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Abstract: This paper describes an approach to
identify the mechanical properties i.e. fracture
and yield strength of steels. The study involves
the FE simulation of shear punch test for vari-
ous miniature specimens thickness ranging from
0.20mm to 0.80mm for four different steels using
ABAQUS code. The experimental method of the
miniature shear punch test is used to determine the
material response under quasi-static loading. The
load vs. displacement curves obtained from the
FE simulation miniature disk specimens are com-
pared with the experimental data obtained and
found in good agreement. The resulting data from
the load vs. displacement diagrams of different
steels specimens are used to train the neural net-
works to predict the properties of materials i.e.
fracture and yield strength. Two different feed
forward neural networks have been created and
trained in order to predict the Fracture toughness
and yield strength values of different steels. L-M
algorithm has been used in the networks to form
an output function corresponding to the input vec-
tors used in the network. The trained network pro-
vides the output values i.e., fracture toughness and
yield strength of unknown input values, which are
within in the range of data that is used for the
training of network.

Keyword: Fracture toughness; yield strength,
miniature, shear punch test, FEM, Neural Net-
work, and ABAQUS.

1 Introduction

Shear punch test technique is the most suitable
test technique to determine the degraded mechan-
ical and fracture properties of structural mem-
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bers of Nuclear power plant, steam power plants,
chemical industry etc. The material behavior
of structural components changes due to in ser-
vice loading, aging, irradiation embrittlement and
some other influences. That requires an in situ
monitoring of the material state. In order to deter-
mine material parameters at various locations e.g.
in weldments or gradient materials, the size of
the material taken out for a test specimen should
be very small but representative. In the minia-
ture shear punch test (MSPT), a disk like speci-
men of 10mm diameter 0.50mm size is deformed
in a miniaturized deep drawing experiment. The
measurable output is the load displacement curve
of the punch, which contains information about
the elasto-plastic deformation behavior and about
the strength of material [Mao, Shoji and Taka-
hashi (1987); Takahashi, Shoji, Mao, Hamaguchi,
Misawa, Saito, Oku, Kodaira, Fukaya Nishi and
Suzuki (1988)].

This technique provides the data regarding the
properties of a material by using a small vol-
ume of material where as conventional test spec-
imens need a large volume of material. Neural
network (NN) technique has been used to predict
the mechanical properties of different steels us-
ing the data obtained from the simulation of shear
punch test. NN predicts the mechanical proper-
ties of materials accurately compared to the ex-
isting empirical relations. More recently a neural
network (NN) model is developed for the analysis
and prediction of the mapping between degrada-
tion of chemical element and electrochemical pa-
rameters during the corrosion process [Pidaparti
and Neblett (2007)].

Miniature specimen techniques include a wide va-
riety of types and techniques as described by [Hu-
sain et al (2004), Lucas (1990), Cheon and Kim
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(1996)] tensile test, micro hardness, small punch
ball, spherical, and hemispherical head indenta-
tion, bend, fracture, impact, and fatigue. Man-
ahan et al (1981) and Huang et al (1982) were
among the earliest to study the small Punch test
technique for the determination of mechanical
properties of irradiated materials from small cir-
cular disks. These techniques largely involve
loading a supported disc or coupon with an inden-
ter or punch, deforming it to failure, and analyz-
ing the resulting load-displacement data. Load-
line displacement at failure is converted to an ef-
fective failure strain.

Foulds and Viswanathan (1994) described the de-
termination of material toughness of in service
low alloy steel components by small punch test.
[Foulds, Waytowitz, Parnell and Jewell (1995)]
in their investigation estimated the material frac-
ture appearance transition temperature (FATT) of
a range of components in fossil power plant and
carried out fracture toughness evaluation by us-
ing small punch test. [Se-Hwan, Jun-Hwa, Jun
and Kim (1994)] in their paper evaluated 16
Mev proton irradiation effects on a fusion reac-
tor candidate material (12Cr-Mov steel) in terms
of changes in energy up to failure by small punch
tests. Very recently, an inverse approach based
on depth-sensing instrumented indentation tests is
proposed by Qian et al [Qian, Cao, Zhang, Rabbe,
Yao and Fei (2008)] to determine Young’s modu-
lus, yield strength and strain hardening exponent
of the stress-strain curve can be described using a
power function.

[Husain (2003)] investigated on the small punch
techniques. Specimens of 10mm diameter and
0.5mm thickness of different materials have been
experimented and FE simulation was also per-
formed. Small punch tests were performed on the
following materials:

• Medium carbon steel (MS)

• Non-shrinkable steel (D3)

• Structural steel (STS)

• Chromium hot work steel (H11)

Different types of specimen shapes used in this

investigation are (i) Circular (ii) Square (iii) Rect-
angular. Small punch experimental studies of cir-
cular disk (10mm diameter, 0.5mm thick), square
shape, and rectangular shape miniature specimen
were also studied. The four different steels are
selected for the preparation of miniature samples.
A new empirical correlation for the estimation of
yield strength is established. The proposed empir-
ical relation is the function of miniature specimen
geometry, inner dimensions of specimen holder
(dies) and the punch tip diameter.

Very little work is done in the area of applying
neural network for the prediction of mechanical
behaviour. [Ince (2004)] used the neural network
technique in the area of material science. In that
study a neural network method has been used after
identifying some variables that could be expected
to influence the fatigue growth rate in nickel based
super alloys. [Abendroth and Kuna (2003)] de-
scribed an approach to identify plastic deforma-
tion and failure properties of ductile materials.
The experimental method of small punch test is
used to determine the material response under
loading [Timmel, Kaliske, Kolling and Mueller
(2007)].

The present study carries out small punch test
simulation of four different materials of thickness
ranging from 0.20mm to 0.80mm. The numer-
ical study pertains to the finite element model-
ing and simulation of miniature samples adopt-
ing small punch test technique with the help of
ABAQUS computer code [Sharifi and Gakwaya
(2006)]. Neural network technique is used to pre-
dict the mechanical properties of different steels
using the data obtained from the simulation of
shear punch test of different specimens. These
neural networks work based on the history of data
available. This network forms an output function
based on the data provided to the network during
the training i.e. input vectors and target values.
Different weights ’w’ and biases ’b’ will be as-
signed to the input data ‘p’ provided to the net-
work .The sum of ‘w*p’ and ‘b’ are transferred to
a transfer function to estimate a output function.
The weights and biases will be updated until the
function formed approaches the function that can
be formed by the available target values. There
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are different algorithms that are used with these
networks in order to estimate an output function.
L-M algorithm has been used in the present study,
because of its test convergence.

The present paper describes the study, carried out
with the following objectives:

• To develop the finite element models us-
ing ABAQUS computer code to simulate the
process of small punch specimen test tech-
nique and carrying out engineering analysis
of large deformation of different size minia-
ture samples.

• To create and train a neural network for the
prediction of fracture toughness.

• To create and train a neural network for the
prediction of yield strength.

2 Simulation of Miniature Shear Punch Test
Using FEM

The numerical study pertains to the finite ele-
ment modeling and simulation of miniature sam-
ples adopting small punch test technique with the
help of ABAQUS computer code [Gao, Zheng
and Yao (2006), Charrabarty and Cagin (2008)].
The circular miniature samples of four different
materials with different thickness are simulated
using finite element method. Direct finite el-
ement analyses on different thickness specimen
are carried out in the present study. The spe-
cial contact algorithms between miniature sam-
ple plate and tip of rigid punch (to simulate ex-
perimental situation) as slave surface and ana-
lytical master surface respectively has been used
for the study. ABAQUS explicit finite element
analysis approach has been employed to simu-
late 3-D model of the miniature samples of dif-
ferent thickness. The quasi-static punch loads
are used to simulate the small punch experimen-
tal procedure with the help of time amplitude in-
crements option of the code [Panthi, Ramakrish-
nan, Pathak and Chouan (2007), Samantha and
Ghosh (2008)]. The 3-D finite element analy-
sis provides the load-displacement curves/data,
Von-Misses stresses, equivalent plastic (fracture)

strain, and contact pressure at the surface. The fi-
nite element results of 0.5mm thickness specimen
are validated by comparing with results published
in the literature [Husain (2003)].

The small punch test using circular disk shape
miniature specimens is simulated to follow the ac-
tual SP experimental test procedure. The dimen-
sions of the circular shape miniature specimens
are considered according to the inner borehole of
the dies (specimen holder) i.e. 4mm diameter.
The circular disk specimens of 4mm diameter and
thickness ranging from 0.2mm to 0.8mm with an
interval of 0.1mm are modeled. In order to make
the problem more tractable, a three-dimensional
finite element model is simulated to follow the ac-
tual situation as in small punch test experiments.
The three dimensional model of miniature disk
specimen is descretized and the mesh is gener-
ated using three dimensional isoparametric hex-
ahedron elements.

The miniature disk specimen are modeled and de-
scretized with 8-node brick isoparametric solid el-
ements as shown in Figure. 1. The hemispherical
headed rigid punches are modeled by analytical
rigid surface option. The tip diameter used for the
punch is 2.309mm.Simulation of the small punch
test follows the physical procedure as closely as
possible, with the miniature specimen fixed be-
tween a lower die and an upper die plate by six
clamping screws. To simulate this condition of
small punch test on the model of the miniature
sample, all the circumferential nodes were con-
strained (remain fixed or have Zero displacement)
by boundary conditions option encaster (rigidly
fixed). In such case all peripheral nodes are con-
strained completely and thus cannot move in any
direction. Due to this reason, in the finite ele-
ment model, the diameter of circular disk sam-
ple is considered according to borehole of the dies
i.e., 4mm.

The hemispherical headed punch is modeled as
a rigid body constrained to translate only in the
vertical direction normal to miniature sample at
a prescribed quasi-static loading using the time
amplitude with small incremental step technique.
The load is applied at the reference node (NODE
NO 1). The reference node is constrained in two



136 Copyright c© 2009 Tech Science Press CMC, vol.8, no.3, pp.133-149, 2009

Figure 1: Miniature circular disc specimen of
0.4mm thickness and rigid punch

horizontal directions but is free to move in verti-
cal direction to pierce slowly the sample normal
surface at center. Each element of the deformable
mesh is characterized by the true stress- true plas-
tic strain relation of the material, as obtained from
standard uni- axial tensile test. The tensile spec-
imens are subjected to standard tensile test under
continuous loading up to failure. in the ABAQUS
input file is important. The nominal stress-strain
curve for each material obtained from standard
Uniaxial test is used by converting the test data
defining material plastic behavior in to the appro-
priate input format for ABAQUS.

The following assumptions are considered for
small punch test simulation of miniature speci-
men finite element analysis.

The hemispherical headed indenters are consid-
ered to be rigid because high strength steel is used
as the material.

The friction between the specimen and the inden-
ter is included in the calculation. The friction fac-
tor used is 0.1; this choice had only a minor effect
on the load vs. displacement curve.

It is considered that the boundary condition is
very close to a rigid fixed boundary condition, be-
cause the small punch specimen is fixed firmly by
six clamping screws, in between the dies.

The present finite element analysis using
ABAQUS is very versatile and gives a wide spec-
trum of information concerning the small punch
test, e.g. von-Misses stresses, equivalent plastic
strain, contact pressure, deformation, logarithmic
strain components, different stress components,

load till failure, full field displacement, load vs.
displacement curves, and von-Misses stress vs.
equivalent plastic strain curves etc.

2.1 Load- Displacement Behavior of Circular
Specimens

During the deformation process in finite element
analysis, the rigid hemispherical headed punch
moves slowly (quasi-statically) by pressing the
miniature disk specimen normally under the tip
of punch until all the elements under the punch
are badly damaged (distorted). The deforma-
tion behavior during punching is closely moni-
tored at each incremental step. A typical run for
the finite element analysis of the problem com-
prise of nearly 512 elements and 846 nodes and
require about more than 100 small incremental
steps. CPU time required for completion of the
simulation is generally about 50-75 minutes on
the HP workstation. The computer memory re-
quired to store the results of these simulation for
each case varied from 20-30 MB. It is also noticed
that the increasing the mesh density increases the
CPU time drastically.

Figure 1. shows the un-deformed finite element
models for circular shape miniature specimens
with different thick-nesses. It is observed that
the computed load vs. displacement curve from
FEM and from SP experiments are in good agree-
ment on an average but generates moderate gaps
between two values after substantial deformation.
In a similar way finite element analysis is carried
out for small specimens of different thick- nesses.
The minor differences between two curves can be
attributed to crack initiation before the load ap-
proaches its maximum. And a limitation of small
strain theory in the ABAQUS program would also
cause such difference at a high deformation stage.

3 Neural Networks

An Artificial Neural Network (ANN) is an
information-processing paradigm that is inspired
by the way biological nervous systems, such as
the brain, process information. The key element
of this paradigm is the novel structure of the in-
formation processing system. It is composed of
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a large number of highly interconnected process-
ing elements (neurons) working in unison to solve
specific problems. NNs, like people, learn by ex-
ample. A NN is configured for a specific applica-
tion, such as pattern recognition or data classifica-
tion, through a learning process. Learning in bio-
logical systems involves adjustments to the synap-
tic connections that exist between the neurons. In
a simple neuron as shown in Figure 2., the scalar
or vector input ‘p’ is transmitted through a con-
nection that multiplies its strength by the weight
‘w’, to form the product w*p. This argument is
fed as an input to the transfer function, which pro-
duces output ‘a’. In the neuron with bias, the bias
is simply added to the product w*p. The bias is
much like a weight, except it has a constant input
of one. Sum of the w*p and bias ‘b’, is fed as
the input to the transfer function, which produces
output. Weights and biases are both adjustable pa-
rameters of the neuron. The central idea of neural
network is that such parameters can be adjusted
so that the network exhibits some desired or in-
teresting behavior. Thus, networks can be trained
to do a particular job by adjusting the weight or
bias parameters, or perhaps the network itself will
adjust these parameters to achieve desired end.

Figure 2: A simple neuron

3.1 Transfer functions

There are many transfer functions of which the
following three are mostly used transfer func-
tions. They are

• Linear transfer function

• Log-sigmoid transfer function

• Tan-sigmoid transfer function

3.2 Selection of Algorithm

It is very difficult to know which training algo-
rithm will be the fastest for a given problem. It
will depend on many factors, including the com-
plexity of the problem, the number of data points
in the training set, the number of weights and bi-
ases in the network, and the error goal. In gen-
eral, on networks, which contain up to a few hun-
dred weights the Levenberg-Marquardt, algorithm
will have the fastest convergence. This advan-
tage is especially noticeable if very accurate train-
ing is required. The quasi-Newton methods are
often the next fastest algorithms on networks of
moderate size. Of the conjugate gradient algo-
rithms, the Powell-Beale procedure requires the
most storage, but usually has the fastest conver-
gence. Rprop and scaled conjugate gradient al-
gorithm do not require a line search and have
small storage requirements. They are reasonably
fast, and are very useful for large problems. The
variable learning rate algorithm is usually much
slower than the other methods, and has about the
same storage requirements as Rprop, but it can
still be useful for some problems. There are cer-
tain situations in which it is better to converge
more slowly. In most of the problems, first L-
M algorithm is recommended. If this algorithm
requires too much memory, then any one of the
conjugate gradient methods are recommended.

3.3 Training of neural networks

Training of a general neural network consists of
following steps

a. Creating neural network

b. Initializing weights and biases

c. Training the neural network

d. Simulation for new inputs

3.3.1 Creating neural network

A trainable feed forward neural network can
be created using an in-built function ‘newff’.
It requires four inputs and returns the network
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object. The first input is an R by 2 matrix of
minimum and maximum values for each of the R
elements of the input vector. The second input
is an array containing the sizes of each layer.
The third input is a cell array containing an array
containing the names of the transfer functions to
be used in each layer. The final input contains
the name of the training function to be used. The
following command creates two-layer network.

Net=newff ([min,max].[m,n],{‘tansig’, ‘purelin’},

’trainlm’)

3.3.2 Initializing weights and biases

Before training a feedforward network, the
weights and biases must be initialized. The initial
weights and biases are created with the command
’init’. This function takes a network object as in-
put and returns a network object with all weights
and biases initialized. For feedforward networks
there are two different layer initialization meth-
ods which are normally used, one is ‘initwb and
second one is ‘initnw’.

The initwb function causes the initialization re-
verts to the individual initialization parameters for
each weight matrix and biases. For the feedfor-
ward networks the weight initialization is usually
set to rands, which sets weights to random values
between -1 and 1. It is normally used when the
layer transfer function is linear.

The function initnw is normally used for layers of
feedforward networks where the transfer function
is sigmoid. It is based on the technique of Nguyen
and Widrow and generates initial weights and bias
values for a layer so that the active regions of the
layer’s neurons will be distributed roughly evenly
over the input space.

3.3.3 Training

A neural network can be trained for function ap-
proximation, pattern association, or pattern classi-
fication. The training process requires a set of ex-
amples of proper network behavior i.e., network
inputs ‘p’ and target outputs ‘t’. During training
the weights and biases of the network are itera-
tively adjusted to minimize the network perfor-
mance function. The default performance func-

tion for the feed forward networks is mean square
error “mse’ i.e., the average squared error be-
tween the network outputs and the target outputs
‘t’.

In the present study two different neural networks
are trained to predict the Fracture Toughness and
yield strength of various steels. They are

1. Neural Network for prediction of Fracture
Toughness

2. Neural Network for prediction of yield
strength

4 Training of Neural Network to Predict
Fracture Toughness & Yield Strength

In this study of prediction of fracture toughness
using neural network, fracture toughness values
of four different materials have been taken from
the literature. These fracture toughness values are
used as the target values, and thickness of speci-
men before and after deformation have been used
as input vectors in the neural network training
(Table 1).

A neural network has been created using ‘newff’
function. 10 hidden layers and one output layer
have been used to get good approximation of the
output function. A function called ‘minmax’ has
been used to calculate the minimum and maxi-
mum values of each input vector. Transfer func-
tions ‘tansig’, ‘purelin’ have been used in the hid-
den layer and output layer correspondingly. The
linear transfer function, which used in the output
layer, allows the output range to fall outside -1 and
1. L-M algorithm has been used to train the neu-
ral network. A default initialization is used in this
study. The default initialization function for the
feedforward network is initlay, which allows each
layer to use its own initialization function for the
network.

In the training of neural network original thick-
ness and reduced thickness of 50 samples has
been given as input and fracture toughness values
as targets. During the training by L-M algorithm
the weights and biases of the network are itera-
tively adjusted to minimize the network perfor-
mance function. The default performance func-
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Table 1: Input data used to train the NN for the prediction of Fracture Toughness

Material Thickness of Reduced thickness Fracture Toughness
specimen (mm) of specimen (mm) MPa qrt (m)

0.2 0.0294 230.63
0.3 0.0934 230.63

H11 0.4 0.1385 230.63
0.6 0.1673 230.63
0.7 0.2125 230.63
0.2 0.0624 220.77
0.3 0.0888 220.77

STS 0.5 0.1152 220.77
0.6 0.1278 220.77
0.7 0.1397 220.77
0.8 0.1419 220.77
0.2 0.0319 122.29
0.3 0.0599 122.29

MS 0.4 0.1233 122.29
0.5 0.1273 122.29
0.6 0.1372 122.29
0.7 0.1419 122.29
0.2 0.0281 44.04
0.3 0.1427 44.04

D3 0.4 0.1933 44.04
0.5 0.2179 44.04
0.7 0.3254 44.04

tion feed forward network is mean square error
mse i.e., the average squared error between net-
work outputs and the target outputs. More than
3000 epochs or iterations have been used to form
precise output function. The training of neural
network will come to halt whenever any one of the
performance function, mse, and gradient reaches
its minimum value. Then the network is said to
be trained. After the network has been trained,
thickness and reduced thickness of any unknown
steel can be given to the network in order to get
the fracture toughness of that particular material.

For the determination of yield strength, creation
of network and all other process are similar to
the above procedure but the training data con-
tains the thickness of specimen and the yield load,
which is calculated from the load-displacement
diagram. After the training of the network, the
yield strength of any material can be obtained by
giving the thickness and yield load of that partic-
ular material (Table 2).

5 Results and Discussion

In the present study, the finite element analysis
and simulation of the small punch test technique
is successfully carried out on different miniature
specimens of different thickness of four materi-
als using the ABAQUS code. The FEM load vs.
displacement curves of 0.5mm thick specimens
are compared with the load-displacement curves
taken from literature [Husain (2003]. These simu-
lated models have been used to obtain wide range
of information. The SP experimental method pro-
vides only the load-displacement curves where as
the finite element method provides a lot of infor-
mation such as deformation behavior of miniature
specimens, load-displacement curves, von-mises
stress, equivalent plastic strain, logarithmic strain
components, contact stress etc.

The load at the breakaway (Py) from the linear-
ity can be used to estimate the yield strength (σy)
of the material. The reduced thicknesses of all
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Table 2: Input data used to train the NN for the prediction of yield strength

Material Thickness of Breakaway load Yield strength
specimen (mm) (N) (MPa)

0.2 30 484.02
0.3 75 484.02

H11 0.4 325 484.02
0.6 625 484.02
0.7 825 484.02
0.2 40 475
0.3 65 475

STS 0.5 460 475
0.6 600 475
0.7 750 475
0.8 950 475
0.2 30 323.22
0.3 45 323.22
0.4 270 323.22

MS 0.5 400 323.22
0.6 580 323.22
0.7 590 323.22
0.8 825 323.22
0.2 25 478.03
0.3 60 478.03

D3 0.4 310 478.03
0.5 490 478.03
0.7 800 478.03

the specimens also have been calculated by sub-
tracting the maximum deflection of upper surface
of specimen from the maximum deflection of the
lower surface of the specimen. These breakaway
load and reduced thickness are used in the neural
network to predict the mechanical properties. The
load displacement curves of different miniature
samples with different thickness obtained from
FE simulation are shown in Figure 3 to Figure
19. The Deformed simulated miniature disk shape
specimens of 0.50mm and 0.60mm thickness are
shown in Figure 20 and Figure 21.

5.1 Prediction of mechanical properties using
neural network

Two neural networks for the prediction of frac-
ture toughness and yield strength of different
steels have been trained. The fracture tough-
ness and yield strength of four different materi-
als are predicted and are found in good agree-
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Figure 3: Load-displacement diagram of 0.4mm
thick D3 specimen
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Figure 4: Load-displacement diagram of 0.5mm
thick D3 specimen
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Figure 5: Load-displacement diagram of 0.6mm
thick D3 specimen
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Figure 6: Load-displacement diagram of 0.7mm
thick D3 specimen

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1

Displacement (mm)

Lo
ad

 (N
)

Figure 7: Load-displacement diagram of 0.5mm
thick H11 specimen
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Figure 8: Load-displacement diagram of 0.6mm
thick H11 specimen
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Figure 9: Load-displacement diagram of 0.7mm
thick H11 specimen
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Figure 10: Load-displacement diagram of 0.4mm
thick MS specimen
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Figure 11: Load-displacement diagram of 0.5mm
thick MS specimen
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Figure 12: Load-displacement diagram of 0.6mm
thick MS specimen
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Figure 13: Load-displacement diagram of 0.7mm
thick MS specimen
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Figure 14: Load-displacement diagram of 0.3mm
thick STS specimen
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Figure 15: Load-displacement diagram of 0.4mm
thick STS specimen
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Figure 16: Load-displacement diagram of 0.5mm
thick STS specimen
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Figure 17: Load-displacement diagram of 0.6mm
thick STS specimen
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Figure 18: Load-displacement diagram of 0.7mm
thick STS specimen
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Figure 19: Load-displacement diagram of 0.8mm
thick STS specimen

Figure 20: Deformed miniature disk shape speci-
men of 0.5mm thickness

Figure 21: Deformed miniature disk shape speci-
men of 0.6 mm thickness
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ment respectively with the fracture toughness
measured from the standard three-point bend test
and yield strength measured from standard ten-
sile test. These properties were found using
neural networks containing 2 inputs, 10 hidden
units and 1 output unit. These neural networks
were trained with 25 simulated load-displacement
curves. Neural networks are able to generate
an approximated function for the material pa-
rameters depending on the shape of the load-
displacement curve of the punch. For the four dif-
ferent materials i.e., hot worked chromium steel,
non-shrinkable die steel, medium carbon steel and
structural steel, sets of material parameters have
been found, that determine the material behavior
reasonably well. The values of fracture toughness
and yield strength obtained from neural network
also compared with the values obtained from dif-
ferent empirical relations existing in literature.

5.1.1 Existing Correlations For The Prediction
of Fracture Strain

Based on experimental observation that fracture
in small punch (SP) test specimen occurs after
membrane stretching, the fracture strain εq f can
be calculated by using membrane theory proposed
by Chakraborty (1970).

εq f = ln
( t0

t∗
)

(1)

Where t∗ is the minimum thickness at fracture
point and t0 is the initial thickness of the minia-
ture specimen

The biaxial fracture strain can be estimated from
the empirical relation using small punch test, sug-
gested by Kameda [1994] is as follows.

εq f = 0.12

(
δ ∗

t0

)1.72

(2)

Where δ ∗ is maximum deflection at fracture

Similarly, another empirical relationship pro-
posed by [Mao, Shoji and Takahasi (1997)] is as
follows

εq f = 0.15

(
δ ∗

t0

)1.5

(3)

[Husain (2003)] proposed the relation for fracture
strain in case of circular shape miniature speci-
men as

εq f = 1.688
[
ln

( t0
t∗

)]1.24
(4)

5.1.2 Existing Correlations For The Prediction
of Fracture Toughness

The experimental correlation between equivalent
fracture strain and fracture toughness (JIC), based
on the single specimen technique proposed by
Takahashi et al (1980), is linear, as follows:

JIC = 280εq f −50 (for εq f 〉0.2) (5)

Where JIC is in
(
kJ/m2

)
.

Similarly another empirical relationship for frac-
ture toughness, suggested by [Mao and Takahashi
(1987)], is

JIC = 345εq f −113 (for εq f 〉0.4) (6)

Where JIC is in
(
kJ/m2

)
.

[Husain (2003)] proposed the relation for frac-
ture toughness in case of circular shape miniature
specimen as

JIC = 722.28(εq f )
2.837 (7)

For the results shown in Table 3–Table 5. The
fracture strains are calculated from the following
method:

1. Chakraborty (1970) (Eqn. 1)

2. Kameda et al (1994) (Eqn. 2)

3. Mao et al (1997) (Eqn. 3)

4. Husain (2003) (Eqn. 4) and

5. Present work

Using each of above fracture strains, the frac-
ture toughness is calculated from the following
method:

a. Takahashi et al (1980) (Eqn. 5)

b. Mao et al (1987) (Eqn. 6)
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c. Husain et al (2003) (Eqn. 7)

d. Present work

The predicted mechanical properties of different
materials by standard conventional tests, by em-
pirical relations and as well as by the neural net-
works for four different materials are tabulated in
Table 3 to Table 8.

Tables 3 to 5 gives the comparison of differ-
ent studies made in order to predict the fracture
toughness of different materials. It is observed
that the present works seems to be very much
close to the actual values where as in other studies
there is a large variation.

Tables 6 to 8 gives the comparison of different
studies made to predict the yield strength of dif-
ferent materials. It is observed that the variations
of yield strength with actual values in the present
study is more than the values predicted from the
empirical relations established by Xu et al (1985)
and are less than the values predicted from empir-
ical relations established by Mao et al (1987).

It is observed that the fracture toughness values
predicted by neural networks are more accurate
than the fracture toughness obtained from the em-
pirical relations. The accuracy of the neural net-
work depends on the fracture toughness and yield
strength data available. If more data input are
available the prediction will be more accurate. It
is observed that the input vector to train the neural
networks also play an important role. To predict
the fracture toughness value of steels various in-
put parameter were considered. It is observed that
the network in which, thickness of specimen and
reduced thickness are used as input vectors is pro-
viding better results than the network, in which
breakaway load, thickness of specimen and re-
duced thickness are used.

6 Conclusions

Following conclusions are drawn from the present
study.

• It can be concluded that the load-
displacement curves obtained from the
FEM simulation of shear punch test using

ABAQUS are in good agreement with
the experimental curves available in the
literature.

• It is observed that the plastic deformation oc-
curs at the center of shear punch test speci-
mens, after contact with the rigid indenter,
but the location of maximum shear stress and
maximum plastic deformation moves out-
ward with increasing load due to the distri-
bution of contact stress.

• The maximum value of von-mises stress oc-
curs near the peripheral edges of the speci-
men.

• It can be concluded that the contact pressure
between the hemispherical headed punch
and the specimen is the highest at the edge
of contact area after the breakaway point.

• It is observed that the mechanical proper-
ties predicted by neural networks are in good
agreement with the experimental values. The
variation of properties predicted by neural
network with experimental values is much
less compared to the variation of properties
obtained by existing empirical relations.

The accuracy of prediction of properties by neu-
ral network increases by increasing the data for
training the neural network.
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