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A Time-Marching Algorithm for Solving Non-Linear Obstacle Problems
with the Aid of an NCP-Function

Chein-Shan Liu1

Abstract: Proposed is a time-marching al-
gorithm to solve a nonlinear system of com-
plementarity equations: Pi(x j) ≥ 0, Qi(x j) ≥
0, Pi(x j)Qi(x j) = 0, i, j = 1, . . .,n, resulting from
a discretization of nonlinear obstacle problem.
We transform the above nonlinear complemen-
tarity problem (NCP) into a nonlinear algebraic
equations (NAEs) system: Fi(x j) = 0 with the aid
of the Fischer-Burmeister NCP-function. Such
NAEs are semi-smooth, highly nonlinear and usu-
ally implicit, being hard to handle by the Newton-
like method. Instead of, a first-order system of
ODEs is derived through a fictitious time equa-
tion. The time-stepping equations are obtained
by applying a numerical integration on the resul-
tant ODEs, which are derivative-free and do not
need the inverse of any matrix. The computa-
tional cost is thus greatly reduced. The numerical
examples of Bratu, von Karman and other elliptic
equations are used to demonstrate that the new fic-
titious time integration method (FTIM) is highly
efficient to calculate the obstacle problems.

Keyword: Nonlinear Obstacle Problem, Non-
linear complementarity problem, Nonlinear alge-
braic equations, Iterative method, Elliptic equa-
tions, Fictitious time integration method (FTIM)

1 Introduction

Let Ω ∈ R
d be a given domain. The obstacle

problem consists in finding the equilibrium posi-
tion of an elastic membrane subject to an external
force f and an obstacle ϕ; see, e.g., Rodrigues
(1987). Hence, the infinite-dimensional problem
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is to minimize the total energy

E(u) =
∫

Ω

(
1
2
‖∇u‖2 − f u

)
dx, (1)

such that u belongs to the following cone:

K = {v ∈ H1
0 (Ω)|v ≥ ϕ a.e. in Ω}. (2)

The optimality conditions for this optimization
problem lead to a variational inequality of finding
an element u ∈ K, such that
∫

Ω
∇u ·∇(v−u)dx ≥

∫
Ω

f (v−u)dx, ∀v ∈ K. (3)

Under a weak regularity condition, this is equiva-
lent to a complementarity formulation:

−Δu ≥ f , ∀x ∈ Ω, (4)

u ≥ ϕ, ∀x ∈ Ω, (5)

(−Δu− f )(u−ϕ) = 0, ∀x ∈ Ω, (6)

u = 0, ∀x ∈ ∂Ω. (7)

The coincidence set of this obstacle problem is
defined as

ω = {x ∈ Ω|u(x) = ϕ(x)}, (8)

and the boundary of ω is a free boundary not
known a priori [Freidman (1982); Freidman and
Phillips (1984); Kinderlehrer and Stampacchia
(1980)]. The set ω is rather complex as shown
by Caffarelli (1998).

We should stress that the obstacle problem in
Eqs. (4)-(7) is much difficult than the Poisson
problem of Δu = − f , of which there are many
numerical studies, like as, Wordelman, Aluru and
Ravaioli (2000), Tsai, Lin, Young and Atluri
(2006), and Tsai (2008).
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The quadratic programming and linear comple-
mentarity methods for solving certain simple ob-
stacle problems have been well documented. Ob-
stacle problems that lead to mixed NCPs in-
clude the obstacle Bratu problem [Hoppe and
Mittelmann (1989); Miersemann and Mittelmann
(1989)], and the obstacle von Karman problem
[Yau and Gao (1992)]. Typically, these problems
are formulated in an infinite-dimensional func-
tion space and their discretizations could easily
lead to finite-dimensional problems of very large
size. Numerical solution of the discretized obsta-
cle Bratu problem is discussed by Chen and Man-
gasarian (1996), and several others.

Apart from the above variational inequalities
problem of elliptic equation, there were rich
sources for complementarity problems. A gen-
eral complementarity problem is to find a solution
x ∈ R

n of the following complementary trios sys-
tem:

P(x)≥ 0, Q(x) ≥ 0, PTQ = 0, (9)

where P,Q ∈ R
n denote vector functions with

Pi and Qi their components. Many applications
from engineering sciences, economics, game the-
ory etc. lead to problems of this kind; see Fer-
ris and Pang (1997) for a survey. Most algo-
rithms for the solution of complementarity prob-
lem are based on a suitable reformulation either as
a system of algebraic equations, as an optimiza-
tion problem, or as a fixed-point problem, etc.
We refer the interested reader to the survey paper
by Harker and Pang (1990) for the basic ideas of
some algorithms. In fact, many of these reformu-
lations can be obtained for more general mixed
complementarity problem. The new method in
this paper is based on a reformulation of the com-
plementarity problem (9) as a system of nonlinear
algebraic equations (NAEs):

F(x) = 0, (10)

where F ∈ R
n is defined componentwise by

Fi(x) := φ (Pi(x),Qi(x)) (11)

for some mapping φ : R
2 �→R having the property

of

φ (a,b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0. (12)

Clearly, this property guarantees that a vector x ∈
R

n is a solution of the complementarity problem
(9) if and only if x solves the equations system
(10). Applying Newton’s method to system (10)
then leads to one class of semismooth methods;
see Chen, Chen and Kanzow (2000), De Luca,
Facchinei and Kanzow (1996, 2000), Facchinei
and Kanzow (1997), Jiang, Fukushima, Qi and
Sun (1998), Jiang and Qi (1997), Ulbrich (2001),
Yamashita and Fukushima (1997), and Ito and
Kunisch (2007) for some references. Depending
on the choice of the mapping φ , different methods
with different properties can be obtained. Some
of these methods have been discussed in detail by
Kanzow (2004).

Most semismooth methods have a very strong the-
oretical background and seem to be quite reliable
and efficient also from a numerical point of view,
at least when an exact Newton-type method is ap-
plied to the system (10). However, in the large-
scale case, we may not be able to find the exact
solution of the corresponding linearized equation.
There are other methods to solve the NCPs, like as
smoothing or non-smoothing Newton method [Qi
and Sun (1993); Taji and Miyamoto (2002)], and
homotopy method [Watson (1979)]. Usually, the
resulting NAEs from the equivalent formulation
of NCP-function are non-smooth, highly nonlin-
ear as well as implicit, and it is desired to develop
more efficient method to calculate the solutions.

For the following algebraic equations:

Fi(x1, . . . ,xn) = 0, i = 1, . . .,n, (13)

the Newton method is given by

xk+1 = xk − [B(xk)]−1F(xk), (14)

where we use x := (x1, . . . ,xn)T and F :=
(F1, . . .,Fn)T to represent the vectors, and B is an
n × n matrix with its i j-th component given by
∂Fi/∂x j.

Newton method has a great advantage that it
is quadratically convergent, however, it still has
some drawbacks. Some quasi-Newton methods
are thus developed; see the discussions by Broy-
den (1965), Dennis (1971), Dennis and More
(1974, 1977), and Spedicato and Huang (1997).
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Davidenko (1953) has developed a new idea of
homotopy method to solve Eq. (13) by numeri-
cally integrating

ẋ(t) = −H−1
x Ht(x, t), (15)

x(0) = a, (16)

where H is a homotopic vector function, for ex-
ample, H = (1−t)(x−a)+tF(x), and Hx and Ht

are the partial derivatives of H with respect to x
and t. This theory is later refined by Kellogg, Li
and Yorke (1976), Chow, Mallet-Paret and Yorke
(1978), Li and Yorke (1980), and Li (1997). At
the same time, Hirsch and Smale (1979) also de-
rived a continuous Newton method governed by
the following differential equation:

ẋ(t) = −B−1(x)F(x), (17)

x(0) = a. (18)

It can be seen that the ODEs in Eqs. (15) and (17)
are difficult to calculate, because they all include
an inverse matrix. The monographs by Allgo-
wer and Georg (1990) and Deuflhard (2004) are
devoted to the continuation methods for solving
NAEs. Below we will develop a new ODEs sys-
tem, which are equivalent to the original equation
(13).

2 A fictitious time integration approach

2.1 Transformation of NCP into an algebraic
equations system

The NCP under some conditions can be trans-
formed into other mathematically equivalent
problems, like as algebraic equations and opti-
mization equations. Let x be a solution of an NCP,
that is, x≥ 0, F(x)≥ 0, and xF(x) = 0. Obviously,
it is equivalent to that x is a solution of the mini-
mum problem: min(x,F(x)) = 0. The function φ
is said to be an NCP-function: if φ : R

2 �→ R and
φ (a,b) = 0 iff a ≥ 0, b ≥ 0, ab = 0.

In addition the minimum function there are many
other NCP-functions. In this study we will
employ the Fischer-Burmeister [Fischer (1992)]
NCP-function:

φFB(a,b) =
√

a2 +b2 − (a+b). (19)

Thus for a general NCP of Eq. (9), we write it to
be

Fi = φFB(Pi,Qi) =
√

P2
i +Q2

i − (Pi +Qi) = 0,

i = 1, . . .,n. (20)

Up to now one of the most powerful approaches
that has been studied intensively is to reformu-
late the NCP as a system of NAEs [Mangasar-
ian (1976); Yamashita and Fukushima (1997)],
or as an unconstrained minimization problem
[Mangasarian and Solodov (1993); Yamashita and
Fukushima (1995); Chen, Gao and Pan (2008)].
Such a function that can constitute an equivalent
unconstrained minimization problem for the NCP
is called a merit function. In other words, a merit
function is a function whose global minima are
coincident with the solutions of the original NCP.
For constructing a merit function, the class of
NCP-functions serves an important role. Some
more depth studies of the NCP-functions and
merit functions can refer the papers by Facchinei
and Soares (1997), Sun and Qi (1999), Chen
(2006, 2007), and Chen and Pan (2008).

2.2 Transforming into an ODEs system

Recently, derivative-free methods have attracted
some attentions as can be seen from Yamada,
Yamashita and Fukushima (2000), Chen (2006),
Chen and Pan (2008), and Chen, Gao and Pan
(2008), which do not require the computation of
derivatives of the given functions F. Derivative-
free methods, taking advantages of particular
properties of a merit function, are suitable for
problems where the derivatives of F are not avail-
able or expensive.

In the present paper we propose another
derivative-free method to solve the NCPs. Let us
consider the following transformation:

yi(t) = (1+ t)xi, i = 1, . . . ,n, (21)

and multiply a coefficient −ν 
= 0 in Eq. (20):

0 = −νFi(x1, . . . ,xn). (22)

Using Eq. (21) we have

0 = −νFi

(
y1

1+ t
, . . . ,

yn

1+ t

)
. (23)
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Recalling that ẏi = xi by Eq. (21), and adding it on
both the sides of the above equation we obtain

ẏi = xi −νFi

(
y1

1+ t
, . . . ,

yn

1+ t

)
. (24)

Then, by using xi = yi/(1 + t), we can change
Eq. (20) into an ODEs system:

ẏi =
yi

1+ t
−νFi

(
y1

1+ t
, . . . ,

yn

1+ t

)
. (25)

Finally, multiplying each equation by the integrat-
ing factor 1/(1 + t) and using Eq. (21) again we
obtain

ẋi =
−ν
1+ t

Fi(x1, . . . ,xn), i = 1, . . . ,n. (26)

It can be seen that this ODEs system is nonau-
tonomous and is much simpler than those in
Eqs. (15) and (17).

Furthermore, in terms of a logarithmic time scale

τ = ln(1+ t), (27)

Eq. (26) can be recast to a neater form:

dxi

dτ
= −νFi(x1, . . .,xn), i = 1, . . .,n. (28)

The above idea is first proposed by Liu (2008a)
to treat an inverse Sturm-Liouville problem by
transforming an ODE into a PDE. Then, Liu
and his coworkers [Liu (2008b, 2008c); Liu,
Chang, Chang and Chen (2008)] extended this
idea to develop new method for estimating pa-
rameters in the inverse vibration problems. Re-
cently, Liu and Atluri (2008) have cleverly em-
ployed the technique of fictitious time integra-
tion method (FTIM) to solve large system of
NAEs, and showed that high performance can be
achieved by using the FTIM.

Eq. (21) is not the unique way to transform the
algebraic equations (20) into the ODEs. We can
adopt

yi(t) = q(t)xi, i = 1, . . . ,n, (29)

and a similar derivation leads to

ẋi =
−ν
q(t)

Fi(x1, . . .,xn), i = 1, . . .,n. (30)

The requirements of q(t) are differentiable and
q(0) = 1. A special case is q(t) = 1 and ν = −1,
and then we have

ẋi = Fi(x1, . . . ,xn). (31)

Deuflhard (2004) has called the above equation a
pseudo-transient continuation method. However,
this equation is hard to work and usually leads to
wrong solutions of the roots of Fi = 0.

From Eq. (28) we understand that the so-called
steady state must be considered in the logarith-
mic time scale τ = ln(1 + t), because this equa-
tion is no more a nonautonomous one as Eq. (26)
is. In the logarithmic time scale, if the motion
of xi approaches a steady state, i.e., dxi/dτ = 0,
then the roots are found. In this paper we focus
on using Eq. (26) as our tool to compute the so-
lutions of NCPs. This is the most simple choice
of q(t) = 1+t to meet the just mentioned require-
ments of q(t). However, other choices are possi-
ble if they can provide more better behavior than
the present one.

2.3 GPS for ODEs system

We can write Eq. (26) as

ẋ = f(x, t), x ∈ R
n, t > 0, (32)

where fi = −νFi/(1+ t) is the i-th component of
f.

Group-preserving scheme (GPS) can preserve the
internal symmetry group of the considered ODEs
system. Although we do not know previously the
symmetry group of differential equations system,
Liu (2001) has embedded it into an augmented
differential system, which concerns with not only
the evolution of state variables themselves but
also the evolution of the magnitude of the state
variables vector. Let us note that

‖x‖=
√

xTx =
√

x ·x, (33)

where the dot between two n-dimensional vectors
denotes their inner product. Taking the derivatives
of both the sides of Eq. (33) with respect to t, we
have

d‖x‖
dt

=
(ẋ)Tx√

xTx
. (34)
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Then, by using Eqs. (32) and (33) we can derive

d‖x‖
dt

=
fTx
‖x‖ . (35)

It is interesting that Eqs. (32) and (35) can be
combined together into a simple matrix equation:

d
dt

[
x

‖x‖
]

=

⎡
⎣ 0n×n

f(x,t)
‖x‖

fT(x,t)
‖x‖ 0

⎤
⎦[

x
‖x‖

]
. (36)

It is obvious that the first row in Eq. (36) is the
same as the original equation (32), but the in-
clusion of the second row in Eq. (36) gives us
a Minkowskian structure of the augmented state
variables of X := (xT,‖x‖)T, which satisfies the
cone condition:

XTgX = 0, (37)

where

g =
[

In 0n×1

01×n −1

]
(38)

is a Minkowski metric, and In is the identity ma-
trix of order n. In terms of (x,‖x‖), Eq. (37) be-
comes

XTgX = x ·x−‖x‖2 = ‖x‖2−‖x‖2 = 0. (39)

It follows from the definition given in Eq. (33),
and thus Eq. (37) is a natural result.

Consequently, we have an n+1-dimensional aug-
mented system:

Ẋ = AX (40)

with a constraint (37), where

A :=

⎡
⎣ 0n×n

f(x,t)
‖x‖

fT(x,t)
‖x‖ 0

⎤
⎦ , (41)

satisfying

ATg+gA = 0, (42)

is a Lie algebra so(n,1) of the proper or-
thochronous Lorentz group SOo(n,1). This fact
prompts us to devise the group-preserving scheme

(GPS), whose discretized mapping G must ex-
actly preserve the following properties:

GTgG = g, (43)

det G = 1, (44)

G0
0 > 0, (45)

where G0
0 is the 00-th component of G.

Although the dimension of the new system is
raised one more, it has been shown that the
new system permits a GPS given as follows [Liu
(2001)]:

Xk+1 = G(k)Xk, (46)

where Xk denotes the numerical value of X at tk,
and G(k)∈ SOo(n,1) is the group value of G at tk.
If G(k) satisfies the properties in Eqs. (43)-(45),
then Xk satisfies the cone condition in Eq. (37).

The Lie group can be generated from A ∈ so(n,1)
by an exponential mapping,

G(k) = exp[hA(k)]

=

⎡
⎢⎣ In + (ak−1)

‖fk‖2 fkfT
k

bkfk
‖fk‖

bkfTk
‖fk‖ ak

⎤
⎥⎦ ,

(47)

where

ak := cosh

(
h‖fk‖
‖xk‖

)
, (48)

bk := sinh

(
h‖fk‖
‖xk‖

)
. (49)

Substituting Eq. (47) for G(k) into Eq. (46), we
obtain

xk+1 = xk +ηkfk, (50)

‖xk+1‖ = ak‖xk‖+
bk

‖fk‖ fk ·xk, (51)

where

ηk :=
bk‖xk‖‖fk‖+(ak −1)fk ·xk

‖fk‖2 . (52)

This scheme is group properties preserved for all
h > 0, and is called the group-preserving scheme.
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2.4 Numerical procedure

Starting from an initial value of x(0) which can
be guessed in a rather free way, we employ the
above GPS to integrate Eq. (32) from t = 0 to a
selected final time t f . In the numerical integration
process we check the convergence of xi at the k-
and k +1-steps by

n

∑
i=1

(xk+1
i −xk

i )
2 ≤ ε2, (53)

where ε is a selected criterion. If at a time t0 ≤ t f

the above criterion is satisfied, then the solution
of xi is obtained. In practice, if a suitable t f is
selected we find that the numerical solution is also
approached very well to the true solution, even the
above convergent criterion is not satisfied. The
coefficient ν introduced in Eq. (26) can increase
the stability of numerical integration.

In particular we should emphasize that the present
method is a new fictitious time integration method
(FTIM), which can calculate the solution very sta-
bly and effectively. Below we give numerical ex-
amples of NCPs for obstacle problems to display
some advantages of the present FTIM.

3 Numerical tests

Many obstacle problems in mathematical physics
lead to nonlinear complementarity problems,
which mainly focused on the determination of
free boundaries. In this section we use one- and
two-dimensional obstacle problems as numerical
tests of our algorithm.

3.1 Example 1

An elastic cable is obstacled by a plane curve of
the shape ϕ(x) = 1− (x−2.2)2, and its two ends
are fixed at two points (0,0) and (4,0). As shown
in Fig. 1 there are two unknown points x1 and x2

at which the values of the elastic displacement u
are the same as that obtained from ϕ by inserting
the coordinates of x1 and x2. In the intervals of
[0,x1] and [x2,4] the deformations of elastic cable
are straight lines connected (0,0) and (x1,ϕ(x1))
and (x2,ϕ(x2)) and (4,0). The elastic displace-

ment u satisfies

u(0) = u(4) = 0, u(x) = ϕ(x), ∀x ∈ [x1,x2],
(54)

u′(x1) = ϕ ′(x1), u′(x2) = ϕ ′(x2), (55)

u′′(x) = 0, 0 < x < x1, x2 < x < 4. (56)

Figure 1: For Example 1 (a) the profiles of u and
ϕ are plotted, very well matching the required
inequalities, and (b) showing the convergent in
terms of merit function.

Due to the unknown boundaries of x1 and x2, the
above problem is hard to solve. In terms of com-
plementary trios we can write [Billups and Murty
(2000)]

u(x)−ϕ(x) ≥ 0, ∀x ∈ [0,4], (57)

−u′′(x) ≥ 0, ∀x ∈ [0,4], (58)

[u(x)−ϕ(x)]u′′(x) = 0, ∀x ∈ [0,4], (59)

where u(x) is subjected to u(0) = u(4) = 0.
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By introducing a finite difference discretization of
u′′ at the grid points we can obtain

ui −ϕi ≥ 0, (60)

− 1
(Δx)2 (ui+1−2ui +ui−1) ≥ 0, (61)

(ui −ϕi)
(Δx)2 (ui+1−2ui +ui−1) = 0, (62)

where ui = u(xi), ϕi = ϕ(xi) and xi = iΔx =
4i/(n+ 1). Now, the governing ODEs are given
by

u̇i =

−ν
1+ t

[√
1

(Δx)4 (ui+1 −2ui +ui−1)2 +(ui −ϕi)2

+
1

(Δx)2 (ui+1−2ui +ui−1)−ui +ϕi

]
. (63)

Under the following parameters: n = 99, ν =
−0.5, ε = 10−4, and h = 0.001 and starting from
an initial value of ui = 1, the FTIM converges
within 4369 steps, that is, the terminal time is
t f = 4.369. In Fig. 1(a) we plot the curves of u
and ϕ . It can be seen that the present numerical
result matches the above inequalities very well.
Defining the merit function as ∑n

i=1 F2
i /2, we plot

its time history in Fig. 1(b), from which we can
see that the new method after the first half time
unit is convergent exponentially with time.

3.2 Example 2

Next we calculate the following obstacle problem:

ϕ(x)−u(x) ≥ 0, ∀x ∈ [0,2], (64)

u′′(x)+5u(x)−u2(x) ≥ 0, ∀x ∈ [0,2], (65)

[ϕ(x)−u(x)][u′′(x)+5u(x)−u2(x)] = 0, (66)

∀x ∈ [0,2],

where u(x) is subjected to u(0) = u(2) = 0, and
ϕ(x) = 1+(x−1)2.

Under the following parameters: n = 59, ν = 5,
ε = 4× 10−6, and h = 0.0001 and starting from
an initial value of ui = 2, the FTIM converges
within 19229 steps, that is, the terminal time is
t f = 1.9229. In Fig. 2 we plot the curves of u and

ϕ respectively by thick and thin solid lines. It can
be seen that the present numerical result is quite
well.

Figure 2: For Example 2 the profiles of u and
ϕ are plotted, matching the required inequalities
very well.

3.3 Example 3

In this example we apply the FTIM to solve the
following free boundary value problem of nonlin-
ear elliptic equation of a two-dimensional obsta-
cle problem [Kanzow (2004)], known as the ob-
stacle Bratu problem:

−Δu(x,y)+λ exp[u(x,y)]≥ 0, (67)

(x,y) ∈ Ω = (0,1)× (0,1),
u(x,y)−ϕ ≥ 0, (x,y) ∈ Ω, (68)

{−Δu(x,y)+λ exp[u(x,y)]}{u(x,y)−ϕ}= 0,
(69)

(x,y) ∈ Ω.

In Fig. 3 we plot three surfaces of u(x,y) for three
different (λ ,ϕ) = (2,−1.5), (3,−3), (1,−4), all
starting from the initial values of ui j = 0.1. Other
parameters are fixed to be Δx = Δy = 1/50, h =
0.001, ν = −0.1, and ε = 10−4. For this prob-
lem there are multiple solutions; in Fig. 4 we plot
the surfaces by starting from the initial values of
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ui j = −1.5 for the first case, ui j = −3 for the sec-
ond case, and ui j = −4 for the third case. It can
be seen that these solutions are larger than that in
Fig. 3.

3.4 Example 4

In this example we apply the FTIM to solve the
following two-dimensional obstacle problem [Ko-
rman, Leung and Stojanovic (1990)]:

(1+x2y2)
∂ 2u(x,y)

∂x2 +
(

1+
y
2

) ∂ 2u(x,y)
∂y2

+15u(x,y)−u2(x,y) ≥ 0, (70)

10−u(x,y) ≥ 0, (71)

{
(1+x2y2)

∂ 2u(x,y)
∂x2 +

(
1+

y
2

) ∂ 2u(x,y)
∂y2

+15u(x,y)−u2(x,y)

}
{10−u(x,y)}= 0, (72)

where (x,y) ∈ Ω = (−1,1)× (−1,1). In Fig. 5
we plot the surface of u(x,y). In the calculation
of this example we have used Δx = Δy = 2/30,
h = 0.0001, ν = 5, and before t f = 1 the itera-
tions are convergent under a criterion of ε = 10−4.
The initial conditions of ui j = 10 are used. The
computational cost is very saving with a CPU
time smaller than one second by using the ASUS
A6000 Note Book.

3.5 Example 5

Then, we calculate the following obstacle prob-
lem of von Karman [Ferris and Pang (1997)]:

u′′′′(x)−5[u′(x)]2u′′(x) ≥ f (x), ∀x ∈ [−1,1],

(73)

u(x)≥ ϕ(x), ∀x ∈ [−1,1], (74)

{u′′′′(x)−5[u′(x)]2u′′(x)− f (x)}{u(x)−ϕ(x)}
= 0, ∀x ∈ [−1,1], (75)

where u(x) is subjected to the clamped boundary
conditions u(−1) = u(1) = −0.5 and u′(−1) =
u′(1) = 0. Here, f (x) = 1 +(x−1)2 and ϕ(x) =
1−2x2. Under the following parameters: n = 49,

Figure 3: Smaller solutions for two-dimensional
Bratu obstacle problems with different parame-
ters.
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Figure 4: Larger solutions for two-dimensional
Bratu obstacle problems with different parame-
ters.

ν = −0.01, ε = 2× 10−6, and h = 0.00001 and
starting from an initial value of ui =−1, the FTIM
converges within 337 steps, that is, the terminal
time is t f = 0.00337. In Fig. 6 we plot the curves
of u and ϕ respectively by thick and thin solid
lines. It can be seen that the present numerical
result matches the above inequalities very well.

Figure 5: The solution for a two-dimensional el-
liptic obstacle problem.

3.6 Example 6

Finally, we come to an algebraic NCP as investi-
gated by Kojima and Shindo (1986):

x1 ≥ 0,

F1 = 3x2
1 +2x1x2 +2x2

2 +x3 +3x4 −6 ≥ 0,

x1F1 = 0,

(76)

x2 ≥ 0,

F2 = 2x2
1 +x1 +x2

2 +10x3 +2x4 −2 ≥ 0,

x2F2 = 0,

(77)

x3 ≥ 0,

F3 = 3x2
1 +x1x2 +2x2

2 +2x3 +9x4 −9 ≥ 0,

x3F3 = 0,

(78)

x4 ≥ 0,

F4 = x2
1 +3x2

2 +2x3 +3x4 −3 ≥ 0,

x4F4 = 0.

(79)
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In our FTIM we use the GPS to solve the follow-
ing nonlinear ODEs:

ẋ1 =
−ν

1+ t

[√
F2

1 +x2
1 −F1 −x1

]
, (80)

ẋ2 =
−ν

1+ t

[√
F2

2 +x2
2 −F2 −x2

]
, (81)

ẋ3 =
−ν

1+ t

[√
F2

3 +x2
3 −F3 −x3

]
, (82)

ẋ4 =
−ν

1+ t

[√
F2

4 +x2
4 −F4 −x4

]
. (83)

By using h = 0.01, ν = −20 and ε = 10−10, and
starting from (x1,x2,x3,x4) = (0.5,0.2,−0.1,1)
we calculate the solution as (x1,x2,x3,x4) =
(1.224745,5.4 × 10−10,−1.34 × 10−10,0.5)
within 154 steps. The numerical errors
as compared with the exact solution of
(x1,x2,x3,x4) = (

√
6/2,0,0,0.5) are smaller than

10−10. Similarly, starting from (x1,x2,x3,x4) =
(0.5,0.2,0.1,1) we calculate the solution as
(x1,x2,x3,x4) = (1,5.96×10−16,3,1.09×10−12)
within 386 steps. The numerical errors
as compared with the exact solution of
(x1,x2,x3,x4) = (1,0,3,0) are smaller than
10−12. The computations are finished smaller
than one second of CPU time.

Figure 6: For Example 5 the profiles of u and ϕ
are plotted, well matching of the required inequal-
ities.

4 Conclusions

In this paper we only consider the Fischer-
Burmeister NCP-function as a bridge to transform
the NCP to an equivalent system of NAEs. Since
the work of Newton, iterative algorithms are de-
veloped by many researchers extending to contin-
uous type by an extra ad hoc artificial time. How-
ever, those ODEs required the derivative of F and
some variants of the Jacobian matrix associated
with F. This is difficult to handle the NCPs be-
cause the resulting algebraic equations are non-
smooth. The present paper was wit enough to
transform the nonsmooth NAEs into an evolution-
ary equations system by introducing a fictitious
time, without resorting on the derivative of F. The
coefficient ν may be positive or negative depen-
dent on problems at hand; suitable ν can increase
the stability of numerical integration and speeds
up the convergence. Undoubtedly, the present
FTIM can work very effectively and accurately
for the solutions of nonlinear obstacle problems.
Several numerical examples of obstacle problems
in one- or two-dimensional spaces were worked
out. Because no derivative and no inverse of ma-
trix are required, the present method is very time
saving.

Acknowledgement: Taiwan’s National Science
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