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Modelling a Plunging Breaking Solitary Wave with Eddy-Viscosity
Turbulent SPH Models
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Abstract: Breaking waves can run up at the
shoreline, inundating coastal regions and causing
large property damage and loss of life. In or-
der to proceed to the design of sea defence struc-
tures and estimate the possible damage resulting
from sea submersion due to a tsunami for in-
stance, it is thus crucial to understand these phe-
nomena. However, due to the mathematical diffi-
culties caused by the complexities of the fluid mo-
tion associated with breaking wave, a fully theo-
retical approach is not possible. Thus most of the
investigations regarding breaking waves are ex-
perimental and numerical. Some methods were
recently developed to perform such simulations,
among them Volume Of Fluids (VOF) and La-
grangian methods. In this paper, the gridfree
Smoothed Particle Hydrodynamics (SPH) is used.
SPH is preferencially used in CFD to simulate
complex flows with one or several convoluted free
surfaces. Indeed, this type of flows would require
distorted meshes with Eulerian finite difference
methods or very fine meshes with VOF. The abil-
ity of SPH to reproduce a plunging breaking soli-
tary wave and to simulate the different stages of
its process is herein investigated. Since breaking
waves are characterised by high distorsion, turbu-
lence modelling plays a crucial role in such sim-
ulations. Therefore, the turbulence models devel-
oped by the authors and presented in earlier publi-
cations [Violeau and Issa (2006)] are here applied.
The results, compared to experiments, are on the
whole satisfactory, specially the simulation of the
splashup phenomenon. Moreover, it is shown that
turbulence modelling has a strong influence on the
quality of the results.
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1 Introduction

The ocean waves generated by seismic events
usually have long wavelengths and small wave
heights. As they propagate shoreward, due to
the offshore bathymetry, the wave heights can
increase significantly, leading to breaking waves
near the shoreline [Li and Raichlen (2003)].
These breaking waves can run up at the shoreline,
inundating coastal regions and causing large prop-
erty damage and loss of life. In order to proceed to
the design of sea defence structures and estimate
the possible damage resulting from sea submer-
sion due to a tsunami for instance, it is thus crucial
to understand these phenomena. The complex-
ity of the problem and its theoretical intractability
are obvious in figure 4. Thus, most of investi-
gations for breaking waves are experimental and
numerical. Some methods were recently devel-
oped to perform such simulations, among them
Volume Of Fluids (VOF) and Lagrangian meth-
ods. After its development for astrophysics ap-
plications, SPH has successfully been applied in
fluid mechanics to simulate delicate free surface
flows (dam breaking, wave flumes, etc.) which
would require complex meshes with classical Eu-
lerian codes. SPH is also very efficient for rapid,
convection dominated flows. For the purpose
of presented simulations, since highly distorted
flow are presented, turbulence modelling plays a
crucial role. However, turbulence developments
in SPH are rather recent and still not general-
ized, although some stochastic approaches have
been tested [Welton (1998)], [Violeau, Picon, and
Chabard (2002)]. Unfortunately, they are quite
complex and time consuming. Some recent im-
provements have been achieved during the past
few years: the authors developed a SPH mixing
length model [Issa (2004)], as well as k and k-ε
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models [Violeau and Issa (2006)]. In the mean-
while, Lo and Shao developed 2D SPH Large
Eddy Simulation [Lo and Shao (2002)], also ap-
plied in [Dalrymple and Rogers (2006)]. The
authors [Issa (2004)] also investigated 3D Large
Eddy Simulation with success. One should em-
phasize the fact that many authors still neglect
turbulence modelling in SPH and consider a con-
stant eddy viscosity. Contrary to this approach,
the authors [Violeau and Issa (2006)] have expe-
rienced that turbulence closures based on the con-
cept of eddy viscosity (namely mixing length, k
and k−ε models) provide both physical accuracy
and numerical smoothness. We apply in this pa-
per several of these models to the simulation of
a plunging breaking solitary wave and reveal that
turbulent effects must be taken into account for
modelling such phenomena.

2 Statistical turbulence modelling

Turbulent flows are omnipresent in nature and
are characterised by chaotic fluctuations of pres-
sure and velocity components, which play a cru-
cial role in increasing momentum diffusion. The
simplest way to investigate turbulent flows is to
time-average unsteady fluctuations, hence achiev-
ing turbulence statistical modelling. Only aver-
aged values defined by ensemble, time or spa-
tial averaging [Métais (2001)] are considered; by
applying the average operator 〈 〉 to the Navier-
Stokes equations, one ends up with the Reynolds
equations (1894) (see e.g. [Pope (2000)]).

2.1 Eulerian Reynolds equations

In an Eulerian formalism, the Reynolds continuity
equation is written

∂ρ
∂ t

+
∂ 〈ρui〉

∂xi
= 0 (1)

When considering nearly incompressible flows
(characterised by density fluctuations less than 1
%), terms due to fluid compressibility could be
neglected in the Reynolds momentum equation

which then reads

d 〈ui〉
dt

=
∂ 〈ui〉

∂ t
+
〈
u j
〉 ∂ 〈ui〉

∂x j
= − 1

ρ
∂ 〈p〉
∂xi

+ ν
∂ 2 〈ui〉
∂x j∂x j

− ∂Ri j

∂x j
+ Fe

i (2)

with a summation over j subscript (Einstein’s
conventions), where i varies from 1 to 3 in 3D
and from 1 to 2 in 2D. 〈.〉 denotes average values,
〈ui〉 corresponds to the i−component of the aver-
aged velocity and Ri j are the components of the

Reynolds stress tensor defined by Ri j =
〈

u′iu
′
j

〉
,

u′i ≡ ui −〈ui〉 being the velocity fluctuating com-
ponent satisfying 〈u′i〉 = 0. p, ρ and ν respec-
tively denote pressure, density and kinematic vis-
cosity while Fe

i corresponds to the i-component
of an external volumetric force, e.g. the gravity.
The Reynolds stress tensor incorporates the influ-
ence of the removed turbulence fluctuations on the
mean flow and describes the influence of all scales
of turbulent motion, including the anisotropic
large scales [Eggels (1994)] and need to be es-
timated from physical considerations, which con-
sist of the so-called "turbulent closure model". In
the following, we will consider first order closure
models, meaning that the Reynolds stresses are di-
rectly related to kinematic averaged quantities. In
equation (2), this tensor acts as a diffusion term
quantifying turbulence mixing.

2.2 The eddy viscosity assumption

In order to close the equation set relative to (1)
and (2), several techniques allow to express the
Reynolds stress values in term of the resolved
quantities: the more commonly used family of
models is based on the eddy viscosity assumption,
introduced by Boussinesq in 1880 [Pope (2000)].
In laminar flows, energy dissipation, transport of
mass and momentum are all mediated by the vis-
cosity. Since these phenomena are enhanced by
turbulence, it is thus natural to assume that tur-
bulent effects can be represented by an increased
viscosity νT , which models the diffusion and dis-
sipation properties of eddies. The average field
stability is then ensured by this eddy viscosity νT ,
generally much higher than the fluid molecular
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viscosity. An important feature of the eddy vis-
cosity is that, conversely to the molecular viscos-
ity, it is not a property of a given fluid but depends
on the local turbulent characteristics. The eddy
viscosity assumption consists in writing Reynolds
stresses as

Ri j =
2
3

kδi j −2νT 〈si j〉 (3)

where k =
〈

u
′
iu

′
i

〉
/2 denotes the turbulent kinetic

energy (per mass unit), δi j is the Kronecker’s
symbol and 〈si j〉 the components of the rate of
strain tensor based on averaged velocities

〈si j〉=
1
2

(
∂ 〈ui〉
∂x j

+
∂
〈
u j
〉

∂xi

)
(4)

With this model, the averaged momentum equa-
tion (2) is commonly approximated by

d 〈ui〉
dt

= − 1
ρ

∂ 〈p〉
∂xi

+
∂

∂x j

(
2(ν +νT )

〈
si j
〉)

+ Fe
i (5)

in which the turbulent kinetic energy k has been
incorporated into the pressure term for conve-
nience. In the following, we will restrict our
considerations to eddy-viscosity-based models.
As the eddy viscosity characterises the turbulent
properties of the flow, it is thus not constant and
has to be estimated.

2.3 Mixing length model

The simplest (and historically the first) model
to estimate the eddy viscosity νT introduces the
“mixing length” assumption, such that the eddy
viscosity can be written

νT = Lmut (6)

where ut denotes the typical velocity of large ed-
dies and Lm a mixing length representing the char-
acteristic distance of large eddy diffusive action
[Lesieur (1997)]. An important assumption of the
mixing length model is the balance between pro-
duction and dissipation of the turbulent kinetic en-
ergy (see later equation (9)) and finally gives

νT = L2
mS (7)

where S =
√

2〈si j〉〈si j〉. In its generalised form
(7), the mixing length model is applicable to all
turbulent flows [Pope (2000)], provided the mix-
ing length Lm is known, which is the major draw-
back of this model. For a complex flow such
as a breaking wave, the specification of Lm re-
quires a large measure of guesswork and conse-
quently, one should have little confidence in the
accuracy of the results. Morever, the assumption
that production balances dissipation is not true for
unsteady flows and close to walls and free sur-
faces [Viollet, Chabard, Esposito, and Laurence
(1998)].

2.4 k model

The k model is also based on the mixing length
assumption (6). However, the velocity ut is here
estimated through the turbulent kinetic energy k
and gives

νT = Cμ
k2

ε
(8)

where Cμ = 0.09 [Launder and Spalding (1972)].
In order to estimate the values of k, a transport
equation is solved. The exact one for the turbu-
lent kinetic energy is too complex to be directly
solved [Métais (2001)] and after modelling the
diffusion and the production term of this equation,
it is commonly written

∂k
∂ t

+ 〈u〉.∇k︸ ︷︷ ︸
advection

= ∇.

[(
ν +

Cμ

σk

k2

ε

)
∇k

]
︸ ︷︷ ︸

di f f usion

+ P︸︷︷︸
production

− ε︸︷︷︸
dissipation

(9)

The parameter σk corresponds to a Schmidt num-
ber and is equal here to 1.0 while Cμ equals to
0.09. The production term P is usually modelled
by

P = Cμ
k2

ε
S2 (10)

However, this relation overestimates turbulent ki-
netic energy k for highly distorted flows where
production should become linear with respect to
the rate-of-strain. To circumvent this weakness,
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one can use the following relation [Guimet and
Laurence (2002)]

P = min

(√
Cμ ,Cμ

k
ε

S

)
kS (11)

The ε value is then obtained through the following
relation

ε = C3/4
μ

k3/2

Lm
(12)

This model is well suited for unsteady flows, for
which the energy production is characterised by a
time scale τ ≈ k/ε comparable to the timescale of
the mean flow, like in wave propagation: contrary
to the mixing length model, the k-model takes into
account this transfer time. Once again, the draw-
back of this model is the mixing lenth definition
requirement.

3 The SPH method

3.1 SPH formalism

In SPH formalism, the fluid is discretized with a
finite number of macroscopic fluid volumes called
”particles”. Each particle a is characterised by a
mass ma, a density ρa, a pressure pa, a velocity
vector ua and a position vector ra among other
quantities. In the following, all notations Aa will
refer to quantity A corresponding to particle a. At
the heart of SPH is the exact formula (13) which
evaluates the value of any flow property A at the
position r by

A(r) =
∫

Ω
A(r′)δ (r−r′)dr′ (13)

The previous summation is extended to the do-
main of interest Ω. For numerical reasons, the
Dirac distribution δ is firstly approximated by a
smooth kernel function wh:

A(r) =
∫

Ω
A(r′)wh(r−r′)dr′+O

(
h2) (14)

The interpolating function wh plays a central part
in SPH: it depends on the distance between two
particles (for a spherical kernel) and a parameter
h called the smoothing length, proportional to the
initial particle spacing. The transition to a discrete

domain is achieved by approximating the integral
of equation (14) by a Riemann summation:

A(r) = ∑
b

mb

ρb
Abwh(|r−rb|)+O(h2) (15)

where Ab denotes the value of A at the point oc-
cupied by the particle b. The volume element dr′

has been replaced by the particle volume mb/ρb.
The value of the function A relative to the particle
a located at the point r is then expressed by

Aa = ∑
b

mb

ρb
Abwh(rab)+O(h2) (16)

where rab denotes the distance between particles
a and b. This summation is extended to all parti-
cles b that constitute the domain. In order to re-
duce the number of particles b involved in equa-
tion (15) (and thus to reduce the computing time),
it is convenient to consider kernels characterised
by a compact support of radius ht , proportional to
the smoothing length h. Consequently, only parti-
cles b located in the sphere of radius ht and cen-
tred on a will contribute to the evaluation of func-
tion A relative to particle a (see figure 1). General
expressions of kernels are given in [Monaghan
(1992)] and [Morris, Fox, and Zhu (1997)]. Dif-
ferent types of kernel interpolation are provided
in [Vignjevic, Vuyst, and Gourma (2001)] as well
as kernel improvement regarding consistency in
[Vignjevic, Reveles, and Campbell (2006)]. In
most SPH codes, spline kernels are used and we
consider here the fourth order spline kernel, rep-
resented on figure 2.

ht = α h

a
b

Figure 1: Neighbours of particle a with a compact
support kernel.

The interpolant of the function A established ac-
cording to equation (16) is differentiable provided
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Figure 2: Representation of the fourth order
spline kernel with xab = xa −xb and zab = za − zb.

the kernel function is also differentiable. Then,
the gradient of a scalar field A relative to particle
a can be written

(∇A)a = ∑
b

mb

ρb
Ab∇awh(rab) (17)

where ∇awh (rab) denotes the kernel gradient with
respect to a-coordinates. One can notice that there
is no need to use a grid to evaluate the gradient
of a scalar field since it is a function of the ker-
nel gradient which is analytically known. This
SPH feature is essential and very attractive. As in
finite-differences methods, the gradient of a scalar
field A can be written in several ways in SPH for-
malism [Monaghan (1992)]. Among others, the
following symmetric form

(∇A)a =
1
ρa

∑
b

mb(Ab −Aa)∇awh (rab) (18)

or the following assymetric one

(∇A)a = ρa ∑
b

mb

(
Aa

ρ2
a

+
Ab

ρ2
b

)
∇awh (rab) (19)

Derivations of these expressions are provided in
[Monaghan (1992)]. In the same way, several
forms of the divergence of a vector field could be
established [Issa (2004)].

Since we deal here with nearly incompressible
(characterised by density fluctuations less than 1
%) turbulent flows, a possible set of weakly com-
pressible Reynolds equations in SPH formalism
are herein presented.

3.2 SPH weakly compressible Reynolds equa-
tions

Modified equation (1) and equation (5) are used
to derive a SPH form of Reynolds equations with
the eddy viscosity assumption. From a formalistic
point of view, they are identical to the classical
SPH Navier-Stokes equations, except that

• pressure and velocities are considered as av-
eraged values

• the kinematic viscosity is increased by the
eddy viscosity

Consequently, for particle a, the averaged conti-
nuity equation can be written

dρa

dt
= ∑

b

mb〈u〉ab∇awh (rab) (20)

with ρa ≈ 〈ρ〉a since nearly incompressible flows
are here investigated. 〈u〉a corresponds to the av-
eraged velocity relative to particle a and 〈u〉ab de-
notes the quantity 〈u〉a − 〈u〉b The r.h.s. of equa-
tion (20) is a SPH form of the velocity divergence
according to the general methodology presented
in section 3.1. An SPH form of the averaged mo-
mentum equation (2) is

d〈u〉a

dt
= −∑

b

mb

(
qpres

a,b +qvisc
a,b

)
∇awh (rab)

+ Fe
a (21)

with

qpres
a,b =

〈p〉a

ρ2
a

+
〈p〉b

ρ2
b

(22)

corresponding to the pressure gradient term and

qvisc
a,b = −8

νT,a +νT,b

ρa +ρb

〈u〉ab.rab

r2
ab +η2

(23)

corresponding to the viscous term [Monaghan
(1992)]. which has here been modelled through
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the classical artificial term introduced by Mon-
aghan [Monaghan (1992)] with νT,a correspond-
ing to the eddy viscosity attached to particle a (the
kinematic viscosity has here been neglected). rab

denotes the vector ra − rb while the parameter
η (equals to 0.1h) has been introduced in order
to avoid zero denominator. The averaged pres-
sure 〈p〉a is defined by the following filtered state
equation

〈p〉a =
ρ0c2

0

γ

[(
ρa

ρ0

)γ
−1

]
(24)

where ρ0 and c0 respectively denote the reference
density (1000 kg.m−3 for water) and a numerical
speed of sound. The γ coefficient is equal to 7 for
water [Monaghan (1992)], which makes pressure
strongly respond to density. Consequently, when
particles are getting too close to each other, their
pressure will highly increase and will repell these
particles from each other through the pressure
gradient term. Due to this equation, it comes that
pressure automatically goes to zero when density
equals the reference density (for instance near a
free surface). In order to deal with a nearly incom-
pressible flow (characterised by density fluctua-
tion less than 1 %), the numerical speed of sound
should be at least ten times higher than the max-
imum velocity of the flow [Morris, Fox, and Zhu
(1997)].

3.3 SPH eddy viscosity models

In this subsection, turbulent closure models pre-
sented in section 2 are applied to SPH. It will
be shown that the consitutive equations like (7)
remain unchanged while the governing PDE (9)
needs to be written in SPH formalism.

3.3.1 An SPH Mixing length model

Considering the mixing length model (7), the
eddy viscosity νT,a for each fluid particle a is ex-
pressed by

νT,a = L2
m,aSa (25)

Lm,a corresponds to the value of the mixing length
at the position occupied by particle a while the

velocity gradients required to calculate the rate-
of-strain Sa of particle a are estimated through the
following symmetric form

∂ 〈ui〉
∂x j

∣∣∣∣
a

= − 1
ρa

∑
b

mb〈u〉ab⊗∇awh (rab) (26)

3.3.2 An SPH k model

With an SPH k model, the eddy viscosity νT,a for
each fluid particle a is expressed by

νT,a = Cμ
k2

a

εa
(27)

where ka and εa respectively correspond to the tur-
bulent kinetic energy and the dissipation rate for
particle a. The following k-transport equation (9)
has been written in SPH formalism as

dka

dt
= ∑

b

mb

ρb

νT,a +νT,b

σk

kabrab

r2
ab +η2

.∇awh (rab)︸ ︷︷ ︸
di f f usion

+ Pa︸︷︷︸
production

− εa︸︷︷︸
dissipation

(28)

where kab = ka−kb. The diffusion term was writ-
ten in the same form as the viscous diffusion term
developed by Monaghan, as achieved for the tem-
perature conductivity in [Cleary and Monaghan
(1999)]. The production term Pa can be modelled
according to

Pa = Cμ
k2

a

εa
S2

a (29)

or

Pa = min

(√
Cμ ,Cμ

ka

εa
S2

a

)
kaS2

a (30)

To close the system, the condition (12) for εa is
used, according to

εa = C3/4
μ

k3/2
a

Lm,a
(31)
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3.4 Temporal integration

All previous SPH equations are integrated in time
with a classical one order Euler scheme according
to a time step estimated by

δ t = min(δ t f orces,δ tCFL,δ tvisc) (32)

where

δ tCFL = 0.4
h
c0

(33)

corresponds to a CFL condition which imposes
that the time step δ tCFL is less or equal to the con-
vection time on the length h relative to the spatial
discretisation.

δ t f orces = 0.25min
a

√
h
|fa| (34)

ensures that particles do not get too close to each
other during the integration of their movement
[Morris, Fox, and Zhu (1997)]. f

a
denotes the in-

ternal and external forces associated to particle a
(i.e. the magnitude of the r.h.s. of the momentum
equation).

δ tvisc = 0.125
h2

ν
(35)

This viscous criterion must be taken into account
to make the time step inferior to the viscous
phenomenon time scale [Morris, Fox, and Zhu
(1997)].

3.5 Boundary conditions

3.5.1 Wall modelling

Walls are here modelled with solid particles called
edge particles. Moreover, in order to ensure the
impermeability of the wall, three layers of dummy
particles are added under the wall: the density of
edge and dummy particles evolve thanks to the
contribution of fluid particles through the aver-
aged continuity equation (20). Indeed, when the
fluid particle a is linked to the edge or dummy
particle b, the b-contribution to the evolution of
a-density is equal to (see equation (20))

mb〈u〉ab∇awh (rab) (36)

As particle b is also linked to fluid particle a,
the contribution of particle a to the evolution of
b-density is also given by equation (36), since
the continuity equation (20) is symmetric with re-
spect to a and b subscripts. The averaged pressure
of edge and dummy particles are then computed
with the averaged state equation and these parti-
cles are involved in the averaged pressure gradient
relative to fluid particles in the momentum equa-
tion. These wall conditions also enable a perfect
impermeability of the wall in rapid dynamic phe-
nomena such as dam breaking. Contrary to the
repulsive forces commonly used in SPH to repre-
sent walls [Monaghan (1992)], the present formu-
lation does not introduce any ad hoc coefficient.
Moreover, in contrast to traditional mirror parti-
cles used in most SPH codes, the method pro-
posed here considers fixed particles and can easily
be implemented even for curved walls. It is also
practical to model moving wall, as achieved in the
following.

3.5.2 Turbulent boundary conditions

For turbulent flows, edge particles represent fluid
particles immediately located at the bottom of
the turbulent boundary layer. Their gravitational
center is hence placed at z = δ , where δ corre-
sponds to a small distance to the wall larger than
the viscous sublayer thickness, typically δ r/10
with δ r corresponding to the averaged initial par-
ticle spacing. In some Eulerian methods using
cell vertex discretisation, although the first node
is exactly located on the wall, the velocity at that
point is non-zero and assumed to correspond to
the value at the position δ . This means that the
flow domain for a channel of a height H for in-
stance is [−δ ,H] and the computational domain
[0,H] (the wall is “pushed back”). The −δ off-
set is then negligible [Issa (2004)]. Prescribing
turbulent wall boundary conditions with this ap-
proach requires wall functions, which give theo-
retical values of physical quantities in the vicinity
of a wall. Although this method can be criticized
for adverse pressure driven flows, it was shown to
be efficient for simple shear flows in traditional
Eulerian codes and was presented and used by the
authors [Violeau and Issa (2006)]. The following
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wall functions require the estimation of a friction
velocity u∗a relative to each edge particle a, esti-
mated through the following procedure:

1. For each edge particle a, a fictitious point M
located at a distance Δ from a on the normal
to the wall (see figure 3) is defined.

u< >
M

a

M

x

z

Fictious point

Fluid particle

Edge particle

b

Figure 3: Computation of the friction velocity u∗.

2. The averaged axial velocity at M is com-
puted with the classical following SPH rela-
tion

〈u〉M = ∑
b

mb

ρb
〈u〉bwh (rMb) (37)

where rMb is the distance between fictitious
point M and particle b.

3. 〈u〉M should verify the following log-law for
a smooth wall

〈u〉M = u∗a

[
1
κ

ln
(δ +Δ)u∗a

ν
+B

]
(38)

The friction velocity u∗a is then obtained by
iterating. The constant B is equal to 5.2
± 0.74 [Shi, Thomas, and Williams (2000)]
and the Von Karman κ equals to 0.41. For
a rough wall characterised by a roughness
scale ξ , the relation

〈u〉M = u∗a

[
1
κ

ln
(δ +Δ)

ξ
+D

]
(39)

directly gives the value of u∗a with D = 8.5
[Viollet, Chabard, Esposito, and Laurence
(1998)].

The edge particle averaged tangential velocity is
then computed according to

〈u〉edge = u∗a

[
1
κ

ln
δu∗a

ν
+B

]
(40)

for a smooth wall and

〈u〉edge = u∗a

[
1
κ

ln
δ
ξ

+D

]
(41)

for a rough wall. It has been shown in [Issa
(2004)] that the estimation of u∗a is very close to
the theoretical value u∗ in both cases for a turbu-
lent steady open channel characterised by a con-
stante slope. Near a wall, k-Dirichlet boundary
conditions are prescribed according to

ka =
u2∗a√

Cμ
(42)

4 Plunging breaking solitary wave simulation

Several types of breaking waves are commonly
described in the literature - spilling, surging, col-
lapsing, and plunging breaking [Li and Raichlen
(2003)]. A photograph of a typical plunging
breaking solitary wave is shown on figure 4 just
after the plunging jet reaches the free surface.
For the slopes, waves and depths considered here,
plunging breaking waves are investigated.

Figure 4: Typical plunging breaking solitary wave
showing initiation of slashup [Li and Raichlen
(2003)].
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4.1 Classical solitary wave generation
[Hughes (1993)]

In order to generate the solitary wave represented
on figure 5, we consider a piston-type wave board
moving on one side of a flume with a flat bottom
followed by a gentle slope (see also figure 6). All
equations presented in this part are derived from
[Hughes (1993)]. The displacement X0(t) of the
wave board has to evolve over the range −∞ <

t < +∞ according to:

X0(t) =
H
Kd

tanh [K (Ct −X0)] (43)

where

K =

√
3H
4d3 (44)

and

C =
√

g(d +H) (45)

The velocity of the piston is thus evolving accord-

0
X (t)
.

H

x

z

C

Wave board

d

Figure 5: Sketch of the considered solitary wave.

ing to

Ẋ0(t) =
H
d CA

1+ H
d A

(46)

with

A =
1

cosh2 [K (Ct −X0)]
(47)

The total stroke Ss, corresponding to the distance
between the maximum and minimum displace-
ments of the wave board, is given by

Ss =

√
16Hd

3
(48)

Goring [Goring (1979)] and Goring and Raichlen
[Goring and Raichlen (1980)] compared such lab-
oratory generated solitary waves to the classical
wave theories: they reported fairly good agree-
ment over the entire wave form for large waves
(H/d ≈0.6) and good agreement for small ampli-
tude solitary wave (H/d ≈0.15).

4.2 Plunging breaking solitary wave experi-
ments [Li and Raichlen (2003)]

By using a simple plane beach, important char-
acteristics of breaking waves can be studied in
the laboratory. Indeed, the results for the simple
two-dimensional case of a solitary wave propagat-
ing in a constant depth and impinging on a plane
sloping beach can yield results that are useful for
three-dimensional numerical modeling of coastal
sites. A schematic of the solitary wave runup ex-
periments achieved in [Li and Raichlen (2003)]
is presented on figure 6. Experiments were con-

x

z

β

L

H

Wave board

d

Figure 6: Definition sketch for plunging breaking
solitary wave runup [Li and Raichlen (2003)].

ducted with this arrangement for a slope of 1:15
and waves were generated using a programmable
vertical bulkhead wave generator which moved
according to the classical solitary wave theory
previously introduced.

4.3 Solitary breaking wave modelling

The system presented on figure 6 is here numer-
ically considered with dhe dimension L, H and
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d in meters respectively equal to 5, 0.2 and 0.5.
Approximately 350 000 particles initially spaced
by 2,5.10−3 m are considered, as represented on
figure 7. In order to generate a plunging break-

Figure 7: SPH geometry for plunging breaking
solitary wave simulations.

ing solitary wave characterised by H/d = 0.4,
the velocity of edge and dummy particles defin-
ing the wave board evolves according to equation
(46) along a distance given by (48). All turbulent
boundary conditions relative to edge particles, in-
cluding velocity, are computed by considering a
rough wall characterised by a roughness scale ξ
of 0.01 m, according to the method presented in
part 3.5.2. Most of scientists consider that waves
can be modelled without viscous forces. This is
meaningfull in first approximation when consid-
ering propagation, which is essentially driven by
pressure forces. However, we are now reproduc-
ing a breaking wave involving high strains and
surface deformation. The above-mentioned tur-
bulence models are then used in order to correctly
capture the shape of the free surface and the wave
velocity during and after breaking. We will exam-
ine the two models presented in section 3.3 (mix-
ing length and k-model) and compare them to a
model using a constant (in space and time) eddy
viscosity. The value of the latter was estimated
from simulations achieved with k-model. For all
simulations herein presented, the time step was
equal to 3.10−5 s and 363 hours were required on
a 2.8 GHz Linux PC.

4.4 Results

As represented on figure 8, the elevation of the
solitary wave generated by SPH is very close to
the value of 0.2 m prescribed through the wave
board motion. Pictures (a) and (c) of figure 9 rep-
resent experimental results presented in [Li and
Raichlen (2003)], at two different times corre-
sponding to the formation of the plunging wave.

Figure 8: SPH solitary wave generation.

The comparison between experimental and SPH
results first reveal that SPH is able to accurately
reproduce breaking plunging wave. Moreover, by
comparing SPH results obtained with a constant
eddy-viscosity, a mixing length model and a k-
equation model (bottom pictures of figure 9), one
can notice that there is no large discrepancy be-
tween the three models. The red solide line de-
picted on SPH results of figures 9 to 10 corre-
sponds to the experimental free surface shape. For
this first step of plunging wave process, it seems
as if turbulence modelling is not crucial, the rate
of strain being still moderate. Conversely, on ex-
perimental pictures of figure 10, the plunging jet
impacts the forward face of the wave with a shore-
ward directed jet generated at the impact point.

This jet impact initiated the splashup/runup pro-
cess. In this case, the jet is reflected at an an-
gle with the bottom that is greater than the cor-
responding angle of the incident jet. It is pos-
tulated that this splashup is caused by the trans-
lation of the impact point of the jet up the slope
and its interaction with the front face of the wave
[Li and Raichlen (2003)]. SPH simulations of the
splashup process initiation (see bottom pictures
of figure 10) show that a constant eddy viscos-
ity model does not correctly reproduce this phe-
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Figure 9: Experimental plunging solitary wave
[Li and Raichlen (2003)] (top) and simulated
one achieved by SPH with various turbulent clo-
sure: constant eddy-viscosity, mixing length and
k-model (from top to bottom). The solid lines
mimic the experimental free surface.

Figure 10: Experimental splashup initiation.
Same key as figure 9.

nomenon, while the mixing length model presents
slightly better results. In contrast, results obtained
with the k-equation model are in good agreement
with the experiment. Up to this point, it can be
established that turbulence modelling is impor-
tant to simulate such phenomenon. The reason
is that high shear stress generated in the vicinity
of the impinging point leads to high turbulent ki-
netic energy production rate through (29) or (30).
Thus, the turbulent kinetic energy - and hence the
eddy viscosity - increases a lot and slows down
the global motion, which is confirmed by figures
11 and 12 which represents the spatial distribution
of k at two different stages (just before and during
the splashup process initiation). Splashup de-

Figure 11: Turbulent kinetic energy distribution
before breaking.

Figure 12: Turbulent kinetic energy distribution
after breaking.

velopment depicted on figure 13 reveals this time
that all turbulence models give fairly good results.

As the incident wave moves shoreward, the shape
of the splashup (reflected) jet changes and curves
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Figure 13: Experimental splashup development.
Same key as figure 9.

Figure 14: Experimental reflected wave. Same
key as figure 9.

back toward the incident wave. Finally, the inci-
dent jet disappears and the reflected jet ("counter-
breaking") collapses. Once again, comparisons
between experimental and numerical results of
figure 14 proove that a constant eddy viscosity
model is not accurate enough to reproduce the re-
flected wave. The other models are slightly bet-
ter but have to be improved, specially regarding
wall treatment. The reasons for which even the
most sophisticated model presented here fails in
predicting the last stages with accuracy may now
be evoked. First of all, a two-equation model
(e.g. the k − ε model) as presented in [Violeau
and Issa (2006)] should be more appropriate to
estimate the dissipation rate ε certainly crucial
in this flow. Then, one could argue that the
Boussinesq’s assumption (3) is too poor to cap-
ture the complex turbulent stresses involved in
the splash-up: high rate of strain and curvature
effects would require a non-linear k − ε model
(namely an Explicit Algebraic Reynolds Stress
Model) as presented in [Violeau and Issa (2006)].
Finally, one should mention the fact that no free-
surface boundary condition regarding the turbu-
lent kinetic energy were prescribed. Recent sim-
ulations have shown that imposing a zero-value
of k on the free surface slightly improves the pre-
diction of its shape. More generally, interactions
between free-surfaces and turbulence (in terms of
anisotropy of Reynolds stresses for instance) re-
main an open field for which theoretical develop-
ments should be done in order to apply a method
like SPH to very complicated flows.

5 Conclusion

The ability of SPH to accurately reproduce soli-
tary wave with a classical wave board has here
been revealed. The surface elevation of the soli-
tary wave is very close to the theoretical value.
In the first steps of the process, turbulent ef-
fects do not play a prominent part, which justi-
fies the fact that turbulence modelling has been
neglected for this step. SPH is also capable of re-
producing plunging breaking wave: free surface
shape comparisons with experimental results are
very satisfactory. Turbulent models remain un-
useful until the splash-up generation. Contrary to
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this, splashup modelling requires accurate mod-
elling of turbulent effects: it has been shown
here that a constant eddy viscosity model gives
poor results during splashup initiation while mix-
ing length and k-equation model give much bet-
ter comparisons. However, the splashup develop-
ment and the reflected wave which occured at the
end of the process are not perfectly represented
with SPH, even with turbulent models. The first
results introduced through this paper have to be
improved, from a numerical and physical point of
view: pressure calculation through the classical
state equation gives most of the time numerical in-
stabilities, which may be smoothed out by a fully
incompressible algorithm [Lo and Shao (2002)].
Moreover, splashup developement and reflected
wave may require additional developments based
on non-linear k − ε models accounting for free
surface effects. It is also clear that representing
this kind of flow with a two-phase simulation in-
volving air, thus allowing to model the influence
of air entrainment during the breaking, should in-
crease the quality of the presented results.
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