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Peridynamic Simulation of Electromigration

Walter Gerstle1, Stewart Silling2, David Read3, Vinod Tewary4 and Richard Lehoucq5

Abstract: A theoretical framework, based
upon the peridynamic model, is presented for an-
alytical and computational simulation of electro-
migration. The framework allows four coupled
physical processes to be modeled simultaneously:
mechanical deformation, heat transfer, electrical
potential distribution, and vacancy diffusion. The
dynamics of void and crack formation, and hillock
and whisker growth can potentially be modeled.
The framework can potentially be applied at sev-
eral modeling scales: atomistic, crystallite, multi-
ple crystallite, and macro. The conceptual sim-
plicity of the model promises to permit many
phenomena observed in microchips, including
electromigration, thermo-mechanical crack for-
mation, and fatigue crack formation, to be ana-
lyzed in a systematic and unified manner. Interfa-
cial behavior between dissimilar crystallites and
materials can also be handled in a natural way. A
computational implementation of the theoretical
framework is proposed, and a one-dimensional
example is presented.

Keyword: computational simulation, cracks,
diffusion, electromigration, hillocks, metallic thin
films, microelectromechanical systems, multi-
physics, multi-scale, peridynamic, voids.

1 Introduction

Simulation of the physical behavior of the metal-
lic thin films used to connect devices in integrated
circuits is currently of high importance. In ad-
dition to thermo-mechanical straining and crack-
ing, fatigue, and interfacial delamination, failure
in integrated circuits occurs due to atomic dif-
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fusion and electromigration in metallic compo-
nents causing voids that can sever interconnects
and hillocks and whiskers that can cause short cir-
cuits between interconnects [Black 1967]. Physi-
cal and computational models are essential to un-
derstanding and thus preventing these various fail-
ure mechanisms.

In this paper, we focus upon mechanical, ther-
mal, electrical, and atomic diffusion processes
in solids. Various kinds of simulations of these
processes are available in the literature such as
meshless methods, boundary element methods,
Green’s function methods, finite element calcu-
lations using the continuum model and molecu-
lar dynamics based methods for atomistic models
(see, for example, Chakrabarty and Cagin 2008;
Yu and Reutskiy 2005; Divo and Kassab 2005;
Yuan and Zhang 2006; Nishioka, Tchouikov and
Fujimoto 2006; Oh, Katsube, and Brust 2007;
Yang and Tewary 2008). While atomistic and
molecular dynamics simulations have been em-
ployed in the past (see, for example, [Bachlechner
et al. 2005; Chen, Cheng, and Hsu 2007]), such
simulations, even on today’s massively parallel
computers, are limited to model sizes of perhaps
ten million atoms for perhaps 100 picoseconds.
This size/time scale is insufficient to model even
a single crystallite, much less entire interconnect
lines and devices in integrated circuits. Classical
continuum mechanical models have also been em-
ployed [Maroudas and Gungor 2002; Kim and Lu
2006]. Classical continuum mechanics is, how-
ever, not efficacious for analysis of fields that
are, or may become, manifestly discontinuous, as
shown for example in Fig. 1.

We choose, therefore, to model electromigration
using ideas from the peridynamic model [Silling
1998, Silling 2000, Silling 2002, Silling et al.
2007]. In contrast to classical continuum mod-



76 Copyright c© 2008 Tech Science Press CMC, vol.8, no.2, pp.75-92, 2008

 
Figure 1: Open circuit induced by electromigra-
tion in an n-MOS LSI bias metallization. (a)
Scanning electron micrograph. (b) Voltage con-
trast image. From [Scorzoni et al. 1991].

els, this model has several advantages, the fore-
most being that the response fields need not be
continuous or differentiable. In addition, this is a
potential technique for multiscale modeling since
it can relate the processes at the atomistic level
to observable macroscopic quantities [Tewary and
Read 2004; Shen and Atluri 2004].

There is extensive literature on simulation of elec-
tromigration, see for example [Scorzoni et al.
1991]. However, as will be shown in the next sec-
tion, many of the models have a limited regime
of applicability and little generality or predictive
capability. In this paper, our goal is to signif-

icantly broaden the regime of applicability and
to simplify modeling of integrated circuits in-
cluding all relevant physical mechanisms (“multi-
physics modeling”). We seek to develop a model-
ing paradigm that can accurately predict the phys-
ical behavior of interconnects using today’s com-
putational capabilities.

The paper is organized as follows. The next sec-
tion provides an overview of the physics of elec-
tromigration. We then present a section describ-
ing the state of the art of computational simu-
lation of electromigration. Following this, we
present a peridynamic multi-physics model for
electromigration. We then propose a form for a
multi-physics constitutive model, and a method
for calibrating the peridynamic parameters. Af-
ter this we provide a section describing the dis-
cretized peridynamic electromigration model of a
one-dimensional example problem.

As the proposed peridynamic model is phe-
nomenological, model parameters will need to
be selected based either upon test programs or
upon ab-initio calculations. In this paper, we pro-
pose the forms of the peridynamic models, but
the model parameters must then be selected based
upon the very limited available test data. It is an-
ticipated that more physical testing will be nec-
essary to calibrate the model parameters. Indeed,
it is hoped that the proposed peridynamic multi-
physics model will provide a theoretical frame-
work for future laboratory test programs. The
expectation is that once these model parameters
have been calibrated through laboratory experi-
ments, the model will be predictive for a rela-
tively broad range of materials, geometries, and
size scales.

2 The Physics of Electromigration

In this section, we provide a brief overview of
the important physical models for electromigra-
tion reported in the literature, focusing on the im-
portant physical mechanisms and on the introduc-
tion of the controlling parameters that will be in-
cluded below in the peridynamic model.

[Huntington and Grone 1961] describe an exper-
iment in which a marker in the form of a scratch
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on an unstressed gold wire is observed to migrate
along the wire in response to applied electrical
current and temperature. They created a detailed
mathematical model that explains this motion as
a diffusion phenomenon. Some of the model vari-
ables are not easily determined, making the model
difficult to apply directly. However, the model
identifies many of the significant variables and
physical processes involved in electromigration.

Huntington and Grone wrote an equation in which
drift velocity is linearly related to current density,
with zero current density, j, coinciding with zero
drift. The experiments of Blech [Blech 1976],
of the type shown in Fig. 2, reveal that the re-
lation between drift velocity and current density,
although linear, is offset from the origin, as shown
in Fig. 2. Blech thus proposed that

vl =
D
kT

[
Z∗qρ j− ΔF

l

]

=
D
kT

[
Z∗qρ j− ΔσxxΩ

l

]
,

(1)

where vl is the rate of drift of the strip, D is the dif-
fusion coefficient, T is absolute temperature, k is
the Boltzmann constant, Z∗ is the effective charge
of the diffusing atoms, q is the electron charge, ρ
is the resistivity, j is the current density, l is the
length of the strip, and ΔF is the difference in free
energy between the two ends of the strip, which
is assumed to be ΔF = ΩΔσxx, where Ω is the
atomic volume and Δσxx is the normal stress dif-
ference between the strip ends. The critical stress
is reached when the two opposing forces are bal-
anced, and the threshold current density, jcr, to
cause drift of the strip is thus

jcr =
ΔσxxΩ
Z∗qρ l

. (2)

This simple model is useful in a qualitative way,
but it begs several questions, such as how does
one determine Δσxx and j, which are, of course,
fields. In this paper we seek to provide answers to
these questions.

[Joo 1995] considered that the electron wind force
drives an atomic (or vacancy) flux, J (with units of
atoms/(m2s)), given by

J =
(

DC
kT

)
Z∗qE =

(
DC
kT

)
Z∗qρ j, (3)

where C is the concentration of migrating species
and the diffusion coefficient D varies with temper-
ature as

D = D0 exp(−V/kT ) (4)

where V is the saddle point free energy, E is the
electric field, and the remaining parameters have
the same meanings as above.

Joo adds that if atoms move via grain bound-
ary diffusion and the grain size is small com-
pared to the line width, D should be replaced
with (δDGB/d), where DGB is the grain boundary
diffusivity, δ is the effective width of the grain
boundary, and d is the average grain diameter.
One sees that there is a lack of precision about
the meaning of the diffusion coefficient, D, which
evidently depends upon the size scale of the in-
terconnect and the morphology of the grain struc-
ture of the material. Joo [Joo 1995] explains that
electromigration models can be classified by two
approaches: the first type considers the concen-
tration of vacancies [Shatzkes and Lloyd 1986;
Kirchheim and Kaeber 1991, Nix and Arzt 1992,
Clement and Lloyd 1992], and the second type
considers the stress development due to migra-
tion of vacancies [Blech 1976, Korhonen et al.
1993]. According to Joo [Joo 1995] production
and annihilation of vacancies are caused not only
by the electron wind, but also by internal mechan-
ical stresses. Thus, vacancy gradients and me-
chanical stress gradients are coupled.

Ogawa et al. [Ogawa et al. 2002] consider the
multiple pathways that contribute to electromigra-
tion, including surface, interface, grain boundary,
pipe, and lattice diffusion. Paraphrasing Ogawa
et al., a discussion of the various pathways allow-
ing electromigration-related voiding can be based
upon the drift equation [Vanasupa et al. 1999],
[Hu, Rosenberg and Lee 1999]:

vd =
De f f

kBT
FEM,net

=
De f f (T )

kBT

(
Z∗

e f f eρ j− ∂σ
∂x

Ω
)

.

(5)

The two force contributions are the driving force
due to the electron wind force, Z∗

e f f eρ j, and the



78 Copyright c© 2008 Tech Science Press CMC, vol.8, no.2, pp.75-92, 2008

compensating back stress gradient from mass ac-
cumulation at the anode end of the interconnect,
∂σ
∂x Ω. Ogawa et al. then explain that, ignoring
the back-stress component “for now”, the various
pathways for electromigration damage formation
can be examined using the first term on the right-
hand side of (5). The various pathways can be
expressed as

Z∗
e f f De f f = Z∗

BDBFB +Z∗
PDPFP +Z∗

I DIFI

+ Z∗
SDSFS + Z∗

GBDGBFGB; (6)

this relation breaks down the product of the “ef-
fective charge” and the “effective diffusivity” into
its major components. The subscripts identify
pathways of diffusion: B ≡ bulk; P ≡ pipe; I ≡
interface (if it exists, in the particular intercon-
nect); S ≡ surface (if it exists); and GB ≡ grain-
boundary. Fj ( j = B,P, I,S,GB) is the (geometry-
dependent) fraction of atoms diffusing through a
given pathway.

Ogawa et al. go on to explain that each pathway
is anticipated to have a different Z∗ because the
wind-force varies according to the local electronic
environment surrounding a given atom [Sorbello
1996]. Because the contributions from the B and
P pathways are assumed to be negligible at the
temperatures of interest (400 ◦C), the contribu-
tions to electromigration are anticipated to arise
from the I, S, and GB pathways. The model de-
scribed by Ogawa et al. is reasonable as far as it
goes, but it does not explain, for a given problem,
how the fractions Fj ( j = B,P, I,S,GB) are to be
assumed or computed.

In Korhonen’s model [Korhonen et al. 1993; Joo
1995], the stress term is generalized as a local
chemical potential that depends upon the hydro-
static component of the stress, σ , as:

μ = μ0 −ΩσV , (7)

where Ω is the atomic volume (number of atoms
per unit volume) and σV is the hydrostatic com-
ponent of the stress. The chemical potential can
be included in a three-dimensional peridynamic
treatment of electromigration, but is not consid-
ered further here.
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Figure 2: Experiment of Blech [Blech 1976]

3 State of the Art of Computational Simula-
tion of Electromigration

Gungor and Maroudas [Gungor et al. 1999; Gun-
gor and Maroudas, 2001; Maroudas and Gungor
2002] have presented a theoretical and computa-
tional model for electromigration of a single sur-
face void on a single two-dimensional model of a
thin-film crystallite, shown in Fig. 3. Their model
assumes that electromigration occurs only due to
adatom diffusion on the surface of the crystallite.
They include crystallite anisotropy in the surface
diffusion model. Their analysis is based on the
continuum formalism of surface mass transport
under the action of electric fields.

By computationally solving a set of equations that
describe the local displacement at the void, the
stress, and the electric field, by means of finite
element and finite difference techniques, Gungor
and Maroudas were able to simulate the evolution
of the shape of the edge-void. Notice that temper-
ature is assumed to be constant in the model.

The model of Gungor and Maroudas is the most
sophisticated that we have found in the literature.
Even so, it is limited to one two-dimensional crys-
tallite at constant temperature with one surface
void. We seek a more general model, applicable
to multiple 3D crystallites, to be discussed in the
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Figure 3: Schematic representation of a thin film
crystallite analyzed by [Gungor and Maroudas
2001].

next section.

Our literature survey has shown that a number
of electromigration models have been developed
over the past 50 years. It is clear that elec-
tromigration is a process that is strongly influ-
enced by type of metal, crystallite orientation,
crystallite morphology, temperature, mechanical
stress, electrical current density, dislocation den-
sity within each crystallite, and interfacial condi-
tions with other materials. Further, all of these
physical states (temperature, strain, current den-
sity, atomic concentration, etc.) are inextricably
coupled. None of the models developed to date
takes all of these complicating effects into account
with any degree of generality or engineering effi-
cacy.

Further complicating the problem is the fact that
all of the models assume either continuum me-
chanics or atomistic representations of state. The
atomistic representation is at much too small a
scale to be useful for modeling of entire intercon-
nects and vias between interconnects. The con-
tinuum mechanical models do not permit fields
to evolve discontinuities; propagating cracks and
evolving interfaces can be modeled only by inter-
vening in the model, for example to release finite
element nodes or to remesh to include a new sur-
face.

Clearly, there is a need for multiphysical model-
ing at the meso-scale and macro-scale that allows
the material state to evolve in nonlinear, dynam-
ical ways. Such a model is presented in the next
section.

4 Peridynamic Multi-Physics Model for Elec-
tromigration

4.1 Enumeration of physical mechanisms in-
volved in electromigration

At least four physical mechanisms (and possibly
more) are necessary to correctly characterize the
electromigration problem: solid mechanics, heat
transport, flow of electrical charge and variation
of the electric field, and atomic (or vacancy) dif-
fusion. Adding to the difficulty of the problem is
the fact that these physical aspects of the problem
are coupled; the term “multi-physics” seems de-
scriptive, if not formally accurate.

In classical continuum mechanics, the forms of
the differential equations governing all four of
these physical phenomena are similar: in all
cases, the constitutive model linearly relates a
‘flux’ at a point to the gradient of the conjugate
field at the same point. This nomenclature im-
plies that stress is the flux of force, which is an
unfamiliar notion, but the mathematical similar-
ities hold nonetheless. Table 1 shows the pri-
mary field, the flux, and the constitutive relation
for each of the different ‘physics’. The consti-
tutive parameters are represented as constant ten-
sors: Ci jkl , ki j, κi j, and Di j. However this assump-
tion of linear and constant constitutive relations is
a simplification, as in fact the relations between
flux and the primary field variable depend non-
linearly upon the state variables, certainly in the
regimes close to failure. To represent nonlinear
constitutive behavior (such as plasticity and dam-
age mechanics), Ci jkl, ki j, κi j , and Di j, become
prescribed functions of the primary variables (and
perhaps other state variables as well). We employ
the usual convention by which summation is im-
plied on repeated indices, so that, for example,
∂Ji
∂xi

≡ ∂J1
∂x1

+ ∂J2
∂x2

+ ∂J3
∂x3

. Subscripted indices indicat-
ing different particles will appear below as lower
case Greek letters.

In addition, each mechanism or ‘type of physics’
involves a conservation principle involving the di-
vergence of its respective flux, as shown in the
last row of Table 1. The conserved quantities are,
respectively, momentum, heat energy, electrical
charge, and number of atoms. In classical con-
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tinuum mechanics, the conservation equation is
assumed to hold true at every point within a spec-
ified domain with a well defined boundary. Each
of the conservation equations is solved subject to
boundary conditions specified on the boundary of
the domain.

Within traditional continuum mechanics, the
problem becomes indeed very complicated when
one considers that in integrated circuits there are
many interacting domains with interactions across
interfaces. The governing differential equations
do not apply at points on these interfaces, and it is
necessary to develop auxiliary equations to han-
dle conditions on interfaces. In addition, when
discontinuities in the primary fields form during
the course of the solution (representing cracks and
phase changes), the classical constitutive relations
become undefined because the gradient of the pri-
mary field variable becomes undefined. Conse-
quently, auxiliary types of mechanics – such as
fracture mechanics – must be developed and ap-
plied. In light of these complexities involved in
applying classical continuum mechanics, we pro-
pose instead to apply the methods of peridynam-
ics, described next.

4.2 Peridynamic Solid Mechanics Model

The peridynamic multi-physics model for electro-
migration is a significant extension of the peridy-
namic solid mechanics model. The peridynamic
model [Silling 1998; Silling 2000; Silling 2002;
Silling 2007; Silling et al. 2007; Lehoucq and
Silling 2008] makes no assumption of continu-
ity of displacements. Thus, continuous and dis-
continuous (cracking and fragmentation) behav-
ior can be handled by use of a single, simple
paradigm. The method lends itself well to the
modeling of quasi-brittle structures. The method
is of the class of nonlocal models [Bazant and
Jirasek 2002]. A major success of peridynamic
solid mechanics is that discontinuities and cracks
can arise in the normal operation of the model,
with no need for remeshing.

The peridynamic model has no (internal) require-
ment for the concepts of stress and strain. The
peridynamic model starts with the assumption
that Newton’s second law holds true on every in-

finitesimally small freebody (differential volume)
within the domain of analysis. A force density
function, called the pairwise force function (or
peridynamic kernel), f , (with units of force per
(unit volume)2) between each pair of infinitesi-
mally small particles is postulated to act if the par-
ticles are closer together than some finite distance,
called the material horizon, δ . The pairwise force
function may be assumed to be a function of the
relative position and the relative displacement be-
tween the two particles. A spatial integration pro-
cess is employed to determine the total force act-
ing upon each particle, and a time integration pro-
cess is employed to track the positions of the par-
ticles due to the applied body forces and applied
displacements.

As described by Silling [Silling 1998; Silling
2000; Silling 2002; Silling et al. 2007], the peri-
dynamic model may be implemented on the com-
puter as an array of interacting discrete particles in
a 3D geometrical space. One of the advantages of
the peridynamic approach is that no finite element
meshes are required. It is a meshless method.

Refer to Fig. 4 for terminology. We assume that
Newton’s second law holds true on an infinitesi-
mally small particle, dVα , of mass dmα , initial or
undeformed position xα ,k, and displacement, uα ,k,
located within domain, R:

dmα üα ,k = ∑dFα ,k, (8)

where ∑dFα ,k is the force vector acting on free
body α , and üα ,k is the acceleration of particle α .

kx ,α

αdV
ku ,α

kx ,β

βdV
ku ,β

k,αβξ

kk ,, αβαβ ηξ +

1x

2x

3x R

Figure 4: Terminology for peridynamic model.
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Table 1: Fields and Equations in Four Types of Classical Continuum Mechanics

 Solid Mechanics Heat 
Conduction 

Electric 
Conduction 

Atomic Diffusion

Primary Field Displacement, u�  Temperature, T Electrical 
Potential, Φ  

Atomic (Vacancy) 
Concentration, C 

Flux Stress, jkσ  Heat Flux, jq  Charge Flux, jj  Atomic Flux, jJ  

Constitutive 
Relation ��

�

�
��
�

�
∂
∂+

∂
∂=

k

l

l

kijkl
ij x

u
x
uC

2
σ

k
jkj x

Tkq
∂
∂−=  

k
jkj x

j
∂

Φ∂−= κ  
k

jkj x
CDJ

∂
∂−=  

Conservation 
Equation ii

j

ij ub
x

��ρ
σ

=+
∂
∂

 TcQ
x
q

T
i

i �ρ=+
∂
∂ 0=+

∂
∂ J
x
j

i

i  

(steady-state) 
Cc

x
J

D
i

i �=Κ+
∂
∂  

Definition of symbols 
 

iu      displacement 
T       temperature 
Φ      electrical potential 
C       vacancy concentration (number of vacancies per total number of initial lattice sites) 

ijσ     stress (force ‘flux’) 

iq       heat flux 

ij       electrical charge flux (electrical current density in one dimension) 

iJ       atomic flux 

ijklC    elasticity tensor 

ijk      thermal conductivity 

ijκ     electrical conductivity 

ijD    diffusivity tensor 

ib     applied body force per unit volume 

Tc    heat capacity 
ρ     mass density 
Q    rate of local introduction of  heat energy 
J     rate of local introduction of electrical charge 

Ec    electrical capacitance (electrical charge per unit electrical potential per unit volume) 
K    rate of local introduction of atoms 

Dc    number of atoms per unit volume (to convert between fractional concentration and number of       
atoms) 
Ω    atomic volume 
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Dividing both sides of Equation 8 by the differ-
ential volume of particle α , dVα , and partitioning
the force into components internal and external to
the system of particles under consideration gives

ρ ük = Lk +bk, (9)

where ρ is the mass density at position xk, Lk is
the force vector per unit volume acting upon dVα
due to interaction with all other particles (for ex-
ample, particle β ) in domain R, and bk is the ex-
ternally applied body force vector per unit volume
at position xα ,i.

The interaction force density per unit volume act-
ing upon particle α , Lα ,k, is an integral over all
other particles, β , within the domain, R:

Lα ,k =
∫
R

(
fαβ

)
k dVβ , (10)

where fαβ ,k is the peridynamic force vector be-
tween dVα and dVβ . The pairwise force function,
fαβ ,k, which has units of force per unit volume
squared, can be viewed as a material constitutive
property. In the simplest case, let us assume elas-
tic behavior. In this case the pairwise force func-
tion:

fαβ ,k = fαβ ,k

(
uβ ,k −uα ,k,xβ ,k −xα ,k

)
≡ fαβ ,k

(
ηαβ ,k,ξαβ ,k

)
,

(11)

is a function of relative displacement ηαβ ,k and
relative position ξαβ ,k between particles α and β .
More complex constitutive relations, incorporat-
ing internal material state variables (such as dam-
age), may also be contemplated.

Silling (Silling 1998) has proposed a simple non-
local peridynamic constitutive model where

fαβ ,k
(
ηαβ ,k,ξαβ ,k

)
=

c

[∣∣ξαβ ,k +ηαβ ,k

∣∣− ∣∣ξαβ ,k

∣∣∣∣ξαβ ,k +ηαβ ,k

∣∣
][

ξαβ ,k +ηαβ ,k∣∣ξαβ ,k +ηαβ ,k

∣∣
]

= csû (12)

if
∣∣ξαβ ,k +ηαβ ,k

∣∣ − ∣∣ξαβ ,k

∣∣ < u∗ and∣∣ξαβ ,k +ηαβ ,k

∣∣ < δ ; fαβ ,k

(
ηαβ ,k,ξαβ ,k

)
= 0

otherwise. Here c, δ , and u∗ are positive “mi-
croelastic” constants, s is the stretch of the bond,

f 

Stretch u* 

c 

1 

Figure 5: Micro elastic peridynamic model for
quasi-brittle material. This model governs the
forces between two particles situated within the
material horizon, δ , of each other.

and û is a unit vector directed from particle α
to particle β . Thus, the “spring” connecting
any two particles is linear for small relative
displacements, but it breaks when the relative
displacement between the two particles exceeds
u∗. Only particles within a distance from each
other, δ (the material horizon), interact.

A simple micro elastic peridynamic model (with
tensile limit) for brittle materials is shown in Fig-
ure 5. Recent work [Silling et al. 2007] has shown
that the peridynamic model, employing peridy-
namic states (in which the pair-wise force is a
function of all deformations within the material
horizon), can also be used to model plasticity.

4.3 Proposed Multi-Physics Peridynamic Con-
stitutive Model

We formulate a peridynamic model of electromi-
gration by constructing peridynamic treatments of
temperature and heat energy, electric fields and
charge, and atomic flux and concentration gradi-
ents, and combining these with peridynamic solid
mechanics; the present effort is the first attempt
to construct a peridynamics model addressing this
suite of physical mechanisms. The primary field
variables (uk, T , Φ, C) are the same as in classical
continuum mechanics, as shown in the first row of
Table 2. In peridynamics, integration over a mate-
rial horizon replaces differentiation at a point for
calculation of all of the relevant ‘fluxes,’ which,
for electromigration, include fluxes of force, heat
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energy, electrical charge, and atoms. The ‘fluxes’
are now nonlocal, because they are calculated by
integration over a finite region, and are called the
“peridynamic kernels” ( fF,k, fq, f j, fJ), as shown
in the second row of Table 2. The peridynamic
kernels have units of force, heat flow, electrical
current, and atomic flow, respectively, per unit
volume squared; each is a function of various pri-
mary field variables, as shown in the third row of
Table 2. The functions can embody all of the con-
stitutive behavior, including interfacial behavior
between different material types and different ma-
terial phases. Finally, the conservation equations,
shown in the fourth row of Table 2, are applied
at each material point; each involves an integral
(rather than a divergence, shown in Table 1) of the
peridynamic kernel over a finite neighborhood, H,
at each material point.

In a peridynamic model, internal boundaries need
not be explicitly defined; they are an emergent
property of the base domain (which describes the
geometric distributionof mass) and specified peri-
dynamic micro-material properties. Specified pri-
mary field conditions are applied to specified re-
gions of the base domain, and specified body
forces (or the equivalent for the other physical
processes: heat per unit time per unit volume; cur-
rent per unit volume; atoms per unit time per unit
volume) are applied to other specified regions.

The entire multi-physics constitutive model is de-
fined by the four peridynamic kernel functions
shown in Table 2: fF,k, fq, f j, and fJ. These peri-
dynamic functions define the peridynamic kernel
(force, heat transfer per unit time, electrical cur-
rent, and vacancy transfer per unit time, respec-
tively) between point α and all other points, β ,
in terms of the (multi-physical) state of all mate-
rial points within the respective material horizon
of point α for each physical process: Hα ,F , Hα ,q,
Hα , j, and Hα ,J. By adopting the notation conven-
tion that the material horizon of point α , Hα , does
not include point α itself, we can streamline the
equations slightly.

What can we say about the form of each of these
four peridynamic kernel functions? The most
general form has an input domain containing all
the information accessible to each point α , mean-

ing primary fields within its material horizon Hα
and for times t ≤ tc , where tc is the current time.
The primary fields are

uk
(
xβ ,k ∈ Hα ,F, t ≤ tc

)
displacement (13a)

T
(
xβ ,k ∈ Hα ,q, t ≤ tc

)
temperature (13b)

Φ
(
xβ ,k ∈ Hα , j, t ≤ tc

)
electrical potential (13c)

C
(
xβ ,k ∈ Hα ,J, t ≤ tc

)
atomic concentration

(13d)

Thus, in addition to being functions of “peridy-
namic material attributes”, the peridynamic ker-
nels are functions of the primary fields within
the peridynamic neighborhood H and the primary
field histories up to time tc:

fF,αβ ,k = fF,αβ ,k

(
uk

(
xβ ,k ∈ HF,α , t ≤ tc

)
,

T
(
xβ ,k ∈ Hq,α , t ≤ tc

)
,Φ

(
xβ ,k ∈ Hj,α , t ≤ tc

)
,

C
(
xβ ,k ∈ HJ,α , t ≤ tc

)
, t

)
(14a)

fq,αβ = fq,αβ

(
uk

(
xβ ,k ∈ HF,α , t ≤ tc

)
,

T
(
xβ ,k ∈ Hq,α , t ≤ tc

)
,Φ

(
xβ ,k ∈ Hj,α , t ≤ tc

)
,

C
(
xβ ,k ∈ HJ,α , t ≤ tc

)
, t

)
(14b)

f j,αβ = f j,αβ

(
uk

(
xβ ,k ∈ HF,α , t ≤ tc

)
,

T
(
xβ ,k ∈ Hq,α , t ≤ tc

)
,Φ

(
xβ ,k ∈ Hj,α , t ≤ tc

)
,

C
(
xβ ,k ∈ HJ,α , t ≤ tc

)
, t

)
(14c)

fJ,αβ = fJ,αβ

(
uk

(
xβ ,k ∈ HF,α , t ≤ tc

)
,

T
(
xβ ,k ∈ Hq,α , t ≤ tc

)
,Φ

(
xβ ,k ∈ Hj,α , t ≤ tc

)
,

C
(
xβ ,k ∈ HJ,α , t ≤ tc

)
, t

)
(14d)

These are extremely general functional forms, and
we can reasonably make some simplifying as-
sumptions. The assumption made in the origi-
nal peridynamic model, with reasonable success,
is that the peridynamic kernel between points α
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and β depends only upon the state and positions
of points α and β at the current time. Thus, the
forms of the peridynamic functions become:

fF,αβ ,k = fF,αβ ,k

(
xα ,k,xβ ,k,uα ,k,uβ ,k,Tα ,Tβ ,

Φα ,Φβ ,Cα ,Cβ

)
; (15a)

fq,αβ = fq,αβ

(
xα ,k,xβ ,k,uα ,k,uβ ,k,Tα ,Tβ ,

Φα ,Φβ ,Cα ,Cβ

)
; (15b)

f j,αβ = f j,αβ

(
xα ,k,xβ ,k,uα ,k,uβ ,k,Tα ,Tβ ,

Φα ,Φβ ,Cα ,Cβ

)
; (15c)

fJ,αβ = fJ,αβ

(
xα ,k,xβ ,k,uα ,k,uβ ,k,Tα ,Tβ ,

Φα ,Φβ ,Cα ,Cβ

)
; (15d)

Even more simply, the assumption can be made
that peridynamic kernels depend only upon the
differences between states at the two points α and
β :

fF,αβ ,k =

fF,αβ ,k

(
ξαβ ,k,ηαβ ,k,ταβ ,ϕαβ ,χαβ

)
; (16a)

fq,αβ =

fq,αβ

(
ξαβ ,k,ηαβ ,k,ταβ ,ϕαβ ,χαβ

)
; (16b)

f j,αβ =

f j,αβ

(
ξαβ ,k,ηαβ ,k,ταβ ,ϕαβ ,χαβ

)
; (16c)

fJ,αβ =

fJ,αβ

(
ξαβ ,k,ηαβ ,k,ταβ ,ϕαβ ,χαβ

)
; (16d)

where ξαβ ,k,ηαβ ,k,ταβ ,ϕαβ and χαβ are defined
in Table 2.

Finally, we must assume a parametric form for
each of the functions. As a simple first step, we
might assume linear forms with cut-offs, similar
to the form shown in Fig. 5.

4.4 Calibration of Peridynamic Parameters

In all four physical mechanisms, we can spec-
ify peridynamic parameters that produce behav-
ior identical to the corresponding linear classical
constitutive relation. Here we show how to derive
parameters appropriate for the one-dimensional
case, for use later in the example problem. The
extension to three dimensions is straightforward.
Consider, for example, thermal diffusion from Ta-
ble 2 above:∫

Hq

fqdV +Q = cT ρ Ṫ , (17)

which, as noted in (16b) above, becomes

∫
Hq

fq
(
T

(
x′

)−T (x) ,x′ −x
)

dV +Q = cT ρ Ṫ ,

(18)

where we assume that each peridynamic bond acts
like a heat conduction pathway independent of
the others. If fq is assumed to depend linearly
upon the temperature drop across the bond, as-
suming isotropic heat conduction in the body, we
can write

fq (τ ,ξ ) = k0g(|ξ |)τ , (19)

where k0 is a constant, τ ≡ T (x′)− T (x), ξ ≡
x′ −x, and g(|ξ |) is a prescribed function of bond
length only, which vanishes outside the horizon
δ . The form of g(|ξ |) is essentially arbitrary if all
we care about is matching bulk thermal proper-
ties, so we let g(|ξ |) = 1 within the material hori-
zon. Consider a one-dimensional homogeneous
body with a differentiable temperature distribu-
tion, T (x), as required for a classical continuum
treatment. We expand T in a Taylor series near x
and form

τ ≡ T
(
x′

)−T (x) = B
(
x′ −x

)
+A

(x′ −x)2

2
+ . . . .

(20)

where B and A are respectively the first and sec-
ond Taylor coefficients. For the one-dimensional
case the volume element is dV = (Area)dx. We
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Table 2: Peridynamic fluxes, constitutive relations, and conservation equations for modeling electromigra-
tion

 

 Solid Mechanics Heat Conduction Electric 
Conduction 

Atomic Diffusion 

Primary 
Field 

Displacement, ku  Temperature, T Electrical Potential, 
Φ  

Atomic 
Concentration, C 

Peridynamic 
Kernel 

PD Force, kFf ,  PD Heat Flux, qf  PD Current Flux, 
jf  

PD Atomic Flux, 
Jf  

Constitutive 
Relation 

( ),...,,, kkkFkF ff ηξ=  ( ),...,τξkqq ff =  ( ),...,φξkjj ff =  ( ),..., χξkJJ ff =  

Conservation 
Equation 

kkH kF ubdVf
F

��ρ=+� ,

 
TcQdVf TH q

q

�ρ=+�  Φ=+� �
EH j cJdVf

j

 CcdVf DH J
J

�=Κ+�
Definition of symbols (see Table I for previously defined symbols): 
 

kFf ,   (vector) peridynamic force per unit volume squared 

qf      peridynamic heat flow per unit volume squared 

jf      peridynamic current flow per unit volume squared 

Jf      peridynamic concentration flow per unit volume squared 

kx ,α      (vector) position of point � in reference configuration 

k,αβξ     (vector) relative position in reference configuration, kk xx ,, αβ −  

ku ,α      (vector) displacement of point � in reference configuration 

k,αβη     (vector) displacement difference between points � and �, kk uu ,, αβ −  

αβτ        temperature difference between points � and �, αβ TT −  

αβφ        electric potential difference between points � and �, ij Φ−Φ  

αβχ       concentration difference between points � and �, αβ CC −  

JjqF HHHH ,,,  peridynamic neighborhoods for various fluxes 
 

x 

u(x=0, t)=0 
T(x=0, t)=273 K  
Φ(x=0, t)=0.12 volt 
J(x=0, t)=0  

σx(x=L, t)=0 
T(x=L, t)=273 K 
Φ(x=L, t)=0 volt 
J(x=L, t)=0 

thickness = 1 μm 

u(x, t=0) = 0 
T(x, t=0) = 273 K  
Φ(x, t=0) = 0 volts 
Cm = 0.01 vacancies/atom 
pure copper (fine crystal structure) 
electrically insulated 
thermally insulated 
uniaxial stress 

10 μm

100 μm 

Figure 6: Thin-film copper line model, showing the boundary conditions. The active part of the line is shown
in dark gray. The end sections, shown in lighter gray, are within the peridynamic material horizon of the end
boundaries. They are transition regions used to isolate the active part of the model from the mathematical
boundary.
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extract the peridynamic result for the rate of
change of temperature:

cT ρ Ṫ (x)

=
∫

H
k0g(|ξ |)

(
Bξ +A

ξ 2

2

)
(Area)dξ

= k0 (Area)g(|ξ |)
∫ ξ=δ

ξ=−δ

(
Bξ +A

ξ 2

2

)
dξ

=
k0 (Area)Aδ 3

3

(21)

On the other hand, the classical result for the same
one-dimensional temperature distribution (in the
absence of a source term) is

ρcT Ṫ (x) = k∇2T = Ak. (22)

Equating the previous two expressions for
ρcT Ṫ (x), we have

k0 =
3k

(Area)δ 3 . (23)

Similar derivations can be employed to determine
the peridynamic parameters in terms of the classi-
cal parameters for the other types of physical pro-
cesses.

5 One-Dimensional Example

We present a one-dimensional example problem
to demonstrate that the peridynamic approach to
modeling electromigration is feasible and to show
the type of results that can be obtained with a very
simple treatment. The model system is a single
thin-film interconnect stripe, shown in Fig. 6. The
interconnect stripe is 1 μm thick, 10 μm wide,
and 100 μm long. The material is copper, with
a fine-grained structure compared to its dimen-
sions. Thus, we do not model individual grains
in this analysis; instead we homogenize the grains
into a single “material”. Carrying out such a ho-
mogenization in a realistic manner, instead of by
assumption, requires detailed analysis [Lehoucq
and Silling 2007].

The initial conditions and the boundary condi-
tions at the two ends of the strip (displacement,
u, temperature, T , voltage, Φ, and vacancy flux,
J) are shown in Fig. 6. In addition, we assume

that the strip is laterally insulated in such a way
that there is no lateral stress, and no heat flux, no
electrical current flux, and no vacancy flux in the
lateral direction.

We assume that the cross-sectional area, A, of the
stripe is a state variable that evolves with time
(rather than vacancy concentration, C, which is
assumed to be a function only of temperature).
Specifically, we assume

dV̇ = Ȧdx =
(

Ω
∂J
∂x

)
Adx, (24)

or

Ȧ = ΩA
∂J
∂x

, (25)

where Ω is the atomic volume and A is the local
cross-sectional area of the stripe.

The concentration of vacancies, C, is assumed to
be a function of temperature only [Omar 1975]:

C = Cme−Ev/kT , (26)

where Cm is the concentration of vacancies at the
melting temperature of the material and Ev is the
energy required to create a vacancy.

The end boundaries are held at 0◦C (273 K), con-
trary to the usual practice in electromigration test-
ing of heating the substrate. The sides, top, and
bottom of the line are adiabatic (no heat trans-
fer). The mechanical stress is zero, even though
the line expands thermally, because the line is as-
sumed to be mechanically unconstrained in all di-
rections. These particular boundary conditions
could be changed in a more detailed treatment.
Only a single value of the diffusion constant is
used here. A three-dimensional treatment could
incorporate surface diffusion by applying differ-
ent constitutive properties to different locations,
for example by applying Eq. (6). Similarly, the
behavior of grain boundaries as faster diffusion
paths could be explored in the three-dimensional
case by applying a different diffusion rule be-
tween volume elements within different grains.

The assumed peridynamic constitutive relations,
which are particular cases of the relations given
in Eqs. (16), are

fF ,k = fF ,k (ξk,ηk,T,C)
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fq = fq (ξk,τ , f j)

f j = f j (ξk,φ , ...)

fJ = fJ (ξk,T,C, j,σ) .

The assumed classical material properties are
shown in Table 3, and the derived peridynamic
kernel parameters are shown in Table 4. In this
analysis, we have used 30 nodes with a material
horizon of 3 node spacings.
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Figure 7: The negative of the electric field and
current density at an elapsed time of 1 h, after the
fields have stabilized. Both quantities are nega-
tive, because the electron flow is from left to right
in the plot. Note the end effects, where the peridy-
namic boundary conditions are established. The
current at this time is 0.67 A; it will change as the
model evolves, because the voltage across the line
is held constant. The remaining plots show only
the central part of the model interconnect, from 0
to 100 μm.

Figures 7-10 show how the peridynamic fields and
fluxes evolve in position and time due to electron
flow from left to right along the line. In peridy-
namic modeling, the region of interest, from x =
0 to x = 100 μm in these plots, is surrounded by
a non-physical boundary region; the boundary re-
gions are included only in Fig. 7. We apply a neg-
ative voltage of 0.12 V within the region -10 μm
< x < 0 μm, to drive the electrons in the positive-
x direction. Figure 7 shows the electric field and
the current density as a function of position at an
elapsed time of 1 h. At this time all the fluxes and
fields have stabilized mathematically, but only a
minimal amount of mass transport has occurred,

as indicated by the small change in the line area
shown in Fig. 8. The electron flow from left to
right in these plots drives atoms to the right and
vacancies to the left. The negative sign of the va-
cancy flux in Figs. 7 and 8 reflects its direction;
Fig. 8 shows that the line area is already changing
after only 1 h of electron flow, and that the mass
transport occurs preferentially where the temper-
ature is highest. Figure 9 shows the situation af-
ter 480 h, when the line area is reduced almost to
zero. Figure 10 shows the changes with time of
the maximum temperature, the maximum current
density, and the minimum area. Much more detail
than is displayed here can be extracted from the
model. For example, the forms of the fluxes and
fields shown in Figs. 7 and 8 change only slightly
between 1 and 24 hours.

The present calculation is a simplified example
designed to test the capabilities of the peridynam-
ics approach to modeling electromigration. This
one-dimensional example shows that peridynam-
ics can describe in detail the evolution of an (al-
most) open circuit, without the need to explic-
itly include damage or cracking in the model.
A more accurate treatment, in three dimensions,
would utilize a much more detailed grid, and
more realistic boundary conditions so that re-
alistic stresses would develop. Rapid diffusion
along grain boundaries and surfaces could be in-
cluded in a three-dimensional treatment by as-
signing appropriate material constants to individ-
ual grid points.

6 Conclusions

We have presented a theoretical framework based
upon the peridynamic model for analytical and
computational simulation of electromigration.
The framework allows four coupled physical pro-
cesses to be modeled simultaneously: mechan-
ical deformation, heat transfer, electrical poten-
tial distribution and charge flow, and vacancy dif-
fusion. The conceptual simplicity of the model
promises to permit many phenomena observed
in microchips, including electromigration, ther-
momechanical crack formation, and fatigue crack
formation, to be analyzed in a systematic and uni-
fied manner. Interfacial behavior between dissim-
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Table 3: Classical Properties

Physics Symbol Name Units Value for Copper

Solid Mechanics

E Young’s modulus N/m2 120x109

ν Poisson’s ratio - 0.34
α coefficient of thermal expansion 1/K 16.5x10−6

Tm melting temperature K 1358
εcrit critical elastic strain - 0.01
ρ mass density kg/m3 8960

Thermal
kT thermal conductivity J/(m·K·s) 401
cT heat capacity J/kg·K 385

Electrical kE electrical conductivity 1/(m·Ohm) 59.6x106

Atomic Diffusion

mA atomic mass kg/mol 63.546x10−3

e elementary charge coulomb 1.602x10−19

Z∗ effective atomic charge number - 1.5
k Boltzmann constant J/K 1.3807x10−23

Q energy for vacancy movement J/vacancy 3.4877x10−23

Ev energy for vacancy formation J/vacancy 1.602x10−19

D0 diffusion at infinite temperature m2/s 6.9x10−5

Cm vacancy concentration at Tm vacancies/atom 0.01
Ω atomic volume m3 1.182x10−29

Table 4: Constitutive Equations and Peridynamic Parameters Used in the Present One-dimensional Example,

Assuming g(|ξ |) =
{

1: |ξ |≤δ
0: |ξ |>δ

}

Physics Continuum Peridynamic kernel Peridynamic 
Parameters 

Solid 
Mechanics x

uExx ∂
∂=σ  

( ) ( )

( ) �
�
�

�
�
�
�

�
=

=

ξ
ηξ

ξξη

cg
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 ( ) 2

2
δArea
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Thermal 
x
Tkq Tx ∂

∂−=  ( ) ( )τξκξτ gf TT =,  ( ) 3

3
δ

κ
Area

kT
T =

Electrical 
x

kj Ex ∂
Φ∂−=  ( ) ( )φξκξτ gf EE =,  ( ) 3

3
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κ
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kE
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=
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Notes: 
Symbols are defined in Tables I, II, and III. In addition: 
subscript x refers to fluxes in the positive x direction; 

xixjx σσσ −=Δ ; 

2
βα

ξ
TT

T
+

=  is the average temperature for the link connected to nodes � and �; 

2
βα

ξ
CC

C
+

=  is the average vacancy concentration for the link connected to nodes � and �; 

2
βα

ξ
DD

D
+

=  is the average diffusivity for the link connected to nodes � and �; 
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Figure 8: Quantities calculated from the one-dimensional peridynamic model at an elapsed time of 1 h:
electric field, current density (right ordinate), temperature, heat flux (right ordinate), strain, line area, and
vacancy flux (right ordinate). Electrons flow from left to right on these plots. The current flows from right
to left, as indicated by the negative values of electric field and current density. Heat flows from the center of
the line toward both ends. Atoms are driven from left to right by the electron wind, mainly near the center
of the line, where the temperature is highest.
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Figure 9: Quantities calculated from the one-dimensional peridynamic model at an elapsed time of 480 h.
The quantities shown are as in Fig. 8. Note that the line has narrowed to an area of only slightly more than
1 square μm, and that the magnitudes of electric field and current density are much higher at the narrow
region of the line than earlier in the development, before the line narrowed.
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Figure 10: One-dimensional peridynamic model
results for changes with time of maximum tem-
perature, minimum line area (right-hand ordi-
nate), and maximum current density (all at x =
35μm). The maximum temperature changes only
slightly in proportion to its value, while the min-
imum area decreases to near zero and the maxi-
mum current density increases by a factor of over
6 between elapsed times of 1 h and 480 h.

ilar crystallites and materials can potentially be
handled in a natural way.

A one-dimensional example problem employing
the proposed peridynamic method has been pre-
sented. This example has demonstrated that the
proposed method is capable of producing useful
results even on a minimally complex model. The
example demonstrates that the interdependent op-
eration of the four physical mechanisms is sim-
ulated even as the geometry of the line changes.
The results, Figs. 7-10, simulate a change in
geometry driven by temperature and the elec-
tron wind, and show the effects of the geometry
change on the temperature, electric field, and cur-
rent density. The geometry change, which in this
one-dimensional case can be visualized as a sim-
ple narrowing of the line, occurred naturally by

the operation of the model.

The potential strength of the peridynamic model
is in the simulation of three-dimensional prob-
lems exhibiting interfacial and cracking behavior.
We hope to present the application of the peridy-
namic model to such examples in a future paper.
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