, Estimation of missing initial
condition

1 Introduction

When a two-dimensional (2D) steady flow of an
incompressible constant property fluid with very
low viscosity and high Reynolds number moves
promptly over a semi-infinite flat plate, the fric-
tion between the fluid and the flat plate will in-
duce the fluid to be obstructed within a thin region
immediately adjacent to the boundary layer. The
governing equation describing the boundary layer
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with such fluid characteristics and boundary con-
ditions is called the Blasius equation [Schlicht-
ing (1979); Özisik (1979)]. Blasius (1908) gave
a solution in the form of a power series for
the Blasius equation and since then, it has led
to much attention on solving this equation with
emphasis on its solving techniques. After that,
Töpfer (1912) began to adopt the Runge-Kutta al-
gorithms to solve this equation, and until the era
of Howarth (1938), the numerical solution by the
Runge-Kutta method is still not as accurate and
reliable as presently tabulated result [Schlichting
(1979); Özisik (1979)]. Apart from this, Lock
(1951, 1954) investigated two cases, where the
lower stream was at rest as well as when it was
in motion. Later, Potter (1957) extended the re-
search to two fluids of different viscosities and
densities, where both fluids were moving concur-
rently with different velocities. Moreover, Abus-
sita (1994) took a differential equation of mixing
layer into account that arises in the Blasius solu-
tions for flow passing a flat plate, and manifested
the existence of a solution for this model by us-
ing the Weyl techniques. Thereafter, Liao (1997,
1999) proposed a systematic depiction of a new
kind of analytic technique for nonlinear problems,
namely, the homotopy analysis method. He ap-
plied it to give an explicit and analytic solution of
the 2D laminar viscous flow over a semi-infinite
flat plate. This method may have higher accuracy
but it is very complex in expression.

Yu and Chen (1998) converted the Blasius equa-
tion (a boundary value problem) to a pair of initial
value problems, and then solved those by a dif-
ferential transformation method. To speed up the
convergent rate and the accuracy of calculation,
the entire domain needs to be divided into sub-
domains. Besides, Khabibrakhmanov and Sum-
mers (1998) have employed the generalized La-
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guerre polynomials to compute a spectral solution
of the Blasius equation on a semi-infinite interval;
however, this method involves many calculations
for nonlinear algebraic equations. For approxi-
mating the solution of the Blasius equation, He
(1999) proposed the variational iteration method
and Lin (1999) employed the parameter iteration
method to deal with this problem. Recently, He
(2003) has coupled the iteration method with the
perturbation method to solve the Blasius equa-
tion. Later, Wang (2004) even proposed the Ado-
mian decomposition method to the transforma-
tion of the Blasius equation. Abbasbandy (2007)
also employed the same approach and compared it
with the homotopy perturbation method. Further-
more, Hashim (2006) commented on “a new al-
gorithm for solving classical Blasius equation” by
Wang (2004). As for solutions and error estimates
of the Blasius equation, Lee and Hung (2002)
proposed the modified group preserving scheme
with the shooting method; however, their method
shows complicated in algorithms and seems indi-
rect to solve the Blasius equation. After that, Lee
(2006) employed the particle swarm optimization
method to solve the Blasius equation. The merit
of this approach is that the computer storage cell
requirements are less than the one with the fi-
nite element method. In addition, Ahmad and Al-
Barakati (2008) derived a short analytical expres-
sion ([4/3] Pade approximant) for the derivative of
the solution. The approximant for f ′(ξ ) is slightly
modified to the influence that the resulting expres-
sion stands for the function on the entire domain
[0, ∞) with a remarkable accuracy; nevertheless,
the computational procedures of this approach are
still complicated.

In this paper, we propose a Lie-group shooting
method to tackle the classical Blasius flat-plate
problem. Our method of boundary value prob-
lems (BVPs) is based on the group preserving
scheme (GPS) developed by Liu (2001) for the
integration of initial value problems. The GPS is
very effective to cope with the ordinary differen-
tial equations (ODEs) with special structures as
shown by Liu (2005) for stiff equations and Liu
(2006a) for ODEs with constraints. Moreover,
a past cone structure and a backward GPS have

been successfully developed, such that the one-
step backward GPS has been employed to solve
the backward in time Burgers equation by Liu
(2006b), and the backward in time heat conduc-
tion equation by Liu, Chang and Chang (2006).
In Liu (2006c, 2006d, 2006e) a Lie-group shoot-
ing method (LGSM) is first developed to solve
the BVPs of the second order ODEs. There-
after, Chang, Liu and Chang (2007) have used
the LGSM to solve the backward heat conduc-
tion problem, and then Liu (2008) has extended
the LGSM to estimate the thermophysical prop-
erty of nonhomogeneous heat conductivity with
an accurate result. It will be evident that our ap-
proach can be applied to the classical Blasius flat-
plate problem, since we are able to search for the
missing initial condition through a minimum so-
lution of r in a compact space of r ∈ (0, 1), where
the factor r is used in a generalized mid-point rule
for the Lie group of one-step GPS. Especially, the
proposed scheme is easy to implement and time
saving. Through this study, we may have an easy-
implementation LGSM used in the calculations of
the classical Blasius flat-plate problem and the ac-
curacy of the proposed scheme will be seen better
than other numerical methods.

2 One-step GPS

2.1 The GPS

Although we do not know previously the symme-
try group of nonlinear differential equations sys-
tem, Liu (2001) has embedded it into an aug-
mented system and found an internal symmetry
of the new system. That is, for an ODEs system
with dimensions n:

u̇ = f(u, t), u ∈ Rn, t ∈ R, (1)

we can embed it into the following n+1-
dimensional augmented system:

d
dt

X :=
d
dt

[
u

‖u‖
]

=

[
0n×n

f(u,t)
‖u‖

fT(u,t)
‖u‖ 0

] [
u

‖u‖
]
. (2)

It is obvious that the first row in Eq. (2) is the
same as the original equation (1), but the inclu-
sion of the second row in Eq. (2) gives us a



The Lie-Group Shooting Method for Solving Classical Blasius Flat-Plate Problem 141

Minkowskian structure of the augmented system
for X satisfying the cone condition:

XTgX = u ·u−‖u‖2 = 0, (3)

where

g =
[

In 0n×1

01×n −1

]
(4)

is a Minkowski metric. I is the identity matrix of
order n, and the superscript T denotes the trans-
pose. The cone condition is a natural constraint
imposed on the system (2).

Consequently, we have an n+1-dimensional aug-
mented system:

Ẋ = AX (5)

with a constraint (3), where

A :=

[
0n×n

f(u,t)
‖u‖

fT(u,t)
‖u‖ 0

]
(6)

is an element of the Lie algebra so(n,1) satisfying

ATg+gA = 0. (7)

Therefore, Liu (2001) has developed a group-
preserving numerical scheme as follows:

Xl+1 = G(l)Xl, (8)

where Xl denotes the numerical value of X at the
discrete time tl, and G(l) ∈ SOo(n,1) satisfies

GTgG = g, (9)

detG = 1, (10)

G0
0 > 0, (11)

where G0
0 is the 00th component of G.

2.2 Generalized mid-point rule

Applying scheme (8) to Eq. (5) with a speci-
fied initial condition u(0) = u0, we can compute
the solution u(t) by the GPS. Assuming that the
total time T is divided by K steps, that is, the
time stepsize we use in the GPS is Δt = T/K.
Starting from an initial augmented condition X0 =

X(0) = (uT
0 , ‖u0‖)T, we want to calculate the

value X(T ) = (uT(T ), ‖u(T )‖)T at a desired time
t = T .

By applying Eq. (8) step-by-step, we can obtain

XT = GK(Δt) . . .G1(Δt)X0, (12)

where XT approximates the exact X(T ) with a
certain accuracy depending on Δt. However, let us
recall that each Gi, i = 1, . . .,K, is an element of
the Lie group SOo(n,1), and by the closure prop-
erty of Lie group, GK(Δt) . . .G1(Δt) is also a Lie
group denoted by G. Hence, we have

XT = GX0. (13)

This is a one-step transformation from X0 to XT ;
see, e.g., Liu (2006f, 2006g).

We can simply calculate G by a generalized mid-
point rule, which is obtained from an exponential
mapping of A by taking the values of the argu-
ment variables of A at a generalized mid-point.
The Lie group generated from A∈ so(n,1) is
known as a proper orthochronous Lorentz group,
which admits a closed-form representation as fol-
lows:

G =

⎡
⎣In + (a−1)

‖f̂‖2 f̂f̂T bf̂
‖f̂‖

bf̂T

‖f̂‖ a

⎤
⎦ , (14)

where

û = ru0 +(1− r)uT , (15)

f̂ = f(û, t̂), (16)

a = cosh

(
T
∥∥f̂
∥∥

‖û‖

)
, (17)

b = sinh

(
T
∥∥f̂
∥∥

‖û‖

)
. (18)

Here, we employ the initial u0 and the final uT

through a suitable weighting factor r to calculate
G, where 0 < r < 1 is a parameter and t̂ = rT. The
above method is applied a generalized mid-point
rule on the calculation of G, and the result is a
single-parameter Lie group element G(r).
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2.3 A Lie group mapping between two points
on the cone

Let us define a new vector

F :=
f̂

‖û‖ , (19)

such that Eqs. (14), (17) and (18) can also be ex-
pressed as

G =

[
In + (a−1)

‖F‖2 FFT bF
‖F‖

bFT

‖F‖ a

]
, (20)

a = cosh(T ‖F‖) , (21)

b = sinh(T ‖F‖) , (22)

respectively. From Eqs. (13) and (20) it follows
that

uT = u0 +ηF, (23)

‖uT‖ = a‖u0‖+b
F ·u0

‖F‖ , (24)

where

η :=
(a−1)F ·u0 +b‖u0‖‖F‖

‖F‖2 . (25)

Substituting

F =
1
η

(uT −u0) (26)

into Eq. (24), we obtain

‖uT‖
‖u0‖ = a+b

(uT −u0) ·u0

‖uT −u0‖‖u0‖ , (27)

where

a = cosh

(
T ‖uT −u0‖

η

)
, (28)

b = sinh

(
T ‖uT −u0‖

η

)
(29)

are obtained by inserting Eq. (26) for F into Eqs.
(21) and (22).

Let

cosθ :=
(uT −u0) ·u0

‖uT −u0‖‖u0‖ , (30)

S := T ‖uT −u0‖ , (31)

and from Eqs. (27)-(29) it follows that

‖uT‖
‖u0‖ = cosh

(
S
η

)
+cosθ sinh

(
S
η

)
. (32)

By defining

Z := exp

(
S
η

)
, (33)

we obtain a quadratic equation for Z from Eq.
(32):

(1+cosθ )Z2 − 2‖uT‖
‖u0‖ Z +1−cos θ = 0. (34)

The solution is found to be

Z =

‖uT ‖
‖u0‖ +

√(‖uT ‖
‖u0‖

)2
−1+cos2 θ

1+cos θ
, (35)

and then from Eqs. (33) and (31) we obtain

η =
T ‖uT −u0‖

lnZ
. (36)

Thus, between any two points (u0, ‖u0‖) and
(uT , ‖uT‖) on the cone, there exists a single-
parameter Lie group element G(T ) ∈ SOo(n,1)
mapping (u0, ‖u0‖) onto (uT , ‖uT ‖), which is
given by[

uT

‖uT‖
]

= G(T)
[

u0

‖u0‖
]
, (37)

where G is uniquely determined by u0 and uT

through the following equations:

G(T ) =

[
In + (a−1)

‖F‖2 FFT bF
‖F‖

bFT

‖F‖ a

]
, (38)

a = cosh(T ‖F‖) , (39)

b = sinh(T ‖F‖) , (40)

F =
1
η

(uT −u0), (41)

in which η is still calculated by Eq. (36).
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3 The Lie-group shooting method

To this point we have only considered the solu-
tions of differential equations for which the ini-
tial conditions are known. However, many engi-
neering applications of differential equations do
not specify all initial conditions, but rather some
given boundary conditions. Let us consider the
following third order boundary value problem:

a f ′′′ + f f ′′ = 0, f = f (ξ ), (42)

subject to the boundary conditions

f (0) = 0, f ′(0) = 0, f ′(∞) = 1, (43)

where the prime stands for the differential with
respect to ξ . When the factor a is equal to 2, Eq.
(42) is a form of the Blasius relation for the flat-
plate. Cortell (2005) mentioned that the factor of
2 in Eq. (42) has been omitted in favor of a canon-
ical form of this equation. The conditions for the
constant a in the interval 1 ≤ a ≤ 2, which guar-
antee an existed solution for Eqs. (42) and (43)
should be checked before any numerical scheme
is applied; otherwise, a list of meaningless out-
put may be generated. Note that the problem in
Eqs. (42) and (43) is depicted on a semi-infinite
physical domain. Because this is not very con-
venient for computations, the condition of ξ = ∞
in Eq. (43) is usually replaced by a condition
with a “sufficiently large” ξ ; see, e.g., Asaithambi
(1997, 1998, 2004, 2004, 2005).

Let y1 = f , y2 = f ′ and y3 = f ′′. We can rewrite
the considered third order boundary value prob-
lem as

y′1 = y2, (44)

y′2 = y3, (45)

y′3 =
−y1y3

a
= Y (y1,y3), (46)

y1(0) = α = 0, y1(T ) = A, (47)

y2(0) = β = 0, y2(T ) = B = 1, (48)

y3(0) = δ , y3(T ) = C = 0, (49)

where A, T and δ are three unknown constants.
Here, we have left T as an unknown to replace

∞ and alternatively, we are imposed a physically
reasonable condition f ′′(T ) = 0.

Let

u :=

⎡
⎣y1

y2

y3

⎤
⎦ . (50)

From Eqs. (41) and (47)-(49) it follows that

F :=

⎡
⎣F1

F2

F3

⎤
⎦=

1
η

⎡
⎣A−α

B−β
C−δ

⎤
⎦ . (51)

Starting from an initial guess of (A, T , δ ), we use
the following equation to calculate η:

η =
T
√

(α −A)2 +(β −B)2 +(δ −C)2

lnZ
, (52)

in which Z is calculated by

Z =

√
A2+B2+C2√
α2+β 2+δ2

+
√

A2+B2+C2

α2+β 2+δ2 − (1−cos2 θ )

1+cos θ
,

(53)

where

cosθ =
α(A−α)+β (B−β )+δ (C−δ )√

(α −A)2+(β −B)2+(δ−C)2
√

α2+β 2+δ 2
.

(54)

The above three equations are obtained from Eqs.
(36), (35) and (30) by inserting Eq. (50) for u.

By comparing Eq. (51) with Eq. (19), and with
the aid of Eqs. (15), (16), and (44)-(49) we obtain

A = α +
η[rβ +(1− r)B]

ρ
, (55)

T =
2ρ lnZ

r[rα +(1− r)A]
√

(α−A)2+(β−B)2+(δ−C)2
,

(56)

δ =
ρ(B−β )

rη
, (57)
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where

Ŷ := Y (rα +(1− r)A, rδ +(1− r)C), (58)

ρ :=

√
[rα +(1− r)A]2 +[rβ +(1− r)B]2

+[rδ +(1− r)C]2
.

(59)

The above derivation of the governing equations
(52)-(59) is stemmed from by letting the two F’s
in Eqs. (19) and (41) be equal, which is es-
sentially identical to the specification of G(T ) =
G(r) in terms of the Lie group elements G(T ) and
G(r).

For a specified r and the given vector field Y, Eqs.
(55), (56) and (57) can be used to generate the new
(A, T , δ ) by repeating the above process in Eqs.
(52)-(59) until (A, T , δ ) converges according to a
given stopping criterion:

√
(Ai+1 −Ai)2 +(Ti+1 −Ti)2 +(δi+1 −δi)2 ≤ ε1,

(60)

which means that the norm of the difference be-
tween the ι+1-th and the ι-th iterations of (A, T ,
δ ) is smaller than a given stopping criterion ε1,
say ε1 = 10−10. If δ is available, we can return to
Eqs. (44)-(49) but with merely integrating the fol-
lowing equations by a forward integration scheme
as the one given in Section 2:

y′1 = y2, (61)

y′2 = y3, (62)

y′3 =
−y1y3

a
, (63)

y1(0) = α , (64)

y2(0) = β , (65)

y3(0) = δ . (66)

So far, we have not yet said that how to deter-
mine r. Let yr

n(T ) denote the above solution
of yn at T . We start from an r to determine
δ by Eqs. (52)-(60) and then numerically inte-
grate Eqs. (61)-(66) from t = 0 to τ = T , and
compare the end values of yr

2(T) and yr
3(T) with

the exact B and X . Then, we apply the mini-
mum norm to fit two targets to select a suitable r,
which requires us to calculate Eqs. (61)-(66) at
each calculation of

√
(yr

2−B)2 +(yr
3 −C)2, un-

til
√

(yr
2 −B)2 +(yr

3 −C)2 is smaller enough to
satisfy the criterion of

√
(yr

2 −B)2 +(yr
3 −C)2 <

εmin, where εminis a given error tolerance, say
εmin = 0.02. Because the numerical method is
very stable, we can fast carry off the correct range
of r through some trials and modifications.

4 Interpretative results

Following Section 3, when the factor a is equal
to 2, we apply the LGSM to the classical Blasius
flat-plate problem with an initial (A, δ ) = (3, 2).
Through some trials we took r = 0.627891. By
using a stepsize Δξ = 0.0001 the numerical re-
sults are shown in Fig. 1 and Table 1, respectively.
From Table 1, it is apparent that our results are
in great agreement with those given by Howarth
(1938).

When the factor a is equal to 1, 1.2, 1.5 and 1.8,
we apply the LGSM to the same problem with an
initial (A, δ ) = (3, 2) and through some trials we
took r = 0.520748, r = 0.5502778, r = 0.5851937
and r = 0.612575, respectively. By using a step-
size Δξ = 0.0001, the numerical results are shown
in Table 2. From Table 2, it is obvious that func-
tions f and f ′ decrease with the increasing a. Ev-
idently, the function f ′′ at ξ= 0 decreases with the
increasing a. The numerical results for a = 1.2,
1.5, 1.8 and 2 are plotted in Figs. 2 to 5, respec-
tively.

5 Conclusions

There are two significant points deserved further
inform in this paper. One is the erection of a one-
step group G(T ) and the full use of Eqs. (23)
and (24), which are the Lie group transformation
between initial conditions and final conditions in
the augmented Minkowski space. The other is the
use of a generalized mid-point rule to erect an-
other Lie group element G(r). In order to evalu-
ate the missing initial conditions for the boundary
value problems of the Blasius equation, we have
employed the equation G(T ) = G(r) to derive
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Figure 1: Variations of functions f , f ′ and f ′′ with respect to ξ at a = 1.
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Figure 2: Variations of functions f , f ′ and f ′′ with respect to ξ at a = 1.2.
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Figure 3: Variations of functions f , f ′ and f ′′ with respect to ξ at a = 1.5.
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Figure 4: Variations of functions f , f ′ and f ′′ with respect to ξ at a = 1.8.
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Figure 5: Variations of functions f , f ′ and f ′′ with respect to ξ at a = 2.
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Table 1: Values of functions f , f ′ and f ′′ with a = 2. LGSM–Lie-group shooting method; C–Cortell’s
solution (2005); H–Howarth’s solution (1938); Yu–Yu and Chen’s solution (1998)

a ξ LGSM C H Yu

2

f

0 0.00000 0.00000 0.00000 0.00000
1 0.16556 0.16557 0.16557 0.16556
2 0.65003 0.65003 0.65003 0.65002
3 1.39685 1.39682 1.39682 1.39681
4 2.30584 2.30576 2.30576 2.30575
5 3.28342 3.28330 3.28329 3.28327
6 4.27982 4.27965 4.27964 4.27962
7 5.27948 5.27927 5.27926 5.27924
8 6.27950 6.27925 6.27923 6.27921
9 7.27954 7.27925 7.27923 7.27921

f ′

0 0.00000 0.00000 0.00000 0.00000
1 0.32979 0.32978 0.32979 0.32978
2 0.62979 0.62977 0.62977 0.62977
3 0.84608 0.84605 0.84605 0.84604
4 0.95556 0.95552 0.95552 0.95552
5 0.99158 0.99155 0.99155 0.99154
6 0.99901 0.99898 0.99898 0.99897
7 0.99996 0.99993 0.99992 0.99992
8 1.00003 1.00000 1.00000 0.99999
9 1.00003 1.00000 1.00000 0.99999

f ′′

0 0.33206 0.33206 0.33206 0.33206
1 0.32301 0.32301 0.32301 0.32301
2 0.26675 0.26675 0.26675 0.26675
3 0.16136 0.16136 0.16136 0.16136
4 0.06423 0.06423 0.06424 0.06423
5 0.01590 0.01591 0.01591 0.01591
6 0.00240 0.00240 0.00240 0.00240
7 0.00022 0.00022 0.00022 0.00022
8 0.00001 0.00001 0.00001 0.00001
9 0.00000 0.00000 0.00000 0.00000

algebraic equations. Hence, we can solve them
through a minimum solution in a compact space
of r ∈ (0, 1). Various numerical examples in the
interval 1 ≤ a ≤ 2 are examined to ensure that the
new algorithm has a fast convergence speed on
the solution of r in a pre-selected range smaller
than (0, 1) by using the minimum norm to fit two
targets, which usually require only small number
of iterations. Through this study, it can be con-
cluded that the new shooting method is accurate,
effective and stable. Its numerical implementa-

tion is very simple and the computation speed is
very fast. Therefore, it is highly advocated to be
used in the numerical computations of the classi-
cal Blasius flat-plate problem.

Acknowledgement: The corresponding author
would like to express his thanks to the National
Science Council, R. O. C. for their financial sup-
port under Grant Numbers, NSC 95-2211-E019-
078 and NSC 95-2211-E019-076.



The Lie-Group Shooting Method for Solving Classical Blasius Flat-Plate Problem 151

Table 2: Values of functions f , f ′ and f ′′ for several values of a. LGSM–Lie-group shooting method; C–
Cortell’s solution (2005)

a ξ f of LGSM f of C f ′ of LGSM f ′ of C f ′′ of LGSM f ′′ of C

1

0 0.00000 0.00000 0.00000 0.00000 0.46960 0.46960
1 0.23298 0.23299 0.46065 0.46063 0.43439 0.43438
2 0.88682 0.88681 0.81675 0.81670 0.25568 0.25567
3 1.79567 1.79558 0.96912 0.96906 0.06770 0.06771
4 2.78407 2.78390 0.99783 0.99777 0.00687 0.00687
5 3.78349 3.78325 0.99999 0.99994 0.00026 0.00026
6 4.78354 4.78324 1.0 1.0 0.0 0.0

1.2

0 0.00000 0.00000 0.00000 0.00000 0.42868 0.42868
1 0.21307 0.21308 0.42243 0.42242 0.40398 0.40397
2 0.82002 0.82001 0.76876 0.76872 0.26911 0.26910
3 1.69251 1.69244 0.94679 0.94674 0.09563 0.09563
4 2.66945 2.66931 0.99387 0.99382 0.01558 0.01558
5 3.66738 3.66719 0.99971 0.99966 0.00111 0.00111
6 4.66734 4.66710 1.0 0.99999 0.00003 0.00003
7 5.66740 5.66710 1.0 1.0 0.0 0.0

1.5

0 0.00000 0.00000 0.00000 0.00000 0.38342 0.38342
1 0.19089 0.19090 0.37941 0.37939 0.36747 0.36747
2 0.74236 0.74235 0.70792 0.70789 0.27421 0.27420
3 1.56322 1.56317 0.90915 0.90910 0.12858 0.12858
4 2.51741 2.51730 0.98327 0.98323 0.03312 0.03313
5 3.51053 3.51038 0.99832 0.99827 0.00444 0.00444
6 4.50999 4.50979 0.99994 0.99990 0.00031 0.00030
7 5.51001 5.50976 1.0 0.99999 0.00001 0.00001
8 6.51006 6.50977 1.0 1.0 0.0 0.0

1.8

0 0.00000 0.00000 0.00000 0.00000 0.35002 0.35002
1 0.17444 0.17444 0.34722 0.34721 0.33888 0.33887
2 0.68277 0.68276 0.65813 0.65810 0.27096 0.27095
3 1.45737 1.45732 0.87080 0.87075 0.15101 0.15101
4 2.38498 2.38488 0.96782 0.96777 0.05217 0.05217
5 3.36984 3.36969 0.99504 0.99500 0.01056 0.01056
6 4.36790 4.46766 0.99957 0.99964 0.00123 0.00096
7 5.36779 5.36754 1.0 0.99997 0.00008 0.00008
8 6.36783 6.36754 1.0 1.0 0.0 0.0
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