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Computational Studies on Mechanical and Thermal Properties of Carbon
Nanotube Based Nanostructures
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Abstract: The excellent set of properties
of carbon nanotube and carbon nanotube-based
nanostructures has been established by various
studies. However the claimed property values and
trends have not been unanimously agreed upon.
Using state of the art molecular dynamics and
ab initio methods, we have extensively studied
the mechanical, thermal and structural properties
of carbon nanotubes and carbon nanotube based
nanostructures. Additionally this study aims to
address the approaches used in various studies to
assess the validity and influence of various defini-
tions used for determining the physical properties
as reported in earlier experiments and theoretical
calculations. We have come up with equations,
which quantitatively address the wide differences
in trend and values of nanotube axial modulus
available across the literature. Applying a novel
bond rearrangement scheme, we have found sim-
ilar values in twist modulus of zigzag and arm-
chair nanotubes. This opposes the claim of dif-
ference that was shown to be valid only at finite
limit in our study. We have shown that the con-
tribution of van der Waals energy in a multi-wall
nanotube is powerful enough to make it hexag-
onal in shape but negligible in affecting the ax-
ial modulus. These insights will also help in de-
signing micromechanics model of materials made
from carbon nanotube or nanotube like structures.
In particular, we have calculated the mechanical
properties (young modulus, bending modulus and
twist modulus) of isolated and bundled nanotubes,
single and multi-wall nanotubes and single and
multi-wall carbon nanotube based tori. We also
report studies on thermal variation of moduli and
thermal expansion of nanotubes. The result ob-
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tained by first principles calculation based inter-
atomic potential agrees well with the experimen-
tal results.

1 Introduction

The plethora of definitions, procedures, tech-
niques, instruments, theories or the lack of these
has established the superiority of nanotubes.
However they also have raised questions for the
values observed, claimed trends and their depen-
dence on variation of external parameters. For
instance, the elastic modulus of carbon nanotube
has been calculated and measured by various ap-
proaches, ranging from values of several hundred
GPa (Yakobson, Brabec et al. 1996; Cornwell and
Wille 1997; Lu 1997; Gao, Cagin et al. 1998; Sal-
vetat, Briggs et al. 1999; Zhou, Duan et al. 2001)
few (Y>=1) TPa (Treacy, Ebbesen et al. 1996; Kr-
ishnan, Dujardin et al. 1998; Alford, Landis et al.
2005; Enomoto, Kitakata et al. 2006) to as high as
5.5 TPa (Yakobson, Brabec et al. 1996). A brief
inspection of Figure 1 and Table 1 gives a rough
idea of the scattered nature of the data available.

Apart from values, trends like variation of the
modulus with respect to the tube diameter also
shows conflicts (Cornwell and Wille 1997; Pop,
Mann et al. 2006). In evaluations of thermal
transport properties, we encounter values of ther-
mal conductivity reported as low as ~ 30 W/cm-K
(Che, Cagin et al. 2000; Pop, Mann et al. 2006)
and as high as ~ 600 W/cm-K (Berber, Kwon et
al. 2000; Klemens 2001), representing a factor
of 20 discrepancy. This difference is similar to
the scatter observed in evaluation of mechanical
properties. Results reported on the thermal ex-
pansion of coefficients of nanotubes are not free
of debate either. Promising technological applica-
tion potential for carbon nanotubes, hence, has re-
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Table 1: Axial elastic modulus of single-wall isolated carbon nanotubes.

Reference

Tensile Modulus

Method

(Cornwell and Wille
1997)

650 GPa (10, 10)

MD simulation using Tersoff - Brenner potential near
0K.T<0.005K

(Van Lier, Van
Alsenoy et al. 2000)

~ 1TPa (5, 5) and
9, 0)

ab initio Hartree-Fock 6-31 G basis set

(Popov, Van Doren et %’f =55eV Lattice dynamical model Born perturbation technique

al. 2000) was used to derive analytical expression of sound ve-
locities

(Gao, Cagin et al. | 640 GPa Molecular mechanics. Second derivative of energy

1998) with respect to strain

(Lu 1997) 563 GPa Empirical force constant model. Second derivatives
of energy, with respect to strain.

(Chang and Gao 2003) | ~ 1TPa Analytical model based on molecular mechanics ap-

proach. Force constants obtained from experimental
data of graphite.

(Sanchez-Portal, Arta-
cho et al. 1999)

ZL = 52¢V (10, 10)

DFT calculation with LDA approximation.

(Reich, Thomsen et al.
2002)

930 GPa(d=14 A)

First principle calculations, using LDA in DFT.

(Treacy, Ebbesen et al.
1996)

1.8 TPa (average of
11 samples)

Measuring amplitude of intrinsic thermal vibrations
by Transmission electron microscope (TEM)

(Alford, Landis et al. | 1.06 TPa LDA approach based on LCGTO.

2005)

(Xiao, Gama et al. | ~1TPa Structural mechanics model for defect free model
2005) SWNT. Modified Morse potential has been used.

(Krishnan, Dujardin et
al. 1998)

1.25 TPa (average
over 27 SWNT)

Measuring amplitude of intrinsic thermal vibrations
by Transmission electron microscope (TEM)

(Cai, Bie et al. 2004)

095 TPa (5, 0)
SWNT

Using Tersoff Brenner potential developed by from
DFT. Second derivative of energy.

(Yakobson, Brabec et
al. 1996)

5.5 TPa £ = 59¢V

Molecular mechanics using Tersoff Brenner potential

(Salvetat, Briggs et al. | 0.81 TPa Through exerting load by AFM on suspended nan-
1999) otube
(Lourie and Wagner | 2.8-3.6 TPa Micro Raman Spectroscopy

1998)

sulted in an exponentially increasing research re-
ports (Figure 2). It also has created the necessity
for sifting through these inconsistencies in intrin-
sic property values and have a clear understanding
of addressing these properties.

The theoretical methods(Shen and Atluri
2004) used to evaluate the elastic modulus
of CNT include, but are not limited to, first
principles(Sanchez-Portal, Artacho et al. 1999;

Reich, Thomsen et al. 2002) classical molecular
dynamics(Cornwell and Wille 1997), classical
molecular mechanics (Gao, Cagin et al. 1998),
empirical force constants model(Lu 1997) and
structural mechanics models(Xiao, Gama et al.
2005). Multi-walled carbon nanotube has been
modeled as multiple elastic cylindrical structures
to find the characteristics of wave (Xie, Han et
al. 2007). Vibration behavior using micropolar
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Figure 1: The Young modulus values reported in
14 different references (theory and experiments
are plotted together, to indicate the scatter men-
tioned in the text exist in both) for CNT. The x-
axis numbering corresponds to the sequence in
our citation.
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Figure 2: Number of articles over the past decade
on properties of carbon nanotubes, generated us-
ing the data from ISI Web of Science database ob-
tained by a set of appropriate keyword search (it
is not meant to be comprehensive).

theory has shown a decrease in fundamental
frequency with increase in aspect ratio (Xie
and Long 2006). Molecular mechanics based
finite element modeling has been done on carbon
nanotube using semi-empirical Brenner potential
(Theodosiou and Saravanos 2007). The potential
energy functions used to model the interactions

of atoms, includes Tersoff-Brenner potentials
(Cornwell and Wille 1997; Cai, Bie et al. 2004),
force fields developed from ab-initio calculations
of graphite (Gao, Cagin et al. 1998) or force fields
developed based on the experimental results of
graphite (Chang and Gao 2003). First principle
calculations also come with different flavors.
Most common ones are the use of methods
based on Hartree Fock theory (Van Lier, Van
Alsenoy et al. 2000) or the density functional
theory (Sanchez-Portal, Artacho et al. 1999;
Reich, Thomsen et al. 2002). Experiments which
explored the mechanical properties of nanotubes
include the use of transmission electron micro-
scope (Treacy, Ebbesen et al. 1996; Krishnan,
Dujardin et al. 1998; Enomoto, Kitakata et
al. 2006), atomic force microscope (Salvetat,
Briggs et al. 1999), micro Raman spectroscopy
(Lourie and Wagner 1998) and scanning electron
microscope (Yu, Files et al. 2000). Furthermore,
mechanical resonance method (Treacy, Ebbesen
et al. 1996; Krishnan, Dujardin et al. 1998),
scanning force microscopy method (Wong,
Sheehan et al. 1997; Falvo, Clary et al. 1998),
nanomanipulation (Yu, Files et al. 2000) are some
of the different methods used by the researchers
in experiments for nanotube property estimation.
Quite a few review papers (Thostenson, Ren et
al. 2001; Yakobson and Avouris 2001; Dong,
Gregory et al. 2002; Srivastava, Wei et al.
2003; Dresselhaus, Dresselhaus et al. 2004;
Ashrafi and Hubert 2006) have presented useful
discussions on carbon nanotubes, their intrinsic
properties, and their determination from theory
and experimental characterization methods.
There are suggestions that attribute the variation
of properties of nanotubes to factors like purity
of tubes, orientation, misalignment, etc. in
experiments. In theory, one can identify the use
of different definitions as a possible source of
scatter in properties.

In the following we have presented our findings
on mechanical and thermal properties of carbon
nanotube and nanotube like structures to get fur-
ther insight and address the existing discrepan-
cies. We assess the applicability of different defi-
nitions and show that a major part of the discrep-
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ancies have arisen from different ways of deal-
ing with the continuum theories at the nanoscale
level.

We first present the model systems used in these
simulations, followed by a description of the
methods and procedures used in this study. We
then present the results of our calculations on
thermo mechanical properties of isolated single-
wall carbon nanotubes, single-wall carbon nan-
otube bundles, multi-wall carbon nanotubes, sin-
gle and multi-wall carbon nanotube based tori.
We finally comment and derive conclusions from
these computational experiments on the proper-
ties of carbon nanotube.

2 Model Systems and Computational Meth-
ods

2.1 Model Systems

Most of our studies were conducted on single-
wall carbon nanotubes both in isolated and bun-
dled forms, either infinite or finite lengths. We
have constructed model with different radii and
chirality for a given (n, m)-pair. We have fur-
thermore conducted studies on multi-wall carbon
nanotubes mostly based on concentric (n, n) arm-
chair tubes, having interlayer spacing as ~ 3.4 A,
implying any double wall armchair CNT is to be
made from (n, n) and (n+5, n+5) tubes. In addi-
tion to the straight nanotubes we also conducted
extended study on single-wall and multi-wall car-
bon nanotube based tori structure as they are good
structures to explore bending modulus of carbon
nanotube based nanostructures.

2.2 Computational Methods

We have used three main methods in our work:
ab-initio methods based molecular mechanics;
classical force field based molecular mechanics
and classical molecular dynamics simulation.

The ab initio calculations have been performed in
the general framework of DFT (Hohenberg and
Kohn 1964; Kohn and Sham 1965; Payne, Teter
et al. 1992) using projector augmented wave
method (PAW) (Kresse and Joubert 1999) with
the generalized gradient approximation (GGA).
To account for the exchange correlation we em-
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ployed the exchange-correlation function due to
Perdew-Burke-Ernzerhof (PBE) (Perdew, Burke
et al. 1996). Kinetic energy cutoff of the elec-
tronic wave functions was taken as 600 eV. In-
tegrals over the Brillouin zone were summed on
a Monkhorst-Pack mesh (Monkhorst and Paack
1976) of 8x8x8 unless otherwise stated.

In molecular mechanics method we have used the
force field described in section 2.3. For structural
optimization (atomic positions and cell param-
eters) through minimization of energy we have
used conjugate gradient method. We fitted the
strain energy with respect to deformation and es-
timated the value of second derivative of energy
with respect to the strain variables. This yields the
values of the elastic constants on the basis of the
following Taylor series expansion of the energy E
in terms of strain €,

5 JE 1 & 9%
E(e)=Eo+Y | &+35 >, =———| &¢&j
) 0+i:1 €| l+2i.j:1 deidejly
(1)

Here Ey refers to the energy of the zero-strain
equilibrium configuration. Hence, one can de-
termine the value of elastic constants by calculat-

. 2 . .
ing a’Z,- Bi; provided that the higher order terms are

negligibly small due to applied small strains.

Molecular dynamics simulations were performed
under two different ensembles. For constant-
strain states we have used canonical ensemble
(NVT) and for constant stress simulations we
have employed constant pressure and constant
temperature (NPT) ensemble methods. In either
case equations of motion for atoms, Nose-Hoover
thermostat variable and the cell variables are iter-
atively solved to follow the trajectory of the model
system. Hence, we trace the dynamical evolution
the model systems under given constraints. By
keeping track of the microscopic properties of the
system with respect to time, we can evaluate dif-
ferent dynamic and equilibrium properties of the
system. Unless otherwise specified, the time step
used for all the molecular dynamics run was cho-
sen to be 1 femto-second (fs). Leapfrog Verlet al-
gorithm was used for the integration of equations
of motion.
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2.3 Force Field

In classical mechanics based calculations (molec-
ular mechanics and molecular dynamics), the po-
tential energy of a system is represented by an-
alytical functions, namely the interaction force
fields. The parameters of these functions are op-
timized so as to reproduce the fundamental prop-
erties, density, lattice parameters, vibrational fre-
quencies and the like. The functional forms are
based on quantum mechanical arguments (Exp-6
form for van der Waals interactions, Morse form
for bond stretch and harmonic form for angle
bending, periodic truncated Fourier series forms
for torsion). Hence, a force field is the mathemat-
ical expression that describes the dependence of
potential energy of a molecular system to that of
the atomic positions of its constituent atoms. The
energy of a system can then be written as:

E = Eyar +Enp (2)
Evap = Ep+Es+Er+E; 3)
Eng = Evpw +Ec 4
where:
E  =Total energy of the system

Evar, = Energy due to bonded interaction

Enp = Energy due to non-bonded interaction

Eg = Energy due to Bond stretching (two body)

E4s = Energy due to angle bending (three body)

Er = Energy due to torsion (four body)

E; = Energy due to out of plane configuration
(four body) or dihedral

Evypw= Energy due to van der Waals interaction

Ec = Energy due to Columb interaction.

In this particular work the force field used for all
the molecular dynamics and molecular mechanics
calculation was derived from ab-initio calculation
of graphite (Cagin, Gao et al. 2006). The contri-
bution of different components of the total energy
was computed as follows:

van der Waals Interaction:

Evdw :Dvdw(p_lz_p_ﬁ) (5)

Where p = r/r,, r, being the separation at mini-
mum energy between the two atoms.

Bond stretch energy:
Epona = Dp(x —1)° (6)

Where y = e~ ""~") with r;, being the equilibrium
bond distance.
Angle bending energy:

1
Eangle = Ekg(cos 6 —cos 6,)?

+kig(r1 —rig)(cos® —cos 6,)
+kag(r2—r29)(cos O —cos 6,)
+kia(ri—rie)(ra—r2e) (7)

where kg, kg, kyo and k., are the bond stretch and
stretch-bend force constants.
Dihedral energy:

Edinedral(9) = Vo +Vicos ¢ + Vi cos(2¢) (8)

where V), V| and V, are expansion coefficients for
the truncated Fourier expansion up to second or-
der. The details of the force field parameter values
are given elsewhere (Cagin, Gao et al. 2006).

3 Mechanical Properties of Carbon Nan-
otubes

3.1 Elastic Modulus of Carbon Nanotubes

In solid mechanics, Young’s modulus or Elastic
modulus gives a measure of the stiffness of a ma-
terial. It is defined by

_ Stress o F/Ap

= =_— = 9
Strain & Al/l ©)

This definition is used to find the elastic modu-
lus from molecular dynamics simulation of a sys-
tem. We can also determine the full elastic stiff-

ness matrix by applying the formal definition in
Voigt notation:

1 J%E

= — i j=1,...,6. 10
/ Voaeiaej hJ (10)

Single-wall Nanotube: We performed molecular
mechanics calculations on carbon nanotube struc-
tures, by applying strain to the model system.
For each fixed strain state, the atomic positions
were optimized and corresponding strain energy
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was evaluated. Subsequently, by using the sec-
ond derivative of potential energy, we estimated
the corresponding axial elastic constant. In the
bundle calculations the cross sectional area was
evaluated in a similar way as in reference (Gao,
Cagin et al. 1998). Figure 3 shows variation of
strain energy as a function of strain and associ-
ated fitting.
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Figure 3: Strain energy content for tensile and
compressive strains obtained from Molecular Me-
chanics calculations to determine the elastic mod-
ulus.

Validity of Force Field: Some of the disagree-
ment between our work and the values found in
literature lead us to calculate the axial modulus
through DFT and reinforce our confidence on us-
ing graphite based force fields on carbon nan-
otubes. These calculations were carried out with
a plane wave basis set. The axial modulus of a
(10, 10) SWNT bundle from the second deriva-
tive of the energy was estimated to be 605 GPa.
The value of second derivative of the energy with
respect to strain, 327’;, was found to have a value
of 56.8 eV/atom, which compared well to val-
ues in literature (Robertson, Brenner et al. 1992;
Sanchez-Portal, Artacho et al. 1999; Popov, Van
Doren et al. 2000; Dresselhaus, Dresselhaus et al.
2001). This agreement rules out the possibility of
force field being the source of any sort of discrep-
ancy. Furthermore, it was accepted that the force
field used to calculate SWNT properties through
molecular mechanics is well suited to do so as the
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elastic modulus found is comparable to that ob-
tained from ab-initio calculations.

3.1.1 Importance of Area definition at
nanoscale

We already have pointed out that the area of
the system on which the tensile and compressive
force is applied, has a significant role to define
the value of modulus. In order to emphasize the
significance of the cross sectional area of carbon
nanotube in the evaluation of axial modulus, we
now look and compare few different cases. Be-
fore we proceed here are few useful facts:

For a nanotube of a given chirality (n, m) the di-
ameter (in angstrom) is given by:

2.46
D= T n2+nm+m2

The interlayer thickness for graphite layer is 3.4
A, often used as the wall thickness for carbon nan-
otubes or the difference between two consecutive
walls in a multi-wall nanotube. This value will be
referred as‘t’.

The mean radius (“F2) of (10, 10) nanotube is
6.78 A that is approximately equals to 2t.

Area calculation for (10,10) isolated nanotube:

For cases where the isolated nanotube is assumed
as a thin shell, the area is computed as:

Al =n(ri+1)* —nr? =46.10n

Where r; represents the inner radius of the tube.

In many works this expression has further been
simplified to:

Ay =n(ri+1)* —r? = 2mrit(Cai, Bie et al. 2004;
Chandra, Namilae et al. 2004) = 34.54n

In the beam assumption, the area is taken to be:
A3=n(ri+1)>=7191n

Hence for the very definition of area, and the
same value of 327’;, the value of the reported mod-
ulus for identical cases can be widely different.
We have here left aside the fact that there might
even be disagreement in the value of thickness
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of the shell itself leading to even more diversity
in reported values. While our work uses inter-
layer spacing of graphite (3.4 A) as shell thick-
ness of nanotube, very different values like 0.66
A (Yakobson, Brabec et al. 1996),0.75 A (Tu and
Ou-Yang 2002) are also found in literature.

3.1.2 Predicting the elastic modulus

Elastic modulus of carbon nanotube is primarily
dependent on its bond and angle strengths. This is
mainly due to chemical bonding interactions and
these do not vary across different size and shape
of carbon nanotubes. Hence, the observed drastic
variations in reported values from theoretical cal-
culation are mostly because of the use of different
definitions of the cross sectional area. To further
emphasize the above claim a problem was formu-
lated on the basis of the available data of isolated
(10, 10) nanotube. Based on this data an attempt
was made to predict the modulus of other isolated
armchair nanotubes. The only assumption in de-
riving such an equation is that the modulus is dif-
ferent solely due to different area involved. Since
we know that the number of bonds and angles is
linearly related to the number of atoms in an in-
finitely long nanotube, the force required to strain
the system can be related accordingly. Hence for
an isolated (n, n) armchair single-wall nanotube
taking the assumptions into account we can show
that for beam approximation:

16 F(10,10)
v, =0 A nF0,10)
nF0,10)

10e7(0.68n+1.7)2
. I’lF(]O’]())(6.8—|—1.7)2
10814(10_]10)(0.68” + 17)2

2.5n
(10,10)m

an

And similarly for thin shell approximation:
16 F(10,10)

Y _ g . lOA(n,n) o nF(]O]O)

(nn) = € - € - IOSA(n,n)

_ nFuo,o) ((6.841.7)*—(6.8—1.7)%)

~ 104 10.10) (06874 1.7)2— (0.68n— 1.7)?)
. nF(1010)(136)(34)
- 10814(1010)(136)’1)(34)

=Yu0,100 (12)

Here we have taken 6.8 A to be the mean ra-
dius of a (10, 10) nanotube. Simultaneously
we calculated the effect of helicity and diame-
ter of carbon nanotube on its mechanical prop-
erties through molecular mechanics. In the fol-
lowing, Figure 4 clearly shows that the drastic
difference in reported mechanical property values
arise from the use of different area definition. The
beam choice for area definition shows substantial
decrease of modulus as the diameter increases.
Simple extrapolation of this assumption leads to
a zero value of modulus for infinite diameter, i.e.
single sheet of graphene.
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Figure 4: Axial Modulus of Single-wall Carbon
Nanotube.

From inspection of Figure 4, we observe the fol-
lowing:

1. Elastic modulus of carbon nanotube does not
depend on helicity of the tube. This is in
agreement with our expectation, as we men-
tioned earlier that the strength of C—C bond
and C—C-C angle are the primary factors in
determining the modulus that does not vary
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with helicity. Since the comparison is be-
tween (almost) same diameter tubes of arm-
chair and zigzag nanotube the area factor
does not make any difference here.

2. Using beam assumption of nanotube we see
a decrease in elastic modules as the tube di-
ameter increases.

3. Using a thin shell approximation of nan-
otube, we see that the diameter has almost
no effect on elastic modulus of nanotube.

4. Another conclusion clearly follows from the
points raised in #2 and #3; From the use of
two different area definitions, one may con-
clude presence of two different trends on the
influence of the diameter of nanotubes on
their elastic modulus. This is misleading.

5. Finally, we observe that the predicted value
from the equation 11 and 12 gives us good
match with the value of elastic modulus cal-
culated by molecular mechanics calculation
backing the claim that the major difference
in values is primarily due to the definitions
and less likely due to the physical properties
of the system itself.

3.2 Elastic Modulus of Multi-wall nanotubes

Similar to the calculations of single-wall nan-
otubes, we carried out molecular mechanics cal-
culations to find the young’s modulus of multi-
wall nanotubes bundles. We observed that the
multi-wall nanotubes have a greater young’s mod-
ulus than the single-wall nanotubes as found in lit-
erature (Sanchez-Portal, Artacho et al. 1999). We
carried out these calculations on multi-wall nan-
otubes with different radii (inner and outermost)
and different chirality. To assess the asymptotic
behavior, we have also calculated the elastic mod-
ulus of graphene structures with different number
of layers, i.e. the limiting case is graphite.

We also attempt to find the Young modulus for
an isolated multi-wall carbon nanotube assum-
ing a beam with layers (10, 10), (15, 15) and so
forth. This is similar to the derivation of equa-
tion 11 for the Young modulus expression with
a beam approximation for an isolated single-wall
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carbon nanotube. If total ‘m’ layers are assumed
in MWNT, with the innermost being (10, 10), we
can express the total force on the MWNT as the
summation of all the forces on each tube. In order
to calculate the cross sectional area needed to find
the Young’s modulus we consider the outer most
tube in the ‘m’ layers. Accordingly we can write,

&

YMWNTISO[ATEDS =0= K

Fm(2+(m—1)0.5)
-~ 2m(1.7)2(2(1 +m) +1)2

(13)
6.25m(m+3)
= YMwNTisoarep = W (10,10)50L47ED
(14)

This simple formula does not take into account the
inter layer van der Waals attraction and possible
effect of the radius of curvature of different walls.
However it does a good job in predicting the mod-
ulus values as evident from Figure 5. From equa-
tion 14 given above, we also find that as m — oo
the value of the modulus of a multi-wall nanotube
with (10, 10) tube being the innermost tube ap-
proaches a constant value:

6.25

Yywn TisoLaTED — 4 Y (10,10)1SOLATED, Beam Approximation

~ 1T Pa, using a value ~ 640GPa for ¥(j9,10)
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Figure 5: Axial elastic modulus of various multi-
wall carbon nanotube.

From Figure 5, the observed points are listed as
following:
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1. We observe that with increased number of
walls the modulus of the nanotube increases
and finally approaches close to ~ 1 TPa.

2. Thin shell approximation yields a value of ~
1 TPa independent of the number of tubes.

3. The predicted value for the isolated multi-
wall nanotubes matches well with calcu-
lations from molecular mechanics method
proving the validity of our assumption.

4. From #3 observation we also conclude that
the van der Waals interaction among the
tubes does not contribute much to the modu-
lus as our prediction did a good job without
taking that factor into account.

5. For isolated graphite sheets the modulus
value does not change with increasing num-
ber of layers, in agreement with our conclu-
sion in #4.

Structure of Multi-wall nanotube: We observed
another interesting fact from the molecular me-
chanics study of carbon nanotube. We find that
the minimized structure of the multi-wall nan-
otube in a bundle does not remain circular any-
more agreeing with experimental observations
(Ruoff, Tersoff et al. 1993). For more number
of walls the outer walls tend to take a shape of
hexagon. Figure 6 shows the hexagonal shape for
a tube made from (15, 15), (20, 20), (25, 25), (30,
30) and (35, 35) tubes. The transition from circu-
lar to hexagonal shape, while moving from inner
to outer walls, is clearly observed here.

This evolving hexagonal outer structure leads to
a more efficient packing of bundles of thicker
MWNT. Since nanotubes are widely used and an-
ticipated as one the most favorable candidates as
nanofillers in nanocomposites, this definitely is an
interesting finding. It may result in very different
surface and interface properties in nanocompos-
ite made from multi-wall nanotube with respect
to those made from single-wall nanotubes. The
tendency of the outer wall tubes to form a hexag-
onal structure is clearly due to a delicate balance
between the van der Waals forces acting between
the walls and strain energy induced due to curva-
ture. This tendency is the same tendency seen in

Figure 6: Optimized structures of a MWNT look-
ing down cylinder axis. The hexagonal shape
evolves so as to minimize the strain energy due to
curvature by enhancing layer-layer van der Waals
interactions. Force fields without van der Waals
interactions may miss this shape change.

large diameter single-wall carbon nanotube which
form a collapsed stable structure as shown earlier
by one of us (Gao, Cagin et al. 1998).

3.3 Twist/Torsion modulus of Carbon Nan-
otubes

Torsion modulus or twist modulus is another im-
portant property in assessing mechanical strength
of a nanotube. In reality, the nanotube is more
likely to be in a twisted form than otherwise. Tor-
sion modulus was calculated for isolated carbon
nanotube assuming it to be a thin wall hollow
shaft. The strain energy in torsion in that case is
given by:

GJ6?
2L

Where

U:

15)

J=2nrt

U= Strain Energy

G= Torsion modulus

0 = Twist Angle in radian

r = mean radius of the shaft wall
t = thickness of the tube

L = Length of the tube
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We will use two approaches in determining the
twist modulus: tubes with finite length and infi-
nite length (through the use of periodic boundary
conditions in axial direction).

3.3.1 Single-wall nanotubes

Finite length: Non-periodic system of nanotube
was built. Keeping one end fixed the other end
was strained in terms of twist in an increment of
2°. The twist was applied both in clockwise and
anticlockwise direction. We fitted the strained
energy calculated and different amount of twist
to equation 15. This gave us the twist modu-
lus for nanotubes. Figure 7 gives a comparison
of the modulus obtained of (almost) same diame-
ter of zigzag and armchair nanotubes of different
lengths.

Conclusions drawn from the observation of figure
7 are:

1. The twist modulus decreases with increasing
length of the tube as expected.

2. Zigzag nanotubes shows a higher twist mod-
ulus than armchair nanotubes agreeing with
the available literature findings (Wang, Wang
et al. 2004; Alford, Landis et al. 2005)

3. As the length of the tube is increased the
modulus tends to take an asymptotic nature
and tries to converge to a value in both types
of nanotubes.

4. The difference between the modulus of two
types of nanotubes with the same diameter
decreases as the length of the tubes increase.

We further examined the dependence of modulus
on the diameter of the tube. Figure 8 and 9 show
the diameter dependence of the torsion modulus
of different lengths of nanotubes (armchair and
zigzag).

We observe contrary to (Wang, Wang et al. 2004)
and in agreement with (Popov, Van Doren et al.
2000; Alford, Landis et al. 2005) that the diame-
ter has hardly any effect on torsion modulus.

Infinite single-wall nanotube:

We extended our study to investigate the twist
modulus of an infinite isolated nanotube through

CMC, vol.7, no.3, pp.167-189, 2008

the novel use of periodic boundary conditions im-
posed in z-direction. In a periodic model, due
to presence of periodic image atoms the applica-
tion of twist is entirely different than how its finite
length counter part was dealt. The whole process
of twisting an infinite isolated nanotube (m, m)
and finding the torsion modulus from it consisted
of the following steps:

1. Build the model

2. Select atoms on one boundary of the cell in
z direction.

3. Rotate the selected atoms by %”n (only dis-
crete rotations, based on m)

4. Fix the rotated atoms and also fix the atoms
on the other boundary of the unit cell

5. Maintaining the above constraints relaxed
the structure through minimization by ab ini-
tio calculations based force fields.

6. Recalculate the bonds at the boundaries and
reformed to give the desired twist to the nan-
otube structure.

7. A final minimization of the structure with all
moveable atoms.

The final twisted nanotube, built on the above pro-
cedure is pictured in figure 10 when viewed from
front and looked into the z direction.

Figure 11 shows the potential energy profile ob-
tained for a 49.2 nm long twisted tube as a con-
tour plot. The procedure described above was re-
peated for different values of ‘n’ and figure 12 was
obtained while plotting the energy of the strained
tube with twist angle. The straight line obtained
was fitted to equation 15 to evaluate the twist
modulus of the tube. Figure 12 shows the en-
ergy vs. torsional-strain variation obtained from
the calculation.

Calculation of torsion modulus in this method is
then carried out for different armchair and zigzag
SWNT’s with different set of c-axis values (‘z’ di-
rection). The results obtained are summarized in
Table 2. The modulus found agrees reasonably
with the values reported in literature (Lu 1997;
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Figure 7: Variation of twist modulus for zigzag and armchair CNTs for two different diameters (a) d=1.35
nm, (b) d=2.04 nm as a function of finite length of the tubes.
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Table 2: Torsion Modulus of infinite single-wall nanotube.

SWNT | Torsion Modulus (GPa) | Length of periodic cell (nm)
(5.5) 452.85 49.2
(5.5 462.33 98.4
(10,10) 463.48 24.6
(10,10) 466.77 49.2
(15,15) 465.10 24.6
(15,15) 437.8 73.8
(10,0) 464.83 42.61
(15,0) 462.47 42.61
(20,0) 460.46 42.61
500 |-
'—_:‘_,i P
I 2 7.74
400 7.73
i 7.72
fimesrf 7.71
- F—— 7.7
' — E
N gﬁgé
0} = £
s | 763
[ 7.62
100 f- et i
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Figure 10: Axial and lateral views of a twisted | : e e s o . |
carbon nanotube. 60 40 20 0 20 40 60

Alford, Landis et al. 2005; Xiao, Gama et al.
2005).

Conclusions made from observation of Table 2 are
listed as following:

1. As expected from the observations of the
twist modulus study of finite length nan-
otube, the torsion modulus of an infinite long
nanotube converges to a value irrespective of
the chirality and diameter of the tube.

2. The claim of higher twist modulus of zigzag
nanotube with respect to armchair nanotube,
based on finite limit calculations is not valid
in the infinite limit as twist modulus of both
armchair and zigzag nanotube converges to
same value

3. The converged value of the twist modulus for
both type of nanotube is roughly 460 GPa.

Figure 11: Potential Energy (kcal/mol) content
contour plot for a twisted nanotube determined
for a configuration from molecular dynamics at
T=300 K. The length of tube is 49.2 nm.

3.3.2  Twist Modulus of Multi-wall carbon nan-
otube

Finite length:

Keeping in mind that nanotubes used for practical
purposes are of high aspect ratio, infinite length
calculation results are more important than the fi-
nite ones. However due to the approach imple-
mented above, not too many calculations are pos-
sible for multi-wall nanotube. Rotation by same
angles of more than one tube and rearrangements
of bonds at the same time at the boundary leaves
us with very few choices. From the observations
made for single-wall nanotube behavior with ap-
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Figure 12: Variation of Energy with respect to
twist angle for (10, 10) CNT.

plied torque, the lengths of the multi-wall nan-
otube considered were higher. Higher length fi-
nite length nanotube gave results close to infinite
ones. Table 3 summarizes the results obtained.
The notation n_m_p MWNT stands for a MWNT
with inner tube (n, n) and the outer tube (m, m)
and the cell length in z-axis is p times the unit cell
length (2.46 nm). It is important mentioning here
that we assumed a no slip condition between the
tubes. All the tubes in a multi-wall nanotube are
rotated by the same angle when a torque is ap-
plied.

A quick comparison of these few data tells us that

1. Adding another wall does not affect the twist
modulus and the values are close to those
of infinite length single-wall nanotube twist
modulus.

2. We observe no dependence of diameter and
number of walls on the twist modulus. It
is expected that this value should also be
similar to graphite sheet shear modulus, as
tubes with very big diameter and large num-
ber of walls can be approximated as layer of
graphite sheet. To verify, elastic constants
of graphite sheet were also evaluated by the
same force field and the shear modulus was
found to be 457.63 GPa, comparable to the
values obtained above.

3.4 Structure, Mechanics and Stability of Car-
bon Nanotori

To understand the energetic related to nanotube
bending we looked into nanotori structures made
of carbon. Nanotorus is a nanotube bended into
a ring. We constructed nanotori and studied its
strain energies, which gave us a measure of the
bending stiffness of a nanotube. One of the earli-
est computations on this property was conducted
and presented at Foresight conference by Caltech
group (Gao, Cagin, Goddard) in nineties.

Armchair carbon nanotube of different length and
radius was made into a circular tube. The struc-
ture obtained was then minimized and the strain
energies of the tubes were determined. Below,
we have given a configuration obtained through
minimization of a (10, 10) nano-torus with a
mean radius = % = 7.83nm. We observe the
emergence of kinks in the minimized structure.
While tension prevails in the outer wall, the in-
ner wall remains in compression. This leads to
development of kinks in the inner wall to localize
the strain energy. We will later show that heat-
ing of nanotori sometimes can help in annealing
kinks to homogenize the location and number of
kinks. Thermal annealing distributes the kinks
more evenly throughout the structure and helps
get the structure out of local minima to an ener-
getically more favorable structure. One such kink
is zoomed from the above-obtained structure and
given below in figure 14.

As seen in figure 14 the circular cross section
becomes more oval sized due to brazier effect
(Falvo, Clary et al. 1997). The narrowest cross
section approaches close to the inter layer spac-
ing of graphite which is 3.4 A. As observed in fig-
ure 15, those are the regions with high energies.
Kinked carbon nanotubes has also been stud-
ied using bond-order potential energy function
and self-consistent tight-binding scheme (Bren-
ner, Shenderova et al. 2002).

Table 5 gives the strain energies of different
nanotori calculated using the energy of infinite-
straight nanotube as reference. Hence the energies
correspond to strain energy is due to bending only.
We observe from the strain energies obtained, that
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Figure 13: Nanotori of (10, 10) nanotube. Figure 14: Kink in Nanotori.
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Figure 15: Contour of Potential Energy (kcal/mol) of SWNT (10, 10) Nanotori.

Figure 16: Smoother structure of (15, 15) nanotori with radius from left R=7.83 nm, 11.745 nm and
15.66nm.
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Table 3: Twist modulus of finite length MWNT.

MWNT Length of the tube (nm) | Torsional Modulus (GPa)
10_15_25 6.15 471.77
10_15_50 12.3 469.03
15_20_25 6.15 472.58
15_20_50 12.3 469.51
10_15_20_25 6.15 472.45
10_15_20_50 12.3 469.52

Table 4: Strain Energy of Single-wall nanotori.

Nanotube | Mean radius of Nanotori | Energy/atom | Strain Energy (AE)
(nm) (Kcal/mol) (Kcal/mol)

(10,10) 1.9576 8.1676 5.291
(10,10) 3.9152 5.4987 2.6220
(10,10) 7.83 4.1936 1.3169
(10,10) 11.745 3.8910 1.0143
(10,10) 15.66 3.5031 0.6264
(10,10) 23.49 3.1873 0.3106
(10,10) 31.32 3.063 0.1863
(10,10) 39.15 3.0087 0.1319
(10,10) Infinite 2.8767 0
(15,15) 7.83 3.5204 1.3034
(15,15) 11.745 3.182 0.9649
(15,15) 15.66 3.021 0.8039
(15,15) 23.49 2.7699 0.5528
(15,15) Infinite 22171 0
(20,20) 7.83 3.0076 1.0275
(20,20) 11.745 2.818 0.8379
(20,20) 15.66 2.7451 0.765
(20,20) Infinite 1.98 0

longer tube and hence nanotori with larger radius
are more easily formed than the shorter ones as
expected. Similarly we observe that nanotubes
with bigger diameter are easier to bend into nan-
otori than their shorter diameter counterpart of
same length. Given in figure 16 are the minimized
structures of (15, 15) SWNT nanotori. Dimin-
ishing number of kinks are observed as we move
from lower to higher radius nanotori as expected
due to reduction in strain energy.

Figure 17 shows an exponential decay of strain
energy with increasing radius of the nanotori. We
see that after a certain radius, around 20 nm the
curve becomes asymptotic and we expect that it
is around this point onwards the appearance of

kinks are almost negligible. This observation goes
well with the findings in (Cagin, Gao et al. 2006)
where it was found that for (10, 10) nanotori with
radius more than 18.83 nm the stable structure
is smooth nanotori. Fitting with an exponential
function yielded the following relationship:

E =7.66exp(—r/4.52) (16)

where E and r are in Kcal/mol-atom and nm re-
spectively. From equation 16, we find that the
rate of change of strain energy per atom becomes
negligible (less than 0.026 Kcal/mol—-atom) when
the torus radius becomes greater than 18.83 nm.
This radius is the limiting value above which the
stable structure of the nanotori becomes kink-free
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and smooth. However the present study does not
look into the possibility of having both stable and
kinked structure of nanotori that has a radius be-
tween 10.03 and 18.83 nm as pointed out in the
same work.

Figure 17 when redrawn in a different manner as
in figure 18, i.e. with respect to curvature, the
slope of the linear fit obtained, is then a mea-
sure of the bending modulus of a nanotube. In
this manner, we have obtained the bending mod-
ulus for (10, 10) nanotube as 305 GPa. The ini-
tial points from the above figure were discarded
as the strain energy obtained at such small radii
is also influenced by the presence of kinks other
and hence will lead improper values for bending
modulus of nanotubes.

3E(Kcal/mol-atom)

Radius (nm)

Figure 17: Variation of strain energy with radius
of (10, 10) nanotori.

In other works on nanotori, Huhtala et. al (Huh-
tala, Kuronen et al. 2002; Huhtala, Kuronen et al.
2002) looked into minimum energy structure and
thermal stability of large nanotori structures us-
ing Brenner potential using molecular dynamics
simulation. Potential energy of the structures was
monitored to determine the relation between the
critical buckling diameters with that of the nan-
otori diameter. The strain energy of the tubes
per atom basis was found to be linearly related
(increasing) when the tube diameter is approxi-
mately less than that of a (10,10) tube. Cagin et
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Figure 18: Strain Energy of Nanotori proportional
to inverse of radius squared.

al (Cagin, Gao et al. 2006) have also looked into
the problem of determining the critical diameter
for smooth single-wall nanotorus and the bending
modulus. They found that nanotori could exhibit
more than one stable structure within the thermal
fluctuations, which are thermally equivalent.

Multi-wall nanotube nanotori:

With mean nanotori diameter (7.83 nm), a triple
wall nanotori from (10, 10), (15, 15) and (20, 20)
nanotubes and two double-wall nanotori from (10,
10), (15, 15) and (15, 15), (20, 20) nanotubes
were constructed. Optimization of their energy
and structures using molecular mechanics meth-
ods gave us figure 19. We observe that the kinks in
these structures emerge almost in parallel to each
other on each wall. Table 5 gives the values of the
strain energies obtained for the double wall nan-
otori made from (10, 10) and (15, 15) nanotubes.

The strain energies of multi-wall nanotori were
found to be higher than those of single-wall nan-
otori. This is expected, as the presence of inter
wall van der Waals forces restricts the freedom of
all the atoms on different walls to move and shift
into a less-strained configuration. The potential
energy contour plot (Figure 21) shows that the in-
ner tube has higher energy which is expected due
to the constraint put by the outer wall on its move-
ment.

Figure 20 shows that adding more walls increase
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Diameter = 7.83 nm
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Figure 19: MWNT nanotori. Figure 20: Strain energy of MWNT nanotori.
Table 5: Strain Energy of multi-wall nanotube.
Radius (nm) | Energy per atom (Kcal/mol) | Strain Energy per atom (Kcal/mol)
7.83 4.01 2.42
11.745 3.15 1.55
15.66 2.89 1.29
Infinite 1.60 0.0
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Figure 21: Potential Energy Contour in a MWNT Nanotori.
the strain energy of nanotori. However for same Liu et al. (Liu, Zhang et al. 2005; Liu, Zhang et
number of walls, it seems that larger the outer tube al. 2005) performed atomistic simulations of de-
diameter, lesser will the strain energy be. This is fect free single and multi-wall nanotori. In their
along the same lines with the result obtained for studies, they have concluded that torsion helps to
nanotori of a single-wall nanotube. reduce the strain energy of single-wall nanotori;
Twisted Nanotori: in contrast it tends to destabilize multi-wall nan-

otori. The magnitudes of twists applied to the
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tubes were multiples of 27. These values, given
the mean torus radius, are somehow larger than
usual. In the present work, we also have looked
into the behavior of twisted nanotori. The twist
in this case was given in small increments, integer
multiples of {i; (least possible unit value dictated
by (10,10)-tube) as opposed to the above study.
Nanotori made of (10, 10) SWNT was constructed
with a nanotori diameter of 46.98 nm. Twists of
different angles were given to the structure (by
rearrangements of bonds as torus constructed by
identifying ends). Table 6 gives the values of the
strain energies obtained.

Since the above table is based on single nanotori,
the effect of bending is same in all the cases.
Hence, we expect that the strain energy would be
directly proportional to the square of the angle by
which it was twisted. This is clearly observed in
Figure 22.

4 Thermal Properties of Nanotubes

4.1 Effect of Temperature on axial modulus of
Single-wall nanotube

All molecular mechanics and density functional
level of theory results in this work do not take into
account the effect of temperature. However in re-
ality it is of utmost importance to know the influ-
ence of temperature, as very rarely an application
would be used at very low temperatures. Temper-
ature effect on stress-strain behavior, and result-
ing axial modulus of (10, 10) nanotube was stud-
ied using molecular dynamics. Simulations were
carried out from T=100 K to T=700 K in incre-
ments of 100 K. At each temperature a zero stress
simulation was followed by simulations at 2, 4 6,
and 8 GPa, tensile and compressive stresses along
c-axis. The constant temperature constant stress
(NPT) MD simulation data is collected over 400
picoseconds for calculating the resulting com-
pressive and tensile strain to determine the elastic
modulus. The result for axial modulus vs. temper-
ature is plotted in Figure 23. We observe almost a
linear thermal softening effect in the studied tem-
perature range, approximately with a slope of 26
MPa/K.

As we have observed earlier that elastic modulus
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Figure 22: Strain energy of a twisted (10, 10) nan-
otori for same radius and different angles.
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Figure 23: Effect of temperature on axial elastic
modulus.

in axial direction for nanotube does not depend
on the chirality, similar temperature dependence
can be expected for nanotubes of other chirality.
The temperature coefficient of elastic modulus 26
MPa/K implies a 2.6 GPa decrease over a 100K
operation range (around 0.3% of the value), which
is considerably small. Hence for all practical pur-
poses one can safely assume the elastic modulus
of nanotube as constant in presence of other more
sensitive parameters, alignment, defects, impuri-
ties, etc.



Mechanical and Thermal Properties of Carbon Nanotube Based Nanostructures

Table 6: Strain Energy of twisted nanotori.

185

Nanotube | Radius | 6 (Degrees) | Energy per atom | Strain Energy per atom Strain Energy
(nm) (kcal/mol) (Bending plus torsion) | per atom (Torsion)
(kcal/mol) (kcal/mol)

(10,10) | 23.49 0 3.1873 0.3106 0
(10,10) | 23.49 36 3.1878 0.3111 0.0005
(10,10) | 23.49 72 3.1946 0.3179 0.0073
(10,10) | 23.49 108 3.2088 0.3320 0.0215
(10,10) | 23.49 144 3.2376 0.3608 0.0503

4.2 Thermal expansion of nanotubes and nan- 1.3384

otube bundles

Carbon nanotubes are deemed to show negligible 1.3324

expansion on heating. To validate this assessment, g

we have chosen a (10, 10) carbon nanotube bun- E 1326

dle consisting 1600 atoms and performed molecu- E

lar dynamics simulation under atmospheric pres- g 1.320

sure conditions at temperatures starting 7 = 100K o

to I = 700K with increments of 100K. Figure 1314 Y=-204E-5X +1.33

24 shows the thermal expansion in axial direc-

tion. It is obvious that there is negligible ex-
pansion over 600 K range. The linear thermal
expansion coefficient for (10, 10) tube, assum-
ing constant thermal expansion was calculated to

be: o = % g—#
sonably with literature (Maniwa, Fujiwara et al.
2001; Li and Chou 2005).
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Figure 24: Thermal expansion of nanotube in ax-
ial direction.

We determined the variation of density, volumet-
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Figure 25: Density variation of SWNT bundle

with temperature.

ric thermal expansion and linear expansion in
a- or b- axis directions. The off axis thermal
coefficient expansion obtained from the relation
B = £5% where ¥, is volume expansion coef-
ficient and o is axial expansion coefficient, was
9.6 x 107°/K. This is larger than axial linear ex-
pansion by a factor more than 7. This is under-
standable since it is essentially a result of the in-
creased anharmonicity in tube-tube van der Waals
interactions.

4.3 Kinks in Nanotori as Local Strain Energy
Sinks/Sources

Disappearance of kinks upon heating:

To study the rich configurations that result due to
presence of kinks as in Cagin et al (Cagin, Gao
et al. 2006), we have performed molecular dy-
namics simulations on a nanotori of (10, 10) nan-
otube with a mean radius of 7.83 nm. We per-
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Figure 26

formed a 50-ps constant temperature simulation
at T=300 K. We observe that the structure resides
in a metastable state with higher number of kinks.
Thermal fluctuations help overcoming the barriers
between N and N-1 kink structures after around
40-45 ps. The sequence in Figure 26 demonstrates
this process.

We observe that a kink on the middle left portion
of the ring as gradually disappeared from figure
26(a) to figure 26(d) as indicated. The time vari-
ation of the potential energy in Figure 27 appar-
ently shows the energy drop pointing the anneal-
ing of one of the kink-defects.

The time span involved in such drop is also quite
large, so the structure remains in one of the N-
kink meta-stable state for almost 40 ps. We
have calculated the amount of potential energy as-
sociated with this transition is ~ 200 kcal/mol.
The model structure studied contains 8000 atoms.
Hence, the corresponding change in potential en-
ergy per mol atoms only, W = 37.5cal. If
we compare this with the mean kinetic energy
content of an atom at 300K, RT ~600 cal/mol.
Clearly, the barrier height per atom mol is within
the variance of kinetic energy per atom at room
temperature. Hence, we show that thermal fluctu-
ations are strong enough to help the structure get
out of metastable states local minima and move to
a favorable structure with fewer kinks.

5 Concluding Remarks

We have evaluated mechanical and thermal prop-
erties of carbon nanotube and nanotori in the
present work to gain insight of structure prop-

41200
41000
40800
40600
40400
40200

40000

Potential Energy (kCal/mol)

39800

39600

Time (ps)

Figure 27: Potential energy profile during kink
disappearance.

erty relationship of nanotube. We observed that
the definition of area used for Young’s modulus
calculation of nanotube is non-trivial and can be
the source of difference by a significant factor. It
might also be responsible for the different trends
reported in literature. On this basis, we have come
up with equations that address discrepancies both
in values and trends of axial modulus. We also
find that the van der Waals forces have the least
significance in the strength of multi-wall nanotube
but it can govern the structure of the outer shells.
This results in a hexagonal structure with higher
packing efficiency and hence, a denser system. By
applying torsion to an infinite length nanotube in
a novel way, we find that the claim of higher twist
modulus of zigzag nanotube relative to its arm-
chair counter part in the infinite limit is not valid.
The effect of temperature on nanotube mechan-
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ical properties was found to be minimal and for
design of nanotube-based materials the tempera-
ture effect on its intrinsic properties can be ne-
glected if the operational range is a few hundred
degrees. Importance of micromechanics model-
ing at interface of composites is well known (S.
Tchouikov, Nishioka et al. 2005). Similarly the
insights gained in this study can be incorporated
in designing composite materials made from nan-
otube. Since all the nanotube structure used were
defect free in this study, we expect these results
to be the ideal ones and expect some deviations in
reality, due to more pronounced effects of topo-
logical defects, impurities, and alignment defects
in bundles (Che, Cagin et al. 2000; Nasdala, Ernst
et al. 2005; Chakrabarty and Cagin 2007).
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