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A Review on the Three-Dimensional Analytical Approaches of Multilayered
and Functionally Graded Piezoelectric Plates and Shells
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Abstract: The article is to present an overview
of various three-dimensional (3D) analytical ap-
proaches for the analysis of multilayered and
functionally graded (FG) piezoelectric plates and
shells. The reported 3D approaches in the liter-
ature are classified as four different approaches,
namely, Pagano’s classical approach, the state
space approach, the series expansion approach
and the asymptotic approach. Both the mixed
formulation and displacement-based formulation
for the 3D analysis of multilayered piezoelectric
plates are derived. The analytical process, based
on the 3D formulations, for the aforementioned
approaches is briefly interpreted. The present for-
mulations of multilayered piezoelectric plates can
also be used for the analysis of FG piezoelectric
plates, of which material properties are heteroge-
neous through the thickness coordinate, by artifi-
cially dividing the plate as NL-layered plates with
constant coefficients in an average sense for each
layer. The present formulations can also be ex-
tended to the ones of piezoelectric shells using the
associated shell coordinates. A comprehensive
comparison among the 3D results available in the
literature using various approaches is made. For
illustration, the through-thickness distributions of
various field variables for the simply-supported,
multilayered and FG piezoelectric plates are pre-
sented using the asymptotic approach and doubly
checked with a newly-proposed meshless method.
The literature dealing with the 3D analysis of mul-
tilayered and FG piezoelectric plates is surveyed
and included. This review article contains 191 ref-
erences.
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1 Introduction

Three-dimensional (3D) analysis of plates and
shells made of a variety of advanced materials
(or so-called smart materials) has attracted the re-
searchers’ attention for a long time. It is mainly
due to the fact that 3D solutions of the benchmark
problems may serve as a standard for assessing
various approximate two-dimensional (2D) theo-
ries of plates and shells. These 3D solutions also
provide as a reference for making the appropri-
ate kinetics or kinematics assumptions prior to de-
velop the advanced theories and numerical mod-
eling of plates and shells. Hence, 3D analysis is
inherently of much importance not only for aca-
demic interest but also for industrial applications.

The review literature on 2D theoretical method-
ologies and numerical modeling of multilay-
ered composite elastic as well as piezoelectric
plates/shells is surveyed and is tabulated in Table
1. It is shown that the number of review litera-
ture on laminated composite elastic plates/shells
is much larger than that on multilayered piezo-
electric plates/shells. After a close examination
in the literature, we found that the review litera-
ture on 3D analysis of multilayered and function-
ally graded (FG) elastic/piezoelectric structures is
scarce. Hence, the paper aims to making a com-
prehensive survey on the present topics to replen-
ish this insufficiency.

In general there are four different approaches,
namely Pagano’s classical approach, the state
space approach, the series expansion approach
and the asymptotic approach, drawn from the lit-
erature to determine the 3D solutions of multilay-
ered and FG piezoelectric (or elastic) plates and
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Table 1: Partial list of references on reviews for the analysis of multilayered elastic and piezoelectric struc-
tures

Structures Assessments Literature 

Multilayered composite plates  Mechanics Noor, 1992 

 Computational models  Liu and Soldatos, 2003; Noor and Burden, 1990a; 

  Subha, Shashidharan, Savithri and Syam, 2007 

 Mixed theories Carrera, 2000a, 2003 

 Displacement-based theories Liu and Li, 1996;   

  Matsunaga, 2002; 

  Noor and Burton, 1989;  

  Kant and Swaminathan, 2000 

 Bending Carrera and Ciuffreda, 2005 

 Thermal Carrera, 2000b 

 Vibration Carrera, 2004    

Multilayered composite shells Mechanics Kapania, 1989; 

  Noor, 1990 

 3D dynamic analysis Soldatos, 1994 

 Computational models Noor, and Burton, 1990b; 

  Noor, Burton and Peters, 1991

 Static Chandrashekhara and Pavan, 1995 

 Nonlinear Reddy and Chandrashekhara, 1987 

 Thermal Noor and Burton, 1992 

 Buckling Jaunky and Knight, 1999 

Multilayered piezoelectric plates Laminated plate theories Gopinathan, Varadan and Varadan, 2000 

 Computational models Tang, Noor and Xu, 1996 

 Thermal Tauchert, Ashida and Noda, 1999 

 Sensing, actuation and control Rao and Sunar, 1994; Chee et al., 1998 

Multilayered piezoelectric shells Laminated shell theories Kapuria, sengupta and Dumir, 1998;  

    Carrera and Brischetto, 2007 

  Computational models Saravanos and Heyliger, 1999 

 Nonlinear Yu, 1995; 

  Carrera and Parisch, 1997 

Others Nontraditional theories Ambartsumian, 2002 
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shells. The pioneers who initiated the applications
of various approaches to the structural behavior of
plates and shells were mentioned in each coming
paragraph. The existing articles on exact 3D anal-
yses of multilayered and FG elastic/ piezoelectric
structures were selectively mentioned in this sec-
tion and comprehensively surveyed and tabulated
in the coming sections, respectively.

The first approach is based on Pagano’s study
(Pagano, 1969) where a 3D problem of laminated
composite plates has been reduced as a plane
strain problem by considering an infinite plate
with the identical configuration and loading con-
ditions along one of in-plane coordinates which is
so-called the cylindrical bending problem. The
compatibility equation has been expressed as a
fourth-order ordinary differential equation with
constant coefficients for each individual layer and
in terms of the thickness coordinate only by in-
troducing an Airy stress function satisfying the
stress equilibrium equations in the formulation.
The 3D solution of laminated plates under cylin-
drical bending has been obtained by imposing the
traction conditions on the bottom and top sur-
faces and the continuity conditions at the inter-
faces between adjacent layers. This approach has
also been extended to the 3D structural behaviors
of rectangular laminated plates (Pagano, 1970;
Srinivas and Rao, 1970). However, Pagano’s clas-
sical approach fails to exactly analyze the shell
problems of which governing equations are a sys-
tem of differential equations with variable coeffi-
cients. A successive approximation (SA) method
has been proposed by Soldatos and Hadjigeorgiou
(1990) to overcome the aforementioned straits. In
the SA method, the shell is artificially divided
into certain layers of smaller thickness so that
one may reasonably approximate the system of
thickness-varying differential equations to a sys-
tem of thickness-invariant differential equations.
That makes Pagano’s classical approach feasible
for the 3D analysis of shells. The SA method
has been demonstrated to be practically an ex-
act method in the sense that it can approximate
the exact solution of relevant problems to any de-
sired accuracy. Using the Pagano’s classical ap-
proach in combination with the SA method and

matching the interface displacement and stress
continuity conditions, Bhimaraddi (1991, 1993)
and Bhimaraddi and Chandrashekhara (1992) ob-
tained the approximate 3D solutions for the static
and dynamic responses of simply-supported, dou-
bly curved shallow shells.

The second approach is based on the state space
method which is also called the method of trans-
fer (or propagator) matrix (Bufler, 1971) or the
method of initial functions (Vlasov, 1957). In
the approach, the sets of state variable equations
with constant coefficients for plates and with vari-
able coefficients for shells have been obtained by
means of direct elimination. Using a modal ma-
trix composed of the eigenvectors of a full coef-
ficient matrix of the coupled system of state vari-
able equations and performing a similarity trans-
formation, one may transform the coupled sys-
tem equations to certain uncoupled system equa-
tions. Afterwards, the unknowns can be inde-
pendently determined. Again, for shell problems,
the SA method has been used to reduce the sys-
tem of thickness-varying equations to a series of
thickness-invariant equations. By imposing the
boundary conditions on the lateral surfaces of the
plates or shells, one may determine the state vari-
ables through the thickness coordinate using the
method of transfer matrix. A detailed descrip-
tion of the method of state space and its applica-
tions to the bending, vibration, buckling analyses
of laminated composite plates and shells has been
made (Soldatos and Hadjigeorgiou, 1990; Fan and
Ye, 1990a, b; Fan and Zhang, 1992; Spencer et
al., 1993; Ye and Soldatos, 1994a, b, 1995; Pan,
2003; Ye, 2003; Tarn and Wang, 2001, 2003,
2004).

The third approach is based on the series expan-
sion method, i.e., the method of Frobenius, where
the primary variables have been constructed in
the forms of a power series in the thickness co-
ordinate (Ren, 1987, 1989; Varadan and Bhasksr,
1991; Huang and Tauchert, 1991, 1992; Huang,
1995). Substituting these specific forms of pri-
mary variables into the system differential equa-
tions and equating the coefficients of various
power terms to be zero, one may obtain an in-
dicial equation and a recurrence relation. Again,
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imposing both the continuity conditions at inter-
faces between adjacent layers and traction condi-
tions on the lateral surfaces, one may iteratively
solve for the considered 3D problems. Kapuria et
al. (1997a, b) and Xu and Noor (1996) proposed
a modified Frobenius method for the 3D analysis
of multilayered piezoelectric shells where the pri-
mary field variables have been constructed in the
form of a product of an exponential function and
a power series in the thickness coordinate. The
method of modified Frobenius has been demon-
strated to yield better convergence properties.

The fourth approach is based on the method of
perturbation (Gol’denvaizer, 1961, 1963; Cicala,
1965; Rogers et al., 1992, 1995; Wang and Tarn,
1994; Wu, et al., 1996a, 1997, 2002). In the ap-
proach, a geometric perturbation parameter has
been introduced in the asymptotic formulation.
The 3D problems can be expanded as a series of
2D problems governed by the equations of classi-
cal plate or shell theories (CPT or CST). The 3D
solutions can then be determined in a hierarchic
and systematic manner. Studies of the dynamic
analysis of nonhomogeneous plates by means of
the method of perturbation were presented long
ago (Widera, 1970; Johnson and Widera, 1971).
In their formulation a straightforward expansion
using a single time variable has been used and cer-
tain assumptions regarding the material compli-
ances have been made. No numerical results have
been given to demonstrate the applicability of
their theories due to a rather complicated formu-
lation. Asymptotic analysis for dynamic response
of nonhomogeneous plates and shells is not just
a matter of applying the standard perturbation
method. This will lead to not only equations too
cumbersome to be useful but also nonuniform ex-
pansions containing secular terms. The method
of multiple scales was therefore introduced in the
3D asymptotic formulations of laminated plates
and shells to eliminate the secular terms raised
from the regular asymptotic expansions (Tarn and
Wang, 1994; Wu et al., 1996b, 1998). The pre-
vious asymptotic approach was successfully ex-
tended to various benchmark problems for the
bending, thermoelastic, vibration, buckling, dy-
namic instability and nonlinear analyses of lam-

inated composite elastic plates and shells (Tarn
and Wang, 1995; Tarn, 1996, 1997; Wu and Chi,
1999, 2004, 2005; Wu and Hung, 1999; Wu and
Lo, 2000; Wu and Chiu, 2001, 2002; Wu and
Chen, 2001).

The extension of aforementioned approaches to
3D analysis of multilayered and FG piezoelectric
structures was completely collected and tabulated
in the following sections. Several representa-
tive articles dealing with 3D numerical modeling
of multilayered and FG piezoelectric (or elastic)
structures were also mentioned. For illustration
the mathematical equations, based on the mixed
formulation and the displacement-based formula-
tion, for the 3D analysis of multilayered piezo-
electric plates were derived. The analytical pro-
cess using various approaches was briefly inter-
preted. Comparisons of the 3D results of elastic
and electric field variables obtained from a vari-
ety of approaches were also presented.

2 Basic equations of 3D Piezoelectricity

As shown in Fig. 1, we consider a simply-
supported, multilayered piezoelectric plate of
which thickness is 2h. The in-plane dimensions
in x1 and x2 directions are L1 and L2.

The linear constitutive equations valid for the na-
ture of symmetry class of the piezoelectric mate-
rial are given by

⎧⎪⎪⎪⎪⎪⎪⎨
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Figure 1: (a) The geometry and coordinates of a piezoelectric plate; (b) The configuration of section A-A
and the dimensionless thickness coordinate.
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where σ1, σ2, σ3, τ13, τ23, τ12 and ε1, ε2, ε3, γ13,
γ23, γ12 denote the stress and strain components,
respectively; (D1,D2,D3) and (E1,E2,E3) denote
the components of electric displacement and elec-
tric field, respectively. ci j, ei j and ηi j are the elas-
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tic coefficients, piezoelectric and dielectric per-
meability coefficients, respectively, relative to the
geometrical axes of the plate. The material prop-
erties are considered to be layerwise constants.

The kinematic equations in terms of the curvilin-
ear coordinates x1, x2 and x3 are

ε1 = u1,1, ε2 = u2,2, ε3 = u3,3

γ13 = u1,3 +u3,1, γ23u2,3 +u3,2,

γ33 = u3,3 +u3,3 (3)

in which u1, u2 and u3 are the displacement com-
ponents.

The stress equilibrium equations without body
forces are given by

σ1,1 +τ12,2 +τ13,3 = 0, (4)

τ12,1 +σ2,2 +τ23,3 = 0, (5)

τ13,1 +τ23,2 +σ3,3 = 0. (6)

The equation of electrostatics is

D1,1 +D2,2 +D3,3 = 0. (7)

The relations between the electric field and elec-
tric potential are

E1 = −Φ,1 , E2 = −Φ,2 , E3 = −Φ,3 , (8)

where Φ denotes the electric potential.

The boundary conditions of the problem are spec-
ified as follows:

On the lateral surface the transverse load and the
electric potential (or the normal electric displace-
ment) are prescribed and given by

[τ13 τ23 σ3 φ ] =
[
0 0 q± φ±]

on ζ =±h (for closed-circuit surface conditions),
(9)

[τ13 τ23 σ3 D3] =
[
0 0 q±3 D

±
3

]
on z = ±h(for open-circuit surface conditions).

(10)

The edge boundary conditions of the shells are
considered as fully simple supports with electri-
cally grounded and are given by

sigma1 = u2 = u3 = φ = 0 at x1 = 0 and x1 = L1

(11a)

σ2 = u1 = u3 = φ = 0textatx2 = 0 and x2 = L2

(11b)

It is noted that Eqs. (1)–(11) represent twenty-
two basic equations in twenty-two unknowns with
a set of appropriate boundary conditions for the
3D analysis of a simply-supported, multilayered
piezoelectric plate.

3 Nondimensionalization

For making the calculation more efficient and pre-
venting from the ill-conditioned of system matrix,
we select a set of dimensionless variables to nor-
malize the coordinates and the variables of elec-
tric and elastic fields. The dimensionless variables
are given as

x = x1/L, y = x2/L, z = x3/h,

u = u1/h, v = u2/h, w = u3/L,

σx = Lσ1/(hQ), σy = Lσ2/(hQ),

τxy = Lτ12/(hQ), τxz = L2τ13/h2Q,

τyz = L2τ23/h2Q, Dx = hD1/(Le), ,

Dy = hD2/(Le), Dz = LD3/(he),

φ = LeΦ/(h2Q), σz = L3σ3/(h3Q) (12)

where L denotes a typical in-plane dimension of
the plate and is taken to be L =

√
L1L2 in the pa-

per; −1 ≤ z ≤ 1; e and Q stand for a reference
piezoelectric and elastic modulus; Q is taken as
Q = (1/2h)

∫ h
−h c33dx3.

4 Direct Elimination

4.1 The mixed formulation

In the mixed formulation, the elastic displace-
ments (u, v, w), transverse stresses (τxz, τyz, σz),
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the electric potential (φ ) and the normal elec-
tric displacement (Dz) are regarded as the pri-
mary variables. Other fourteen variables are the
dependent variables and can be determined by
the primary variables. By means of introducing
the set of dimensionless coordinates and variables
(Eq. (12)) and then performing the direct elimina-
tion, we may rewrite the basic 3D piezoelectricity
equations (Eqs. (1)–(8)) as a system of eight par-
tially differential equations in terms of eight pri-
mary variables as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u,z
v,z

σz,z
Dz,z
τxz,z
τyz,z
w,z
φ ,z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 d15 0 d17 d18

0 0 0 0 0 d26 d27 d28

0 0 0 0 d17 d27 0 0
0 0 0 0 d18 d28 0 d48

d51 d52 d53 d54 0 0 0 0
d61 d62 d63 d64 0 0 0 0
d53 d63 d73 d74 0 0 0 0
d54 d64 d74 d84 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
v
σz

Dz

τxz

τyz

w
φ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (13)

where

d15 = Qh2/c55L2, d17 = −∂x,

d18 = −Qe15h2∂x/c55eL2, d26 = Qh2/c44L2,

d27 = −∂y, d28 = −Qe24h2∂y/c44eL2,

d48 = (c−1
55 e2

15 +η11)(Qh2/e2L2)∂xx

+(c−1
44 e2

24 +η22)(Qh2/e2L2)∂yy,

d51 = −(Q̃11∂xx + Q̃66∂yy),

d52 = −(Q̃12 + Q̃66)∂xy, d53 = −a1(h2/L2)∂x,

d54 = −b1(e/Q)∂x; d61 = (Q̃21 + Q̃66)∂xy,

d62 =−(Q̃66∂xx +Q̃22∂yy), d63 =−a2(h2/L2)∂y,

d64 = −b2(e/Q)∂y, d73 = ηQ(h4/L4),

d74 = eeh2/L2; d84 = −ce2
0/Q,

c = c33/
(
e2

33 +η33c33
)
,

e = e33/
(
e2

33 +η33c33
)
,

η = η33/
(
e2

33 +η33c33
)
,

Qi j = ci j −a jci3 −b je3i (i, j = 1,2,6),

Q̃i j = Qi j/Q,

ai = (e33e3i +η33ci3)/
(
e2

33 +η33c33
)
,

bi = (e33ci3 −c33e3i)/
(
e2

33 +η33c33
)
.

The dimensionless form of boundary conditions
of the problem are specified as follows:

On the lateral surface the transverse load and elec-
tric potential (or the normal electric displacement)
are given by

[τxz τyz σz φ ] =[
0 0 (q±3 L3/h3Q) (Φ±

Le/h2Q)
]

on z = ±1

(for closed-circuit surface conditions), (14)

[τxz τyz σz Dz] =[
0 0 (q±3 L3/h3Q) (D

±
z L/he)

]
on z = ±1

(for open-circuit surface conditions). (15)

At the edges, the boundary conditions are given
by

σx = v = w = φ = 0 at x = L1/L; (16a)

σy = u = w = φ = 0 at y = 0 and y = L2/L. (16b)

The method of double Fourier series expansion is
firstly applied to transform the system of partial
differential equations (Eq. (13)) into a system of
ordinary differential equations. In order to satisfy
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the edge boundary conditions, we express the pri-
mary variables in the following form

(u,τxz) =
∞

∑
m=1

∞

∑
n=1

(umn(z),τxzmn(z))cosm̃xsin ñy, (17)

(v,τyz) =
∞

∑
m=1

∞

∑
n=1

(vmn(z),τyzmn(z)) sinm̃xcos ñy, (18)

(w,σz,φ ,Dz) =
∞

∑
m=1

∞

∑
n=1

(wmn(z),σzmn(z),φmn(z),Dzmn(z))

sinm̃xsin ñy, (19)

where m̃ = mπL/L1 and ñ = nπL/L2; m and n are
positive integers.

For brevity, the symbols of summation are omit-
ted in the following derivation. Substituting Eqs.
(17)–(19) in the basic 3D equations (Eq. (13)), we
may yield the resulting equations as follows:

d
dz

F(z) = DF(z), (20)

where F(z) is called the state vec-
tor of the plate and given as F(z) =
{umn vmn σzmn Dzmn τxzmn τyzmn wmn φmn}T ; D
is the relevant coefficient matrix which is a con-
stant coefficient matrix for plates and a variable
coefficient matrix for shells.

Similarly, the dimensionless dependent variables
of in-plane stresses and in-plane electric displace-
ments can be expressed in terms of the primary
variables as follows:

(σx,σy) =
∞

∑
m=1

∞

∑
n=1

(σxmn(z),σymn(z))sinm̃xsin ñy, (21)

τxy =
∞

∑
m=1

∞

∑
n=1

τxymn(z)cosm̃xcos ñy, (22)

Dx =
∞

∑
m=1

∞

∑
n=1

Dxmn(z)cosm̃xsin ñy, (23)

Dy =
∞

∑
m=1

∞

∑
n=1

Dymn(z) sinm̃xcos ñy, (24)

where

⎧⎨
⎩

σxmn

σymn

τxymn

⎫⎬
⎭=

⎡
⎣l11 l12

l21 l22

l31 l32

⎤
⎦{umn

vmn

}
+

⎡
⎣l13

l23

0

⎤
⎦σzmn +

⎡
⎣l14

l24

0

⎤
⎦Dzmn,

{
Dxmn

Dymn

}
=
[

l41 0
0 l52

]{
σxzmn

σyzmn

}
+
[

l43

l53

]
φmn,

li j are the relevant coefficients and given in Ap-
pendix A.

Eq. (20) represents a system of eight simultane-
ously linear first-order ordinary differential equa-
tions in terms of eight primary variables. Vari-
ous approaches have been applied to determine
the primary variables in the elastic and electric
fields in the literature. Once these primary vari-
ables are determined, the dependent variables can
then be calculated using Eqs. (21)–(24).

4.2 The displacement-based formulation

In the displacement-based formulation, the elastic
displacements (u, v, w) and the electric potential
(φ ) are regarded as the primary variables. Simi-
larly, by means of introducing the set of dimen-
sionless coordinates and variables and then per-
forming the double Foruier series expansion and
the direct elimination, we may rewrite the basic
3D piezoelectricity equations (Eqs. (1)–(8)) as a
system of four ordinally differential equations in
terms of four primary variables as follows:

P
d2G
dz2

+Q
dG
dz

+RG = 0, (25)

where

G =
{

umn vmn wmn φmn
}T

,

P =

⎡
⎢⎢⎣

p11 0 0 0
0 p22 0 0
0 0 p33 p34

0 0 p34 p44

⎤
⎥⎥⎦ ,
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Q =

⎡
⎢⎢⎣

0 0 q13 q14

0 0 q23 q24

q13 q23 0 0
q14 q24 0 0

⎤
⎥⎥⎦ ,

R =

⎡
⎢⎢⎣

r11 r12 0 0
r12 r22 0 0
0 0 r33 r34

0 0 r34 r44

⎤
⎥⎥⎦ ,

p11 = c55/Q, p22 = c44/Q, p33 = c33L2/Qh2,

p34 = −e33/e, p44 =
(
η33Qh2)/

(
e2L2) ,

q13 = m̃(c13 +c55)/Q,

q14 = m̃(e31 +e15)h2/
(
eL2) ,

q23 = ñ(c23 +c44)/Q,

q24 = ñ(e32 +e24)h2/
(
eL2) ,

r11 = −(
m̃2c11 + ñ2c66

)
h2/

(
QL2) ,

r12 = −m̃ñ(c12 +c66)h2/
(
QL2) ,

r22 = −(m̃2c66 + ñ2c22)h2/
(
QL2) ,

r33 =
(
m̃2c55 + ñ2c44

)
/Q,

r34 = (m̃2e15 + ñ2e24)h2/
(
eL2) ,

r44 = −(m̃2η11 + ñ2η22)Qh4/
(
e2L4) .

The dependent variables can be determined by the
previous primary variables using Eqs. (1)–(8),
(17)–(19) and Eqs. (21)–(24), and they are given
by

⎧⎨
⎩

σxmn

σymn

τxymn

⎫⎬
⎭=

⎡
⎣l11 l12

l21 l22

l31 l32

⎤
⎦{umn

vmn

}
+

⎡
⎣l13

l23

0

⎤
⎦ dwmn

dz
+

⎡
⎣l14

l24

0

⎤
⎦ dφmn

dz
,

(26)

{
τxzmn

τyzmn

}
=

[
l41 0
0 l52

]{dumn
dz

dvmn
dz

}
+
[

l43

l53

]
wmn +

[
l44

l54

]
φmn,

(27)

{
Dxzmn

Dyzmn

}
=

[
l61 0
0 l72

]{dumn
dz

dvmn
dz

}
+
[

l63

l73

]
wmn +

[
l64

l74

]
φmn,

(28)

{
σzmn

Dzmn

}
=[

l81 l82

l91 l92

]{
umn

vmn

}
+
[

l83

l93

]
dwmn

dz
+
[

l84

l94

]
dφmn

dz
,

(29)

where li j are the relevant coefficients and are
given in Appendix B.

5 3D analytical approaches

5.1 The Pagano’s classical approach

Based on the Pagano’s classical approach, the pri-
mary variables in the displacement-based formu-
lation are assumed as

G(z) = Geλz. (30)

Substituting Eq. (30) into Eq. (25) leads to an
eighth-order polynomial equation as

A1λ 8 +A2λ 6 +A3λ 4 +A4λ 2 +A5 = 0, (31)

where Ai (i = 1−5) are the relevant coefficients
of the polynomial.

The roots of Eq. (31) must be functions of the ma-
terial properties and the laminate geometry. The
roots can therefore be real, imaginary or com-
plex. By using the material properties of a typical
k-th layer, one may obtain the eigenvalues λ (k)

i
(i = 1− 8) and their corresponding eigenvectors

G
(k)
i (i=1–8) from Eqs. (31) and (30). The gen-

eral solutions of primary unknowns of k-th layer
can then be written by

G(k)(z) =
8

∑
i=1

α (k)
i G

(k)
i eλ (k)

i z

(k = 1,2, . . .,NL; zk−1 ≤ z ≤ zk), (32)

where α (k)
i (i=1–8 and k=1–NL) are the undeter-

mined coefficients. For a NL-layered plate, totally
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there are (8×NL) undetermined coefficients in Eq.
(32).

It is noted that the eigenvalues in Eq. (32) can
be obtained in a certain pair of complex conju-
gate as λ1,2 = Re(λ)± Im(λ) and their corre-
sponding eigenvectors are G1,2 = Re(G)± Im(G)
where λ is a certain complex eigenvalue and its
corresponding eigenvector is G. There is nothing
wrong with those complex-valued solutions (i.e.,
G1,2). However, we may prefer to replace them
with two linearly independent solutions involving
only real-valued quantities and they are given by

G1 = eRe(λ)z(
Re(G)cos(Im(λ)z)− Im(G) sin(Im(λ)z)

)
,

(33a)

G2 = eRe(λ)z(
Re(G) sin(Im(λ)z)+ Im(G)cos(Im(λ)z)

)
.

(33b)

The problem also supply with (8×NL) conditions
for determining α (k)

i in Eq. (32). There are four
boundary conditions at each lateral surface (i.e.,
either Eqs. (14) or (15)) and eight interfacial con-
tinuity conditions at interfaces between adjacent
layers such that

F(k)(z = zk) = F(k+1)(z = zk)
(k = 1,2, . . ., (NL−1)), (34)

where zk denotes the dimensionless thickness co-
ordinate measured from the mid-plane of the plate
to the top surface of the kth-layer (see Fig. 1); F(k)

can be calculated from G(k).

The complementary solutions of primary vari-
ables of each layer can be determined by impos-
ing the applied lateral surface conditions and the
continuity conditions at interfaces between adja-
cent layers. Afterwards, the dependent variables
can be obtained using Eqs. (26)-(29).

The Pagano’s classical approach originally pro-
posed for the 3D analyses of laminated compos-
ite elastic plates was extendedly used for a vari-
ety of 3D structural analyses of multilayered and

FG piezoelectric plates and shells. The static
behaviors of simply-supported laminated piezo-
electric cylinders, plates and strips were studied
by Heyliger (1994, 1997a, b) and Heyliger and
Brooks (1996), respectively. The free vibration
and cylindrical bending vibration of multilayered
piezoelectric plates were analyzed by Heyliger
and Saravanos (1995) and Heyliger and Brooks
(1995), respectively. A partial publication list of
relevant studies using the Pagano’s classical ap-
proach is classified and tabulated in Table 2.

5.2 The state space approach

On the basis of the mixed formulaion, one may
express the primary variables of the typical kth-
layer as

d
dz

F(z) = DkF(z) zk−1 ≤ z ≤ zk, (35)

where Dk is a 8x8 constant coefficient matrix
for the kth-layer; zk−1 denotes the dimension-
less thickness coordinate measured from the mid-
plane of the plate to the bottom surface of the kth-
layer (see Fig. 1).

With a known state vector at the bottom surface of
the kth-layer (Fk−1), the solution of equation (35)
is

F(z) = eDk(z−zk−1)Fk−1

= MkeΛk(z−zk−1)M−1
k Fk−1

, (36)

where Mk is the modal matrix of Dk consist-
ing of eight independent eigenvectors; Fk−1 =
F(z = zk−1); eΛkz is a 8x8 diagonal matrix and

given by eΛkz =

⎡
⎢⎢⎢⎣

eλ1z 0 . . . 0
0 eλ2z . . . 0
...

...
. . .

...
0 0 . . . eλ8z

⎤
⎥⎥⎥⎦ in which

λ1,λ2, . . .,λ8 are the set of eigen values of Dk.

According to Eq. (36), the state vector within the
kth-layer can be determined. The state vector of
the top surface of the kth-layer is then determined
as follows.

Fk = RkFk−1, (37)

where Fk = F(zk); Rk = MkeΛkhkM−1
k .
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Table 2: Partial list of references on 3D analysis of single-layer homogeneous, multilayered and FG piezo-
electric plates using Pagano’s classical approach

Problems Literature 

Static: Ray, Rao and Samanta, 1992, 1993; Ray, Bhattacharya and Samanta, 1993;  

 Heyliger, 1994; Heyliger and Brooks, 1996; Heyliger, 1997a, b  

Thermal: Ootao and Tanigawa, 2000a, b 

Vibration:  Heyliger and Brooks, 1995; Heyliger and Saravanos, 1995; Batra and Liang, 1997; 

 Ray, Bhattacharya and Samanta, 1998; Vel, Mewer and Batra, 2004; Cupial, 2005             

Others:   Kapuria, Dumir and Sengupta, 1999               

By analogy, the state vectors between the top and
bottom surfaces of the shell are linked by

FNL = RNLF(NL−1)

= RNLR(NL−1) . . .R1F0
. (38)

By defining a symbol of consectutive multiplica-
tion, we rewrite Eq. (38) in the form of

FNL =

(
NL

∏
k=1

Rk

)
F0, (39)

where
NL
∏

k=1
Rk = RNLR(NL−1) . . .R2R1.

Equation (39) represents a set of simultaneous al-
gebraic equations. After imposing the boundary
conditions prescribed on the lateral surfaces, we
can determine the other unknowns in state vec-
tors of lateral surfaces of the plate. After then,
the state vector through the thickness coordinate
of the shell can be obtained by

F(z) = MkeΛk(z−zk−1)M−1
k Fk−1

= MkeΛk(z−zk−1)M−1
k

(
k−1

∏
i=1

Ri

)
F0

. (40)

Equations (39)-(40) provide the 3D solutions of a
system of the state equations.

The state space approach in conjunction with the
method of transfer matrix has been used for a va-
riety of 3D structural analyses of multilayered and
FG piezoelectric plates and shells. Vel and Batra
(2001a, b) presented exact solutions for the cylin-
drical bending of laminated plates and for rectan-
gular sandwich plates, respectively, with embed-
ded piezoelectric shear actuators. Exact solutions

for the static, piezothermoelectric and vibration
analyses of the simply-supported, FG piezoelec-
tric plates were presented by Zhong and Shang
(2003, 2005) and Zhong and Yu (2006), respec-
tively. Chen et al. (2001a, b) studied the static
and free vibration problems of a fluid-filled piezo-
ceramic hollow sphere. A partial publication list
of relevant studies is classified and tabulated in
Table 3.

5.3 The series expansion approach

As we previously mentioned, the systems of
differential equations derived from both the
displacement-based formulation and the mixed
formulation are the ones with constant coeffi-
cients for plates and with variable coefficients for
shells. Pagano’s classical approach fails to ex-
actly analyze the system of thickness-varying dif-
ferential equations. Hence, the series expansion
method becomes a feasible analytical approach
for shell problems.

5.3.1 Frobenius series expansion

For the Frobenius series expansion approach
(Huang and Tauchert, 1992), the primary vari-
ables in the displacement-based formulation are
expressed in the following form

G(z) = zp
∞

∑
q=0,1,2

Gqzq. (41)

Substituting Eq. (41) into Eq. (25), and equating
the coefficients of the smallest power to zero lead
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Table 3: Partial list of references on 3D analysis of single-layer homogeneous, multilayered and FG piezo-
electric structures using the state space approach

Problems Literature 

Static (Plates):  Brissaud, 1996; Lee and Jiang, 1996; Bisegna and Maceri, 1996;  

  Ding, Xu and Guo, 1999; Benjeddou and uDe , 2001; Vel and Batra, 2001a, b; Zhong and Shang, 

2003; Chen, Cai, Ye and Wang, 2004;  

  Chen, Ying, Cai and Ye, 2004; Lu, Lee and Lu, 2005, 2006  

 (Shells): Chen, Ding and Xu, 2001a; Wu and Liu, 2007  

Thermal (Plates):  Xu, Noor and Tang, 1995; Tarn, 2002; Zhong and Shang, 2005  

  (Shells): Xu and Noor (1996)    

Vibration (Plates):  Yang, Batra and Liang, 1994; Batra, Liang and Yang, 1996; 

  Xu, Noor and Tang, 1997; Ding, Xu and Chen, 2000; Chen and Ding, 2002; uDe and Benjeddou, 

2005; Zhong and Yu, 2006  

 (Shells):  Chen and Wang, 2002 

Buckling (Plates):  Kapuria and Achary, 2004 

Others (Plates):  Kapuria and Achary, 2005; Sheng, Wang and Ye, 2007  

 (Shells):  Chen, Ding and Xu, 2001b; Wang and Zhong, 2003; Chen, Bian and Ding, 2004               

to an indicial equation of the differential equa-
tions (Eq. (25) and a recurrence relation relating
(Gq, (q = 1,2, . . .,∞)) to G0. The indicial equa-
tion is used to determine the values of p where pi

(i = 1−8). Hence, the complementary solution of
Eq. (25) for a typical kth-layer can then be written
as

G(k)(z) =
8

∑
i=1

B(k)
i zp(k)

i

∞

∑
q=0,1,2

G
(k)
q zq. (42)

Again, the unknown coefficients B(k)
i (i =

1,2, . . .,8; k = 1,2, . . .,NL)are determined from
the generalized traction conditions on the lateral
surface conditions (Eqs. (14)–(15)) and continu-
ity conditions at the interfaces between adjacent
layers (Eq. (34)).

5.3.2 Modified Frobenius series expansion

For the modified Frobenius series expansion ap-
proach (Kapuria et al., 1997a, b; Xu and Noor,
1996), the primary variables in the mixed formu-

lation are expressed in the following form

F(z) = epz
∞

∑
q=0,1,2

Fqzq. (43)

Substituting Eq. (43) into Eq. (20), and equating
the coefficients of each power of z to zero lead to
a characteristic equation solving for p where pi

(i = 1− 8). The complementary solution of Eq.
(20) for a typical kth-layer is the sum of the eight
solutions for the eight values of pi (i = 1−8) and
can then be written as

F(k)(z) =
8

∑
i=1

C(k)
i ep(k)

i z
∞

∑
q=0,1,2

Fqzq. (44)

Again, the unknown coefficients C(k)
i (i =

1,2, . . .,8; k = 1,2, . . .,NL) are determined from
the generalized traction conditions on the lateral
surface conditions and continuity conditions at the
interfaces between adjacent layers.

The modified Frobenius method has been used for
a variety of 3D structural analyses of multilayered
and FG piezoelectric plates and shells. Kapuria
et al. (1997a) presented exact solutions for the
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Table 4: Partial list of references on 3D analysis of single-layer homogeneous, multilayered and FG piezo-
electric shells using the series expansion approach

Problems Literature 

Static:  Chen, Shen and Wang, 1996; Dumir, Dube and Kapuria, 1997;  

 Kapuria, Dumir and Sengupta, 1997a; Kapuria, Sengupta and Dumir, 1997a;  

 Heyliger, 1997a; Chen, Shen and Liang, 1999 

Thermal: Dube, Kapuria and Dumir, 1996a, b; Kapuria, Sengupta and Dumir, 1997b;  

 Kapuria, Dumir and Sengupta, 1997b; Wu, Shen and Chen, 2003 

Vibration: Chen and Shen, 1998; Hussein and Heyliger, 1998  

Others:  Chen, Ding and Liang, 2001                  

coupled electro-elastic analysis of a piezoelectric
cylindrical shell under axisymmetric load. Ka-
puria, Sengupta and Dumir (1997b) and Kapuria,
Dumir and Sengupta (1997b) studied for the 3D
piezothermoelastic analyses of simply-supported,
multilayered piezoelectric cylindrical shells un-
der axisymmetric and nonaxisymmetric thermo-
electric loads, respectively. A partial publication
list of relevant studies using the series expansion
approach is classified and tabulated in Table 4.

5.4 The asymptotic approach

On the basis of the asymptotic approach, a per-
turbation parameter ∈ (∈2= h/L) is introduced in
the mixed formulation. The primary variables are
then asymptotically expanded in the powers ε2 as
follows (Nayfeh, 1981):

f (x,y, z,ε) = f (0)(x,y, z)+ε2 f (1)(x,y, z)

+ ε4 f (2)(x,y, z)+ . . .. (45)

Substituting Eq. (45) into the basic 3D equations
(Eq. (20)), collecting coefficients of equal powers
of ε and performing the successive integration to
the resulting equations of various order problems
through the thickness coordinate, we finally ob-
tain the recursive sets of governing equations of
various order problems as follows:

5.4.1 Plates with open-circuit surface condi-
tions

In the cases of plates with open-circuit surface
conditions, the governing equations of various or-

der problems are (Wu and Syu, 2007)

K11uk +K12vk +K13wk +K14Dk
z = f1k(1), (46)

K21uk +K22vk +K23wk +K24Dk
z = f2k (1) , (47)

K31uk +K32vk +K33wk +K34Dk
z

= f3k(1)−m f1k(1)−n f2k(1), (48)

K41uk +K42vk +K43wk +K44Dk
z = f4k (1) , (49)

where Ki j (i, j=1-4) are the relevant differential
operators; fik (k = 0,1,2, . . .) are the revelant
functions and f10 = f20 = 0, f30 = q+

z −q−z , f40 =
D

+
z −D

−
z .

The boundary conditions for various order prob-
lems are specified as follows:

On the lateral surface the transverse loads and
normal electric displacement are given by[

τ (0)
xz τ (0)

yz σ (0)
z D(0)

z

]
=
[
0 0 q±z D±

z

]
on z = ±1; (50a)

[
τk

xz τk
yz σ (k)

z D(k)
z

]
= [0 0 0 0]

(k = 1,2,3, . . .) on z = ±1; (50b)

Along the edges, the boundary conditions are
given by

σ (k)
x = v(k) = w(k) = φ (k) = 0 (k = 1,2,3, . . .)

at x = 0 and y = L1/L. (51a)

σ (k)
y = u(k) = w(k) = φ (k) = 0 (k = 1,2,3, . . .)

at y = 0 and y = L2/L. (51b)
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5.4.2 Plates with closed-circuit surface condi-
tions

In the cases of plates with closed-circuit surface
conditions, the governing equations of various or-
der problems are (Wu and Syu, 2007)

L11uk +L12vk +L13wk +L14φ k = g1k(1), (52)

L21uk +L22vk +L23wk +L24φ k = g2k (1) , (53)

L31uk +L32vk +L33wk +L34φ k

= g3k(1)−mg1k(1)−ng2k(1), (54)

L41uk +L42vk +L43wk +L44φ k = g4k (1) , (55)

where Li j (i, j=1–4) are the relevant differential
operators; gik (k = 0,1,2, . . .) are the revelant
functions and g10 = g20 = 0, g30 = q+

z −q−z , g40 =
φ+−φ−

.

The boundary conditions for various order prob-
lem are specified as follows:

On the lateral surface the transverse loads and
electric potential are given by

[
τ (0)

xz τ (0)
yz σ (0)

z φ (0)
]

=
[
0 0 q±z φ±]
on z = ±1; (56a)

[
τ (k)

xz τ (k)
yz σ (k)

z φ (k)
]

=
[
0 0 q±z φ±]
on z = ±1; (56b)

Along the edges, the boundary conditions are
given by

σ (k)
x = v(k) = w(k) = φ (k) = 0 (k = 1,2,3, . . .)

at x = 0 and x = L1/L, (57a)

σ (k)
y = u(k) = w(k) = φ (k) = 0 (k = 1,2,3, . . .)

at y = 0 and y = L2/L. (57b)

By observation of the governing equations of vari-
ous order problems, we found that the differential
operators among the various order problems re-
main identical and the nonhomogeneous terms of
higher-order problems can be calculated from the

lower-order solutions. Hence, it is shown that the
solution process of the leading-order problem can
be repeatedly applied to the higher-order prob-
lems. The asymptotic solutions can be determined
order-by-order in a hierarchic and consistent man-
ner.

Recently, the asymptotic approach has been used
for the 3D static analyses of laminated piezoelec-
tric plates (Cheng and Batra, 2000a, 2000b), of
laminated piezoelectric shells (Wu, Lo and Chao,
2005; Wu and Syu, 2006; Wu, Syu and Lo, 2007).
The approach was further applied to determine ex-
act solutions for the static and cylindrical bending
vibration analyses of FG piezoelectric cylindrical
shells (Wu and Syu, 2007; Wu and Tsai, 2008). A
partial publication list of relevant studies using the
asymptotic approach is classified and tabulated in
Table 5.

5.5 Supplementary remarks

5.5.1 Material properties

Without loss of the generality, the material prop-
erties can be considered as heterogeneous varying
through the thickness coordinate in the aforemen-
tioned formulations. The structural behavior of
single-layer homogeneous, multilayered and FG
plates and shells can be studied by assuming ap-
propriate material–property variations through the
thickness coordinate. The 3D analysis of several
types of FG plates and shells studied in the litera-
ture with specific material-property variations are
given as follows:

Type 1–single-layer homogeneous plates and
shells.

For a Type 1 pate or shell, the material properties
are assumed as homogeneous, independent upon
the thickness coordinate, and are given by

mi j (z) = mi j, (58)

where mi j = ci j , ei j , ηi j, etc.

Type 2–multilayered plates and shells.

For a Type 2 plate or shell, the material properties
are assumed to be layerwise Heaviside functions
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Table 5: Partial list of references on 3D analysis of single-layer homogeneous, multilayered and FG piezo-
electric structures using the asymptotic approach

Problems Literature 

Static  (Plates):  Cheng, Lim and Kitipornchai, 1999, 2000; Cheng and Batra, 2000a; 

  Kalamkarov and Kolpakov, 2001 

(Shells):  Cheng, Reddy, 2002; Wu, Lo and Chao, 2005; Wu and Syu, 2006; 

  Wu and Syu, 2007; Wu, Syu and Lo, 2007 

Thermal (Plates): Cheng and Batra, 2000b 

Vibration (Plates):  Cheng and Reddy, 2003 

 (Shells):  Wu and Lo, 2006; Wu and Tsai, 2008 

and are given by

mi j(z) =
NL

∑
k=1

m(k)
i j [H(z− zk−1)−H(z− zk)] , (59)

where H(z) is the Heaviside function; zk−1 and
zk denote the dimesionless thickness coordinate
measured from the middle surface of the structure
to the bottom and top surfaces of the kth-layer.

Type 3–exponent-law varied, functionally graded
plates and shells.

For a Type 3 plate or shell, the material properties
are assumed to obey the identical exponent-law
varied exponentially with the thickness coordinate
and are given by

mi j = m(b)
i j eκp[(z+1)/2], (60)

where the superscript b in the parentheses denotes
the bottom surface; κp is the material-property
gradient index which represents the degree of the
material gradient along the thickness and can be
determined by the values of the material proper-
ties at the top and bottom surfaces, i.e.,

κp = ln
m(t)

i j

m(b)
i j

, (61)

where the superscript t in the parentheses denotes
the top surface. ln(z) denotes the natural loga-
rithm function of z which is the inverse of the ex-
ponential function, ez.

Type 4–power-law varied, functionally graded
plates and shells.

For a Type 4 plate or shell, the material proper-
ties are assumed to obey the identical power-law
distribution of the volume fractions of the con-
stituents and are given by

mi j (z) = m(t)
i j Γ(z)+m(b)

i j [1−Γ(z)] , (62)

where Γ(z) denotes the volume fraction and is de-

fined as Γ(z) =
(

z+1
2

)kp . kp is the power-law ex-
ponent which represents the degree of the mate-
rial gradient along the thickness. As kp=0 and
kp = ∞, the present FG plate (or shell) reduces to
a homogeneous piezoelectric plate (or shell) with
material properties m(t)

i j and m(b)
i j , respectively. As

kp=1, it represents that the material properties of
the FG plate (or shell) linearly varied through the
thickness coordinate.

The solution process for the aforementioned 3D
approaches will become unfeasible (such as the
Pagano’s classical and state space approaches)
or become inconvenient (such as the series ex-
pansion approach), as a system of differential
equations with variable coefficients resulting from
the initial curvature of shells or from the varia-
tions of material properties is treated. A succes-
sive approximation method, originally proposed
by Soldatos and Hadjigeorgiou (1990), has been
commonly used to make the aforementioned ap-
proaches feasible. In the SA method, the FG plate
(or shell) is artificially divided into a NL-layered
of small thickness and of homogeneous material
properties. For a typical kth-layer, the material
properties m(k)

i j are determined in a thickness av-



108 Copyright c© 2008 Tech Science Press CMC, vol.8, no.2, pp.93-132, 2008

erage sense and given as

m(k)
i j =

1
hk

∫ zk

zk−1

mi j(z)dz. (63)

The SA method has been demonstrated that it can
approximate the exact solutions of relevant prob-
lems of FG piezoelectric shells to any desired ac-
curacy (Wu and Liu, 2007).

Unlike the Pagano’s classical, state space and se-
ries expansion approaches existing the previously
mentioned straits, the interlaminar field variables
in the asymptotic formulations are derived as a
definite integration through the thickness direc-
tion and can be directly determined without us-
ing the SA method. The asymptotic approach has
been applied for the static and dynamic analyses
of FG piezoelectric shells (Wu and Syu, 2007; Wu
and Tsai, 2008). The asymptotic solutions have
been demonstrated to rapidly converge and to be
in excellent agreement with the relevant 3D solu-
tions available in the literature (Zhong and Shang,
2003; Zhong and Yu, 2006).

5.5.2 Coupled magneto-electro-elastic effects

Recently, the state space and asymptotic ap-
proaches have also been extendedly used for
the 3D coupled analysis of multilayered and FG
magneto-electro-elastic plates and shells. Pan
and Heyliger (2002, 2003) and Pan and Han
(2005) presented the exact solution for the static
and free vibration analyses of multilayered rect-
angular plate made of FG, anisotropic and lin-
ear magneto-electro-elastic materials using the
state space approach. A Pseudo-Stroh formal-
ism combined with the propagator matrix method
for the 3D analyses was developed and applied
to two FG sandwich plates made of piezoelec-
tric BaTiO3 and magnetostrictive CoFe2O4. It
is shown that the coupled magneto-electro-elastic
effects has remarkable influence on the static and
dynamic behaviors of the FG plate. Chen et
al. (2005) studied on the free vibration of non-
homogeneous transversely isotropic magneto-
electro-elastic plates using the state space ap-
proach. Other relevant studies using the state
space approach can be found in the literature (Lee

and Chen, 2003; Wang et al., 2003; Guan and He,
2006; Chen et al., 2007).

Using the asymptotic approach, Wu and his col-
leagues presented the 3D solutions for the static
and free vibration analyses of doubly curved,
FG magneto-electro-elastic shells (Wu and Tsai,
2007, 2008; Tsai et al., 2008; Tsai and Wu, 2008).
The presented formulations can be reduced to
those of FG magneto-electro-elastic cylindrical
shells and plates by letting the corresponding cur-
vature radius zero. Parametric studies for both the
coupling magneto-electro-elastic effect and the
influence of the gradient index of material prop-
erties on the structural behavior of various shells
have been presented.

5.5.3 Approximate 3D numerical modeling and
methodologies

Several approximate 3D numerical modeling and
methodologies have been proposed for the anal-
ysis of multilayered and FG elastic, piezoelec-
tric and magneto-electro-elastic plates/shells with
a variety of edge boundary conditions. They are
selectively reported as follows.

Ramirez and his colleagues proposed a discrete
layer approach in combination with the Ritz
method (or a finite element method) for the ap-
proximate 3D static and free vibration analy-
ses of multilayered and FG elastic, piezoelectric
and magneto-electro-elastic plates (Heyliger et
al., 1994; Heyliger and Ramirez, 2000; Ramirez
et al., 2006a, b). The discrete layer scheme has
been demonstrated to be not limited to specific
boundary conditions and gradation functions.

Shu et al. (2003) recently proposed a local RBF-
based differential quadrature (DQ) method. In the
method, the conventional DQ method is combined
with the radial basis functions as the trial func-
tions in the DQ scheme. The local RBF-based
DQ method has been successfully applied to study
the incompressible flows in the steady and un-
steady regions (Shu et al., 2005), to solve 2D
incompressible Navier-Stokes equations (Shu et
al., 2003) and to solve 3D incompressible viscous
flows with curved boundary (Shan et al., 2008).
Liew et al. (2005) and Zhang et al. (2006) de-
veloped the 3D differential quadrature formula-
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tions for the coupled thermo-electro-elastic and
piezoelectric analyses of multilayered plates, re-
spectively. In their analyses, the approximate 3D
semi-analytical formulations have been demon-
strated to be in good agreement with the avail-
able 3D solutions in the literature. In addition, the
approximate 3D solutions of the plates with vari-
ous boundary conditions were also presented. In
conjunction with the methods of perturbation and
differential quadrature, Wu and Wu (2000) and
Wu and Tsai (2004) presented the asymptotic DQ
solutions for the free vibration analysis of lami-
nated conical shells and for the bending analysis
of functionally graded annular spherical shells, re-
spectively.

Cheung and Jiang (2001) and Akhras and Li
(2007) studied the 3D static analysis and 3D
static, vibration and stability analyses of piezo-
electric composite plates, respectively, using a fi-
nite layer method. In the finite layer method,
the field variables are considered to be separa-
ble and expanded as the Fourier functions in the
in-plane coordinates and as the polynomials in
the thickness coordinate. Thus, the 3D analysis
is transformed into a series of one-dimensional
analysis. It is demonstrated that the approxi-
mate 3D solution is accurate and the proposed
method is efficient for computation. On the ba-
sis of the Hellinger–Reissner (H–R) principle, Wu
et al. (2001) proposed an asymptotic finite strip
method (FSM) for the analysis of doubly curved
laminated shells. In their analysis, recursive sets
of element characteristic equations of first-order
deformation theory have been obtained. It is
demonstrated that the asymptotic FSM converges
rapidly not only in mesh refinement and but also
in higher-order modifications.

Sladek et al. (2006, 2007) proposed a meshless lo-
cal Petrov-Galerkin method for the coupled anal-
ysis of thermo-piezoelectricity and plane piezo-
electricity. Hesthaven and Warburton (2004) pro-
posed a high-order accurate method for the time-
domain solution of 3D electromagnetics. Wu et
al. (2008) proposed a differential reproducing
kernel particle (DRKP) method for the analysis
of multilayered elastic and piezoelectric plates.
In their analysis, the Euler-Lagrange equations of

3D piezoelectricity and possible boundary con-
ditions are derived using the stationary principle
of H–R energy functional of the plate. A point
collocation method, based on the DRKP approxi-
mants, has been formulated for the approximate
3D analysis of multilayered piezoelectric plates
under electro-mechanical loads.

6 Illustrative Examples

6.1 Multilayered hybrid piezoelectric and elas-
tic strips

A simply-supported, two-layer laminate, com-
posed of [PZT-4/ceramics] with equal thickness
layers and with open-circuit surface conditions,
has been studied using the Pagano’s classical
approach (Heyliger and Brooks, 1996) and the
asymptotic approach (Wu, Syu and Lo, 2007).
The dimensions of length and total thickness of
the strip are L2=0.1m and 2h=0.01m. The mate-
rial properties of piezoelectric and ceramics layers
are given in Table 6. The cylindrical bending type
of either mechanical load or electric potential (i.e.,
q+

3 (x2) = sin(πx2/L2) or Φ+(x2) = sin(πx2/L2))
is applied on the top surface of the strip. The 3D
solutions of elastic and electric field components
at the middle surface of each layer and at inter-
faces between layers, obtained by the Pagano’s
classical approach and the asymptotic approach
are quoted and given in Tables 7–8. It is shown
that the 3D solutions obtained from these two dif-
ferent approaches are consistent.

6.2 Multilayered hybrid piezoelectric and elas-
tic plates

The coupled analysis of simply-supported, mul-
tilayered hybrid piezoelectric and elastic plates,
i.e., [PZT-4/0◦/90◦/90◦/0◦/PZT-4] laminates, with
closed-circuit and open-circuit surface conditions
are studied using the asymptotic approach (Wu et
al., 2005) and a newly-proposed meshless DRKP
method (Wu et al., 2008) for double checking.
The plates are composed of a [0◦/90◦/90◦/0◦] lam-
inated composite elastic plate bounded with the
piezoelectric layers (PZT-4) on the outer surfaces
of the laminate. The applied electro-mechanical
loads on lateral surfaces are given as follows:
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Table 6: Elastic, piezoelectric and dielectric properties of composite and piezoelectric materials

Moduli Ceramics PZT-4 Fiber-reinforced 

composite 

PVDF 

11c (Gpa) 138.28 139.021 134.855 3.0 

22c 138.28 139.021 14.352 3.0 

33c 128.07 115.449 14.352 3.0 

12c 32.359 77.848 5.156 1.5 

13c 27.821 74.328 7.133 1.5 

23c 27.821 74.328 5.156 1.5 

44c 53.5 25.6 3.606 0.75 

55c 53.5 25.6 5.654 0.75 

66c 53.0 30.6 5.654 0.75 

24e ( )2/ mC 2.96 12.72 0.000 0.0 

15e 2.96 12.72 0.000 0.0 

31e 0.8 -5.2 0.000 -0.15e-02 

32e 0.8 -5.2 0.000 0.285e-01 

33e 6.88 15.08 0.000 -0.15e-01 

11η ( )mF / 1.7885e-09 1.306e-08 0.3099e-10 0.1062e-09 

22η 1.7885e-09 1.306e-08 0.2656e-10 0.1062e-09 

33η 1.60257e-09 1.151e-08 0.2656e-10 0.1062e-09 

For the closed-circuit surface conditions,

Case 1:

q+
3 (x1,x2) = q0 sin(πx1/L1) sin(πx2/L2),

q−3 (x1,x2) = Φ+(x1,x2) = Φ−(x1,x2) = 0,
(64)

Case 2:

Φ+(x1,x2) = Φ0 sin(πx1/L1) sin(πx2/L2),

Φ−(x1,x2) = q+
3 (x1,x2) = q−3 (x1,x2) = 0;

(65)

For the open-circuit surface conditions,

Case 3:

q+
3 (x1,x2) = q0 sin(πx1/L1) sin(πx2/L2),

q−3 (x1,x2) = D
+
3 (x1,x2) = D

−
3 (x1,x2) = 0,

(66)

Case 4:

D+
3 (x1,x2) = D0 sin(πx1/L1) sin(πx2/L2),

D
−
3 (x1,x2) = q+

3 (x1,x2) = q−3 (x1,x2) = 0
(67)

The material properties of PZT-4 and composite
layers are given in Table 6 (Heyliger, 1994). The
dimensions of length and total thickness of the
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Table 7: The elastic and electric field variables in a two-layer hybrid piezoelectric plate under the cylindrical
bending type of mechanical load

3x     Approaches 13
32 10x),0( xu 10

33 10x),
2

( x
L

u 4
3 10x),

2
( x
LΦ ),

2
( 32 xLσ ),0( 323 xτ ),

2
( 33 xLσ  10

33 10x),
2

( x
L

D  

h 

 

Asymptotic approach 

    (Wu et al., 2007) 

-170.415 

 

1.05613 

 

0.00000 

 

57.8904 

 

0.00000 

 

1.000000 

 

-2.21653 

 

Pagano’s classical approach 
(Heyliger and Brooks, 1996))

-170.406 
 

1.05609 
 

0.00000 

 
57.8914 

 
0.00000 

 

1.000000 

 
-2.21625 

 

0.5h 

 

Asymptotic approach 

    (Wu et al., 2007) 

-88.8861 

 

1.06109 

 

10.5729 

 

30.1903 

 

3.45473 

 

0.850098 

 

-2.68015 

 

Pagano’s classical approach 
(Heyliger and Brooks, 1996))

-88.8804 
 

1.06105 
 

10.5763 
 

30.1904 
 

3.45477 
 

0.850095 
 

-2.67988 
 

0 

 
Asymptotic approach 

    (Wu et al., 2007) 
-9.13402 

 
1.06295 

 
14.0662 

 
2.93275 

(3.77196) 
4.75387 

 
0.513739 

 
-3.73427 

 

Pagano’s classical approach 
(Heyliger and Brooks, 1996))

-9.13120 
 

1.06291 
 

14.0706 
 

2.93185 
(3.77076) 

4.75387 
 

0.513734 
 

-3.73402 
 

-0.5h 

 

Asymptotic approach 

    (Wu et al., 2007) 

72.3128 

 

1.06267 

 

8.14370 

 

-30.2007 

 

3.71709 

 

0.163625 

 

-3.87361 

 

Pagano’s classical approach 
(Heyliger and Brooks, 1996) 

72.3126 
 

1.06263 
 

8.14620 
 

-30.2007 
 

3.71705 
 

0.163623 
 

-3.87336 
 

-h 

 

Asymptotic approach 

    (Wu et al., 2007) 

154.769 

 

1.06116 

 

0.00000 

 

-64.5538 

 

0.00000 

 

0.00000 

 

-3.94362 

 

Pagano’s classical approach 
(Heyliger and Brooks, 1996) 

154.765 
 

1.06112 
 

0.00000 

 
-64.5526 

 
0.00000 

 

0.00000 

 
-3.94337 

 

Table 8: The elastic and electric field variables in a two-layer hybrid piezoelectric plate under the cylindrical
bending type of electric potential

3x     Approaches 11
32 10x),0( xu 10

33 10x),
2

( x
L

u ),
2

( 3xLΦ  ),
2

( 32 xLσ ),0( 323 xτ 2
33 10x),

2
( x
L 7

33 10x),
2

( x
L

D  

h 

 

Asymptotic approach 

    (Wu et al., 2007) 

-17.2285 

 

2.21653 

 

1.00000 

 

98.0664 

 

0.00000 

 

1.000000 

 

-4.38171 

 

Pagano’s classical approach 
(Heyliger and Brooks, 1996))

-17.2277 
 

2.21625 
 

1.00000 

 
98.0706 

 
0.00000 

 

1.000000 

 
-4.38016 

 

0.5h 

 

Asymptotic approach  

    (Wu et al., 2007) 

-11.6682 

 

2.37365 

 

0.935608 

 

-38.9881 

 

2.31023 

 

-16.1157 

 

-3.91986 

 

Pagano’s classical approach 
(Heyliger and Brooks, 1996))

-11.6676 
 

2.37336 
 

0.935611 
 

-38.9872 
 

2.31044 
 

-16.1166 
 

-3.91847 
 

0 

 
Asymptotic approach 

    (Wu et al., 2007) 
-6.21174 

 
2.49838 

 
0.874731 

 
-175.591 
(135.720) 

-6.11243
 

-8.20466 
 

-3.48676 
 

Pagano’s classical approach 
(Heyliger and Brooks, 1996))

-6.21137 
 

2.49809 
 

0.874736 
 

-175.593 
(135.710) 

-6.11227
 

-8.20718 
 

-3.48550 
 

-0.5h 

 

Asymptotic approach 

    (Wu et al., 2007) 

-3.85896 

 

2.74246 

 

0.436357 

 

38.9437 

 

0.743825

 

7.90414 

 

-3.45511 

 

Pagano’s classical approach 
(Heyliger and Brooks, 1996) 

-3.85882 
 

2.74217 
 

0.436359 
 

38.9426 
 

0.743546
 

7.90257 
 

-3.45386 
 

-h 

 

Asymptotic approach 

    (Wu et al., 2007) 

-1.52083 

 

2.98145 

 

0.00000 

 

-58.0171 

 

0.00000 

 

0.00000 

 

-3.44464 

 

Pagano’s classical approach 
(Heyliger and Brooks, 1996) 

-1.52091 
 

2.98116 
 

0.00000 

 
-58.0090 

 
0.00000 

 

0.00000 

 
-3.44340 
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plate are L1 = L2 = L and S = L/2h = 4,10,20.
The thickness ratio of each layer is PZT-4 layer:
0◦-layer: 90◦-layer: 90◦-layer: 0◦-layer: PZT-4
layer =0.2h: 0.4h: 0.4h: 0.4h: 0.4h: 0.2h. A set of
normalized elastic and electric variables are given
as follows:

For the loading conditions of Cases 1 and 3,

(u,w) = (u1,u3)c∗/q0 (2h) ,

(τxz,σ z) = (τ13,σ3)/q0,

φ = Φe∗/q0 (2h) ,

Dz = D3c∗/(q0e∗);

(68)

For the loading conditions of Case 2,

(u,w) = (u1,u3)c∗/(Φ0e∗),
(τxz,σ z) = (τ13,σ3) (2h)/(Φ0e∗),

φ = Φ/Φ0,

Dz = D3c∗ (2h)/Φ0 (e∗)2 ;

(69)

For the loading conditions of Case 4,

(u,w) = (u1,u3)e∗/(2hD0),
(τxz,σ z) = (τ13,σ3)e∗/(D0c∗),

φ = Φ (e∗)2 /(2hD0c∗),
Dz = D3/D0;

(70)

where c∗ = 1010N/m2, e∗ = 10C/m2, q0 = 1N/m2,
φ0 = 1V, D0 = 1C/m2.

Figures 2–3 and 4–5 present the through-
thickness distributions of various elastic and elec-
tric variables of the [PZT-4/0◦/90◦/90◦/0◦/PZT-
4] laminated plates under loading conditions of
Cases 1-2 and 3-4, respectively. It is shown that
the transverse shear stresses produced in the plate
decrease as the plates become thicker for the ap-
plied mechanical load cases (Cases 1 and 3); con-
trarily, they increase as the plates become thicker
for the applied electric load cases (Cases 2 and
4). The maximum transverse shear stresses oc-
cur in the composite material layer for the ap-
plied mechanical load cases; they, however, oc-
cur at interfaces between elastic and piezoelec-
tric layers for the applied electric load cases. The
distributions of the elastic displacements through
the thickness coordinate are merely linear func-
tions for the applied mechanical load cases; they,

however, reveal approximately layerwise linear or
higher-order polynomial functions for the applied
electric load cases. It is observed that the through-
thickness distributions of elastic and electric vari-
ables reveal large difference between the applied
mechanical load cases and the applied electric
load cases.

6.3 Single-layer piezoelectric shells

The coupled cylindrical bending analysis of
simply-supported, homogeneous piezoelectric
cylindrical shells with closed-circuit surface con-
ditions has been studied using the state space ap-
proach (Wu and Liu, 2007), the series expansion
approach (Dumir et al., 1997) and the asymptotic
approach (Wu and Syu, 2007). The configuration
and coordinates (x,θ , r) of the cylindrical shell are
given in Fig. 6 where aθ = Rθ θα . Rθ and aθ
denote the curvature radius to the middle surface
and the curvilinear dimension in circumferential
direction, respectively. 2h and θα denote the to-
tal thickness and the angle between two edges
of the shell, respectively. The shells are con-
sidered to be composed of polyvinyledence fluo-
ride (PVDF) polarized along the radial direction.
The elastic, piezoelectric and dielectric proper-
ties of PVDF material are given in Table 6. The
cylindrical bending types of applied mechanical
load and applied electric potential (i.e., q+

3 (θ ) =
q0 sin(πθ/θα) and Φ+(θ ) = φ0 sin(πθ/θα)) are
applied on the top surface of the shells. The di-
mensionless variables are denoted as the same
forms of those in the Reference (Dumir et al.,
1997) and given as follows:

For the cases of applied mechanical load,

(uθ ,ur) =
100Yr

2hS4
R |q0|

(uθ ,ur) ,

(σ x,σθ ,σ r,τθr)

=
(
σx/S2

R,σθ /S2
R,σr,τθr/SR

)
/ |q0| ,(

Dθ ,Dr
)

= (Dθ ,Dr)/ |d1|SR |q0| ,
φ = |d1|YrΦ/2hS2

R |q0| , (71)

and S2
R = Rθ/2h, Yr = 2.0GPa, d1 =

−30x10−12CN−1;
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Figure 2: The through-thickness distributions of various field variables in a laminated [PZT-
4/0◦/90◦/90◦/0◦/PZT-4] plate with closed-circuit surface conditions (Case 1).
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Figure 3: The through-thickness distributions of various field variables in a laminated [PZT-
4/0◦/90◦/90◦/0◦/PZT-4] plate with closed-circuit surface conditions (Case 2).
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Figure 4: The through-thickness distributions of various field variables in a laminated [PZT-
4/0◦/90◦/90◦/0◦/PZT-4] plate with closed-circuit surface conditions (Case 3).
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Figure 5: The through-thickness distributions of various field variables in a laminated [PZT-
4/0◦/90◦/90◦/0◦/PZT-4] plate with closed-circuit surface conditions (Case 4).
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Figure 6: The geometry and coordinates of a
piezoelectric strip.

For the cases of applied electric potential,

(uθ ,ur) =
100

|d1|SR |φ0| (uθ ,ur) ,

(σ x,σθ ,σ r,τθr)

=
(
σx,S2

Rσθ ,S3
Rσr ,S3

Rτθr
)

2h/Yr |d1| |φ0| ,(
Dθ ,Dr

)
= (SRDθ ,Dr)2h/ |d1|2 Yr |φ0| ,

φ = Φ/ |φ0| . (72)

Tables 9–10 show the 3D solutions of elastic and
electric field variables at crucial positions in the
cylindrical shells under the applied mechanical
load and the applied electric potential, respec-
tively. The geometric parameters are taken as
Rθ/2h= 4, 10, 100 and θα = π/3. Again it
is shown that the 3D solutions of the piezoelec-
tric cylindrical shells obtained using the the state
space approach, the series expansion approach
and the asymptotic approach are consistent.

6.4 Functionally graded piezoelectric plates

The coupled analysis of simply-supported, FG
piezoelectric plates with closed-circuit and open-
circuit surface conditions are studied by the
asymptotic approach (Wu and Syu, 2007) and a
meshless DRKP method (Wu et al., 2008) for
double checking. Firures 7–10 show the through-
thickness distributions of mechanical and electric
variables for the moderately shells (R/2h=10) un-
der the loading conditions of Cases 1-4, respec-
tively. The material properties are assumed to

obey the identical exponent-law varied exponen-
tially with the thickness coordinate and are given
as Eq. (60). The material properties of PZT-
4 are used as the reference material properties
(Table 6) and placed on the bottom surface (i.e.,
c(b)

i j ,e(b)
i j ,η(b)

i j ). According to Eq. (61), the ratio of
material properties between top surface and bot-
tom surface is

c(t)
i j

c(b)
i j

=
e(t)

i j

e(b)
i j

=
η(t)

i j

η(b)
i j

= eκp , (73)

where κp are considered to be -3.0, -1.5, 0.0, 1.5,
3.0 so that the ratio of material properties between
top surface and bottom surface is approximately
from 0.05 to 20. In addition, the present results
for FG piezoelectric plates with a particular value
of κp = 0 may reduce to the results of single-layer
homogeneous piezoelectric plates.

The electric and elastic field variables are nor-
malized as the identical forms of Eqs. (68)–
(70). The influence of material-property gradi-
ent index on the mechanical and electric vari-
ables is studied. Figures 7(a)-(d) and 9(a)-(d)
show that the through-thickness distributions of
mechanical variables in the FG plates with closed-
circuit and open-circuit surface conditions are
almost identical as the mechanical load is ap-
plied. Figures 8(c)–(d) and 10(c)–(d) show that
the through-thickness distributions of transverse
stresses change dramatically as the index κp be-
comes a positive value for the loading conditions
of Case 2; conversely, they change dramatically
as the index κp becomes a negative value for the
loading condition of Case 4. The distributions
of transverse stresses across the thickness coor-
dinate in the loading conditions of Cases 2 and 4
are higher-degree polynomials and are back and
forth among the positive and negative values. It
is also shown from Figs. 7(e)–(f) that the distri-
butions of normal electric displacement through
the thickness coordinate are approximately lin-
ear functions and parabolic functions for elec-
tric potential in the loading condition of Case 1.
The through-thicknessdistributions of electric po-
tential and normal electric displacement in Figs.
8(e)–(f) and Figs 10(e)–(f) are shown to be differ-
ent patterns between homogeneous piezoelectric
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Figure 7: The through-thickness distributions of various field variables in a functionally graded piezoelectric
plate with closed-circuit surface conditions (Case 1).
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Figure 8: The through-thickness distributions of various field variables in a functionally graded piezoelectric
plate with closed-circuit surface conditions (Case 2).
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Figure 9: The through-thickness distributions of various field variables in a functionally graded piezoelectric
plate with closed-circuit surface conditions (Case 3).
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Figure 10: The through-thickness distributions of various field variables in a functionally graded piezoelec-
tric plate with closed-circuit surface conditions (Case 4).
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Table 9: Mechanical and electric components at the crucial positions in single-layer piezoelectric cylindrical
shells under the cylindrical bending type of mechanical load

h
R

2
θ

   Approaches ( )hu +,0θ 0,
2
αθ

ru +hx ,
2
αθσ +h,

2
α

θ
θσ 0,

2
αθσ r

( )0,0rθτ
0,

2
103 αθφ +hDr ,

2
10 αθ

4

10 

100

The state space approach 
   (Wu and Liu, 2007) 

The series expansion approach 
   (Dumir et al., 1997) 

The asymptotic approach 
   (Wu and Syu, 2007) 

The state space approach 
   (Wu and Liu, 2007) 

The series expansion approach 
   (Dumir et al., 1997) 

The asymptotic approach 
   (Wu and Syu, 2007) 

The state space approach 
   (Wu and Liu, 2007) 

The series expansion approach 
   (Dumir et al., 1997) 

The asymptotic approach 
   (Wu and Syu, 2007) 

-0.8806 

-0.8806 

-0.8806 

-3.5723 

-3.572 

-3.5723 

-5.2969 

-5.297 

 -5.2969 

-21.1031 

-21.10   

-21.1029 

-17.6845 

-17.68 

-17.6844 

-16.5535 

-16.55 

-16.5535   

-0.2747 

-0.275 

-0.2750 

-0.2546 

-0.2548 

-0.2548 

-0.2510 

-0.2510 

-0.2510 

-0.7279 

-0.7597 

-0.7597 

-0.7460 

-0.7514 

-0.7514 

-0.7499 

-0.7500 

-0.7500 

0.2170 

0.217 

0.2170 

1.4195 

1.420 

1.4195 

18.3389 

18.34 

18.3389 

-0.6238 

-0.6238 

-0.6238 

-0.5893 

-0.5893 

-0.5893 

-0.5653 

-0.5653 

-0.5653 

2.4428 

2.443 

2.4428 

2.5600 

2.560 

2.5600 

2.5035 

2.504 

2.5035 

0.0214 

0.0213 

0.0213 

-0.1574 

-0.1575 

-0.1575 

-0.2040 

-0.2041 

-0.2041 

plates (κp=0) and FG piezoelectric plates in the
cases of applied electric loads (Cases 2 and 4). By
observation through Figs. 7–10, we found that the
distributions of mechanical and electric variables
through the thickness coordinate in FG piezoelec-
tric plates reveal different patterns from homoge-
neous piezoelectric plates. Hence, it is suggested
that an advanced 2D theory may be necessary to
be developed for the analysis of FG piezoelectric
plates, especially when the plates are subjected to
electric loads.

7 Conclusions

Various 3D coupled analyses of multilayered
and functionally graded piezoelectric plates/shells
in the literature are surveyed. The theoretical
methodologies for those analyses are classified
as four different approaches and are briefly inter-
preted. For comparison purposes, several avail-
able 3D results obtained form these four ap-
proaches are quoted and presented. It is pleased
to see that the 3D solutions obtained from dif-

ferent approaches are demonstrated to be consis-
tent. The existing 3D solutions may serve as a
standard for assessing a variety of 2D theories of
piezoelectric plates. The through-thickness dis-
tributions of various field variables in the multi-
layered and FG piezoelectric plates under electro-
mechanical loads are presented using an asymp-
totic approach and doubly checked using a mesh-
less DRKP method. These distributions may
serve as a reference for making the appropriate ki-
netic or kinematics assumptions in advance, as an
advanced 2D theory is to be developed. Totally
there are 191 references included in the present
review article. The authors hope the present re-
view article may provide a comprehensive aspect
for the theoretical methodologies of 3D analysis
of plates/shells in the existing literature. However,
this survey is inevitable to miss some scientists
who might make significant contributions on the
present subject since the authors’ academic infor-
mation might be lacking. The authors hope to ex-
press their apologies at not being able to include
all the relevant publishing papers on the present
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Table 10: Mechanical and electric components at the crucial positions in single-layer piezoelectric cylindri-
cal shells under the cylindrical bending type of electric potential

h
R

2
θ

   Approaches ( )hu +,0θ 0,
2
αθ

ru +hx ,
2
αθσ −hx ,

2
αθσ −h,

2
α

θ
θσ −

2
,0 h

rθτ 0,
2
αθφ +hDr ,

2
αθ

4

10 

100

The state space approach 
   (Wu and Liu, 2007) 

The series expansion approach 
   (Dumir et al., 1997) 

The asymptotic approach 
   (Wu and Syu, 2007) 

The state space approach 

   (Wu and Liu, 2007) 
The series expansion approach 

   (Dumir et al., 1997) 
The asymptotic approach 

   (Wu and Syu, 2007) 

The state space approach 
   (Wu and Liu, 2007) 

The series expansion approach 
   (Dumir et al., 1997) 

The asymptotic approach 
   (Wu and Syu, 2007) 

-28.7436 

-28.74 

-28.7436 

-26.4865 

-26.49 

-26.4863 

-25.9902 

-25.99 

-25.9899 

11.8943 

11.90 

11.8952 

6.3387 

6.340 

   6.3397 

2.5221 

2.523 

2.5231   

-0.1311 

-0.1307 

-0.1307 

-0.1026 

-0.1024 

-0.1024 

-0.0996 

-0.0996 

-0.0996 

-0.1363 

-0.1359 

-0.1359 

-0.1087 

-0.1086 

-0.1086 

-0.1005 

-0.1005 

-0.1005 

-1.5552 

-1.536 

-1.5361 

-1.5189 

-1.410 

-1.4705 

-1.8661 

-1.411 

-1.4108 

0.3924 

0.3925 

0.3925 

0.3982 

0.3984 

0.3984 

0.3928 

0.3953 

0.3953 

-0.4978 

-0.4978 

-0.4978 

-0.5070 

-0.5070 

-0.5070 

-0.5012 

-0.5012 

-0.5012 

62.7680 

62.77 

62.7679 

  58.9644 

  58.96 

  58.9643 

  59.9193 

  59.92 

59.9193 

subject.
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Appendix A

The relevant coefficients of li j in Eqs. (21)-(24)
are given by

l11 = −m̃Q̃11, l12 = −ñQ̃12, l13 = a1h2/L2,

l14 = b1e/Q, l21 = −m̃Q̃21, l22 = −ñQ̃22,

l23 = a2h2/L2, l24 = b2e/Q, l31 = ñQ̃66,

l31 = m̃Q̃66, l41 = e15Qh2/(ec55L2),

l43 = −m̃(c−1
55 e2

15 +η11)Qh2/(e2L2),

l52 = e24Qh2/(ec44L2),

l53 = −ñ(c−1
44 e2

24 +η22)Qh2/(e2L2).

Appendix B

The relevant coefficients of li j in Eqs. (26)-(29)
are given by

l11 = −m̃c̃11, l12 = −ñc̃12, l13 = c̃13L2/h2,

l14 = e31/e, l21 = −m̃c̃12, l22 = −ñc̃22,

l23 = c̃23L2/h2, l24 = e32/e, l31 = ñc̃66,

l32 = m̃c̃66, l41 = c̃55L2/h2, l43 = m̃c̃55L2/h2,

l44 = m̃e15/e, l52 = c̃44L2/h2, l53 = ñc̃44L2/h2,

l54 = ñe24/e, l61 = e15h/(eL),

l63 = m̃e15h/(eL), l64 = −m̃η11h3Q/(e2L3),

l72 = e24h/(eL), l73 = ñe24h/(eL),

l74 = −ñη11h3Q/(e2L3),

l81 = −m̃c̃13L2/h2, l82 = −ñc̃23L2/h2,

l83 = c̃33L4/h4, l84 = e33L2/(eh2),

l91 = −m̃e31/e, l92 = −ñe32/e,

l93 = e33L2/(eh2), l94 = −η33Q/e2,

c̃i j = ci j/Q.


