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Acoustoelastic Effects on Borehole Flexural Waves in Anisotropic
Formations under Horizontal Terrestrial Stress Field

Ping’en Li1,2 and Xianyue Su1,3

Abstract: Applying the Stroh theory and based
on the works of Hwu and Ting (1989), the com-
plex function solution of stress and displacement
fields around an open borehole in intrinsic aniso-
tropic formation under horizontal terrestrial stress
field is obtained. For cross-dipole flexural wave
propagation along borehole axis, using the per-
turbation method, the acoustoelastic equation de-
scribing the relation between the alteration in
phase velocity and terrestrial stress as well as for-
mation intrinsic anisotropy is derived. At last,
the numerical examples are provided for both the
cases of fast and slow formation where the sym-
metry axis of a transversely isotropic (TI) forma-
tion makes an angle with the borehole axis. The
phase velocity dispersion curves of borehole flex-
ural wave and the corresponding velocity-stress
coefficient are investigated. Computational re-
sults indicate that different from the stressed in-
trinsic isotropic formation situation, the varia-
tion in the phase velocity of flexural wave in
stressed intrinsic anisotropic formation is domi-
nated by two factors, one is the intrinsic forma-
tion anisotropy itself and the other is the stress-
induced anisotropy. The former factor merely
causes the borehole flexural wave split while the
latter factor induces the dispersion curves inter-
section for two flexural waves polarized orthog-
onally. The combined effect of the two fac-
tors could strengthen or weaken the phenomenon
of crossover for flexural wave dispersion curves.
Thus, the dispersion curves of flexural waves may
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not intersect even under the unequal horizontal
terrestrial stress field, whereas it is still possible to
observe the crossover of the flexural wave disper-
sion curves under the equal horizontal terrestrial
stress field. The polarized direction of the low-
frequency fast flexural wave is no longer consis-
tent with the direction of the maximum horizon-
tal terrestrial stress all the time. Therefore, the
crossover of the borehole flexural wave dispersion
curves means that the terrestrial stress must exist.
On the other hand, we can’t exclude the possibil-
ity of the existence of terrestrial stress even if the
flexural wave dispersion curves do not intersect.
Based on the above researches, the method for
terrestrial stress inversion from borehole flexural
wave dispersion curves obtained by cross-dipole
sonic logging in stressed intrinsic anisotropic for-
mation is simply discussed.

Keyword: Acoustoelastic effect, borehole flex-
ural wave, stressed intrinsic anisotropic forma-
tion, dispersion curve, terrestrial stress inversion
method

1 Introduction

The quantitative information of terrestrial stress
has an important impact on borehole stability and
the oilfield production. In the initial stage of oil-
field development, it will be great significance
for making oil and gas field development scheme,
stability design of borehole wall and well pat-
tern optimization if we understand the situation of
stress distribution in exploitation area and reser-
voir local stress. In oilfield production period, the
variation of abnormal formation stresses may be
caused by geological condition alteration, oilfield
long-term exploitation and other human factors.
Making this clear will be beneficial to take timely
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measures to prevent or reduce the phenomenon of
oil well damage which often appears in oilfield.
At present, the main methods for local stress mea-
surement in oilfield include the borehole breakout
and hydraulic fracturing technique, their costly
and devastating borehole restrict their application
in certain extent.

In propagation medium, elastic wave velocities
are affected by prestresses (terrestrial stress).
The theory of acoustoelasticity [Pao, Sachse and
Fukuoda (1984)] was proposed in 1960s. And re-
cently it has been applied to borehole problems,
which is the theoretical basis of terrestrial stress
nondestructive examination. Semi-analytical per-
turbation method and pure numerical method are
the two main methods for investigation of the
borehole modes in complex formation. In 1994,
Norris, Sinha and Kostek (1994) first applied the
theory of acoustoelasticity to a prestressed hetero-
geneous medium comprising of inviscid fluid and
solid parts. Considering the influence of fluid-
solid interfacial slip, the boundary conditions,
constitutive relations and motion equations in the
reference, intermediate and current coordinates
were established, respectively. Then, adopting
the perturbation procedure, the first-order pertur-
bation in the eigenfrequency of Stonely wave in
a borehole with pressurized fluid and prestrained
solid in the intermediate coordinate was deduced.
Based on it, Sinha, Kostek and Norris (1995),
Sinha and Kostek (1996) further studied the dis-
persion alteration of Stonely and flexural waves
induced by fluid pressure and uniaxial horizon-
tal terrestrial stress, respectively. Their results
indicate that under an uniaxial horizontal terres-
trial stress field, the borehole flexural wave de-
pends on the polarization direction, which results
in the dispersion curves intersection for two flex-
ural waves polarized orthogonally. Because the
intrinsic formation anisotropy merely causes the
flexural dispersion curves split, rather than in-
tersection, according to the crossover of flexu-
ral wave dispersion curves, we can distinguish
the stress-induced anisotropy from the intrinsic
anisotropy of the formation. Subsequently, Win-
kler, Sinha and Plona (1998) proved both by the-
ory and experiments that the intersection of the

flexural wave dispersion curves can be used as
an indicator of existence of terrestrial stress. Ap-
plying nonlinear acoustoelastic model and pertur-
bation integral procedure, considering the uniax-
ial horizontal terrestrial stress and borehole fluid
pressure jointly, Cao, Wang, Li, Xie, Liu and Lu
(2003), Cao, Wang and Ma (2004) investigated
the acoustoelastic effects of Stonely and flexu-
ral wave as well as the sensitive coefficient and
velocity-stress coefficient. Furthermore, Li, Yin
and Su (2006) analyzed the influence of triaxial
terrestrial stresses on borehole modes. The re-
sults indicate that for stressed intrinsic isotropic
formation, it is only the horizontal deviatoric ter-
restrial stress will cause the crossover of flexural
wave dispersion curves, and which is independent
with the horizontal mean terrestrial stress, super-
imposed stress and fluid pressure. For cased hole,
without considering the terrestrial stress and ap-
plying perturbation method, Li, Su and Yin (2007)
investigated the flexural wave in anisotropic for-
mation. The results indicate that because of the
influence of the casing, the flexural wave disper-
sion curves in cased hole in both fast and slow
anisotropic formations all almost tend toward an
identical Stoneley wave velocity at higher fre-
quency.

Generally, the perturbation method is only suit-
able to analyze the dispersion curves of bore-
hole mode. In order to obtain the full-wave field
in time domain, a purely numerical method has
to be adopted, mainly the finite element method
(FEM) and finite difference method (FDM). For
general homogeneous anisotropic medium, an
effective meshless method based on the local
Petrov-Galerkin approach is proposed by Sladek
J, Sladek V and Atluri (2004) for solution elas-
todynamic problem. Subsequently, Atluri, Liu
and Han (2006) developed a mixed finite differ-
ence method within the framework of the mesh-
less local Petrov-Galerkin approach for solving
solid mechanics problems. Later, a new numer-
ical algorithm based on meshless local Petrov-
Galerkin approach and modified moving least
square method was proposed by Gao, Liu K, Liu
Y (2006) for analyzing the wave propagation and
dynamic fracture problems in elastic media. For



Acoustoelastic Effects on Borehole Flexural Waves 175

borehole problem, Sinha, Liu and Kostek (1997),
Liu and Sinha (2000, 2003) discretized the dy-
namic equation of stress-velocity form directly
by applying staggered-grid high-order finite dif-
ference method. They investigated the dispersion
curves as well as the waveforms in time domain of
Stonely and flexural wave in fluid-filled borehole
in biaxial and triaxial terrestrial stressed forma-
tion, using absorbing boundary condition to elim-
inate the reflection at an artificial finite bound-
ary. But for purely numerical method in borehole
modes problem, it is extremely high demands on
the computer resources and its result is hard to be
further analysis, which limits its development and
application range. In generally, comparing to the
purely numerical method, the analytic and semi-
analytic method is more suitable for theoretical
study.

The above researches are all based the assumption
that the formation is an intrinsic isotropic elastic
solid, and merely the influence of stress-induced
anisotropy on borehole mode is analyzed. How-
ever, actually, the formation is not isotropic, but
anisotropic in various degrees. The stresses and
displacements field around a borehole in aniso-
tropic formation is completely different from that
in isotropic formation under terrestrial stresses,
which directly influences the wave field and dis-
persion of borehole mode. Therefore, the study
of the acoustoelastic effect on borehole flexu-
ral wave in intrinsic anisotropic formation un-
der terrestrial stress field has important theoreti-
cal significance for realization of terrestrial stress
nondestructive examination in stressed intrinsic
anisotropic formation through cross-dipole sonic
logging.

In this paper, considering an intrinsic anisotropic
formation under horizontal terrestrial stress field,
using the Stroh theory and based on the work of
Hwu and Ting (1989), the complex function so-
lutions of stresses and displacements around an
open borehole are obtained firstly. Then, ap-
plying the nonlinear theory of acoustoelasticity
and perturbation integral procedure, the expres-
sion of first-order correction of the phase velocity
for borehole modes is derived. Finally, the nu-
merical examples are provided for both fast and

slow azimuthal anisotropic formation. The re-
sults indicate that the variation of flexural wave
phase velocity is controlled by two factors, one is
the intrinsic formation anisotropy and the other is
the stress-induced anisotropy. The former factor
merely causes flexural wave split while the latter
factor results in flexural wave dispersion curves
intersection. The combined effect of the two fac-
tors could strengthen or weaken the phenomenon
of crossover for flexural wave dispersion curves.
Thus even under an unequal horizontal terrestrial
stress field, flexural wave dispersion curves may
not intersect. Whereas it is still possible to ob-
serve the crossover of flexural wave dispersion
curves under an equal horizontal terrestrial field
because of the non-axisymmetry of the stresses
around the borehole in anisotropic formation, be-
sides which, the polarized direction of the low-
frequency fast flexural wave is no longer keep
consistent with the direction of the maximum hor-
izontal terrestrial stress all the time.

Therefore, in actual cross-dipole sonic logging, if
the formation is intrinsic anisotropic, a crossover
of the flexural wave dispersion curves means it
must exist terrestrial stress. On the other hand, we
can’t exclude the existent possibility of terrestrial
stress if the flexural wave dispersion curves do not
intersect. Based on the above researches, we sim-
ply discuss the acoustoelastic inversion model and
the method for terrestrial stress inversion from
borehole flexural wave dispersion curves.

2 Stresses and displacements field around an
open borehole in anisotropic formation un-
der horizontal terrestrial stress field

First of all, we give solutions of the statics prob-
lem that an open borehole is in anisotropic for-
mation under horizontal terrestrial stress field. As
shown in Figure 1, the formation is anisotropic
elastic solid and Ci jks is its elastic constant. The
horizontal terrestrial stress in x and y direction are
Sx and Sy respectively. The radius of the bore-
hole is a. Without considering the variation of
terrestrial stress along the depths, the problem can
be simplified as a generalized anisotropic plane
strain problem [Ting (1996)], which can be solved
by using Stroh theory. Hwu and Ting (1989) first
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studied the two-dimension problem of the aniso-
tropic elastic solid with an elliptic hole or rigid in-
clusion subjected to a uniform loading at infinity
applying Stroh theory. Based on their works, the
complex function solution for the problem here
can be obtained easily.

Assuming in infinite anisotropic elastic medium,
in z plane, the circular hole boundary L is

z = x1 + ix2 = acosψ + iasinψ (1)

Where a is the radius of the circular hole, ψ is a
real parameter, x1 and x2 are the components of
the two Cartesian coordinate axis.

In zα plane, the corresponding circular hole
boundary Lα is

zα = x1 + pα x2 (2)

Considering the conformal mapping [Ting
(1996)]

zα = cα ζα +daζ−1
α , (α = 1,2,3) (3)

where

cα =
a
2
(1− ipα), dα =

a
2
(1+ ipα) (4)

ζα =
zα +

√
z2

α −a2(1+ p2
α )

a(1− ipα)
(5)

ζ−1
α =

zα −√z2
α −a2(1+ p2

α)
a(1+ ipα)

(6)

in equations (4)∼(6), pα(α = 1,2,3) is the three
complex eigenvalues of the eigenvalue problem{

Q+ p(R+RT)+ p2T
}

a = 0 (7)

xS  

yS

x

y

a

Figure 1: An open borehole in anisotropic forma-
tion under horizontal terrestrial stress field

and let Impα > 0(α = 1,2,3), the correspond-
ing eigenvectors is aα(α = 1,2,3). In equation
(7), the superscript “T” denotes transpose. a =
(a1,a2,a3)T, Q, R and T are 3× 3 matrix, their
component respectively is

Qik = Ci1k1, Rik = Ci1k2, Tik = Ci2k2 (8)

and let

A = (a1,a2,a3), b = (RT + pT )a,

B = (b1,b2,b3)
(9)

the mapping (3) transforms the region outside the
circular hole in zα plane to the region outside the
unit circle in ζα plane.

Let σ∞
i j and ε∞

i j be the stress and strain at infinity.
They are related by the stress-strain laws

σ∞
i j = Ci jksε∞

i j (10)

For generalized plane strain problem, we have the
condition ε∞

33 = 0. If strain is known, stressed can
be obtained through stress-strain relation and con-
dition ε∞

33 = 0, and vice versa. Assuming that σ∞
i j

and ε∞
i j are known, writing

u∞ = x1ε∞
1 +x2ε∞

2 , ϕ∞ = x1t∞
2 −x2t∞

1 (11)

in which

ε∞
1 =

⎛
⎝ ε∞

11
0

2ε∞
13

⎞
⎠= u∞

,1, ε∞
2 =

⎛
⎝2ε∞

12
ε∞

22
2ε∞

23

⎞
⎠= u∞

,2

t∞
1 =

⎛
⎝σ∞

11
σ∞

12
σ∞

13

⎞
⎠= −ϕ∞

,2 , t∞
2 =

⎛
⎝σ∞

12
σ∞

22
σ∞

23

⎞
⎠= ϕ∞

,1

(12)

then the solution of displacement u and stress
function ϕ can be chosen as the from

u = x1ε∞
1 +x2ε∞

2 +2Re
{

A
〈
ζ−1
∗
〉

q
}

ϕ = x1t∞
2 −x2t∞

1 +2Re
{

B
〈
ζ−1
∗
〉

q
} (13)

where q is a constant vector to be determined by
boundary condition. 〈 f (z∗)〉 is the diagonal ma-
trix

〈 f (z∗)〉 = diag[ f (z1), f (z2), f (z3)] (14)
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Then, we determine the constant vector q by
boundary condition.

At the circular hole boundary L, x1 = acosψ and
x2 = asinψ , thus we have

x1ε∞
1 +x2ε∞

2 = Re[e−iψ a(ε∞
1 + iε∞

21)]

x1t∞
2 −x2t∞

1 = Re[e−iψ a(t∞
2 − it∞

1 )]
(15)

and in zα plane, we have ζα = eiψ at the circular
hole boundary Lα , so ζ−1

α = e−iψ . From equations
(13) and (15), the displacement uL and the stress
function ϕL at the circular hole boundary L are

uL = Re[e−iψ(aε∞
1 + iaε∞

2 +2Aq)]

ϕL = Re[e−iψ(at∞
2 − iat∞

2 +2Bq)]
(16)

The traction on the surface of a circular hole van-
ishes. Setting ϕL = 0 in equation (16), we obtain

q = −1
2

B−1a(t∞
2 − it∞

1 ) (17)

Substituting equation (17) into equation (13), we
obtain the displacement u and stress function ϕ
respectively as

u =x1ε∞
1 +x2ε∞

2 +Re
{

A
〈
ζ−1
∗
〉

B−1a(−t∞
2 + it∞

1 )
}

ϕ =x1t∞
2 −x2t∞

1 +Re
{

B
〈
ζ−1
∗
〉

B−1a(−t∞
2 + it∞

1 )
}

(18)

For the problem in this paper, the anisotropic for-
mation with a circular borehole is subjected to
horizontal stresses Sx and Sy at infinity, thus we
have

σ∞
11 = Sx, σ∞

22 = Sy, σ∞
12 = σ∞

13 = σ∞
23 = 0 (19)

According to the stress-strain relation (10) and
condition ε∞

33 = 0, the stress σ∞
33 and strain ε∞

11,
ε∞

22, ε∞
12, ε∞

13 and ε∞
23 can be determined. Therefore,

the stress σ∞
i j and strain ε∞

i j are all known. After
gaining the displacement and stress function from
equation (18), the stress and strain can be further
obtained. From the relation

ε1 =

⎛
⎝ ε11

0
2ε13

⎞
⎠= u,1, ε2 =

⎛
⎝2ε12

ε22

2ε23

⎞
⎠= u,2

t1 =

⎛
⎝σ11

σ12

σ13

⎞
⎠= −ϕ,2, t2 =

⎛
⎝σ12

σ22

σ23

⎞
⎠= ϕ,1

(20)

we have

t1 = −ϕ,2 = t∞
1 −Re

{
B
〈
ζ−1
∗
〉
,2 B−1a(−t∞

2 + it∞
1 )
}

t2 = ϕ,1 = t∞
2 +Re

{
B
〈
ζ−1
∗
〉
,1 B−1a(−t∞

2 + it∞
1 )
}

ε1 = u,1 = ε∞
1 +Re

{
A
〈
ζ−1
∗
〉
,1 B−1a(−t∞

2 + it∞
1 )
}

ε2 = u,2 = ε∞
2 +Re

{
B
〈
ζ−1
∗
〉
,2 B−1a(−t∞

2 + it∞
1 )
}

(21)

where

〈
ζ−1
∗
〉
,1 =

〈
∂ζ−1∗
∂x1

〉

=

〈
1

a(1+ ip∗)

(
1− z∗√

z2∗−a2(1+ p2∗)

)〉

〈
ζ−1
∗
〉
,2 =

〈
∂ζ−1∗
∂x2

〉

=

〈
p∗

a(1+ ip∗)

(
1− z∗√

z2∗−a2(1+ p2∗)

)〉

(22)

Acquired the stress and strain from equation (21),
using stress-strain relation and condition ε33 = 0,
stress σ33 is also gained. Hereto, all the stress,
strain and displacement are obtained. For bore-
hole problem, the cylindrical coordinate is al-
ways adopted for convenience. Therefore, the
displacement, stress and strain should be trans-
formed into cylindrical coordinate. The specific
coordinate transformation relation can refer to lit-
erature [Auld (1973)].

3 Acoustoelastic equation of borehole mode
in anisotropic formation

For a fluid-filled open borehole in anisotropic for-
mation under terrestrial stress field, applying the
theory of acoustroelasticity and perturbation inte-
gral procedure, the first-order perturbation in the
phase velocity of borehole mode can be expressed
as [Norris, Sinha and Kostek (1994)]

Δv
vm

R
=

vm −vm
R

vm
R

=
Δω
ωm

=

∫
V ĉLγMνum

ν,M(um
γ ,L)

∗dV

2ω2
m
∫

V ρum
γ (um

γ )∗dV

(23)
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where superscript m refers to the family of guided
wave modes, m = 0 and m = 1 denote Stonely
and flexural wave, respectively. vm

R and vm are the
phase velocity of m family guided wave modes
in the unperturbed reference and biasing stress-
induced current state. Δω is the variation of
eigenfrequency ωm between the reference and
current state. um

γ is the displacement of m fam-
ily guided wave modes in the reference state,
superscript “∗” denotes the complex conjugate.
Comma “,” represents the partial differential with
respect to its corresponding geometric coordinate,
the summation convention on repeated subscripts
is implied. V is the integral volume, including the
fluid in the borehole and the formation around it.
ĉLγMν is the incremental part of equivalent elas-
tic module of anisotropic formation in terrestrial
stress-induced state compared to the second-order
elastic module c◦LγMν of formation in unperturbed
reference state, namely

ĉLγMν = cLγMν −c◦LγMν +TLMδγν +cLγKMwν,K

+cLKMν wγ ,K +cLγMνABEAB (24)

where cLγMν and cLγMνAB are the second-order
and the third-order elastic module tensor of for-
mation in current state, respectively, δγν is Kro-
necker symbol. TLM , EAB and wγ ,K are static bias-
ing stresses, strains and static displacement gradi-
ents of the borehole problem, respectively. Ac-
cording to the acquired complex function solu-
tions previously, the static displacement gradient
can be obtained through derivation to static dis-
placement. In cylindrical coordinate, we have

wr,r =
∂wr

∂ r
= Err,

wθ ,θ =
1
r

(
∂wθ

∂θ
+wr

)
= Eθθ ,

wz,z =
∂wz

∂ z
= Ezz = 0, wr,θ =

1
r

(
∂wr

∂θ
−wθ

)
,

wθ ,r =
∂wθ

∂ r
, wz,θ =

1
r

∂wz

∂θ
, wθ ,z =

∂wθ

∂ z
,

wz,r =
∂wz

∂ r
, wr,z =

∂wr

∂ z
,

(25)

Generally, when using perturbation integral pro-
cedure to compute the alteration in phase veloc-

ity of borehole modes caused by terrestrial stress,
we should select the state of anisotropic formation
without terrestrial stress as the unperturbed refer-
ence state, and the state of formation deformation
under terrestrial stress as the perturbed state. In
this way, the second-order elastic module of for-
mation in unperturbed reference state is equal to
that in perturbed state, namely, c◦LγMν = cLγMν ,
and the equation (24) can be simplified. How-
ever, before using the equation (23), the solutions
of displacement field for borehole mode in unper-
turbed state need to be known first. Unfortunately,
for general anisotropic formation, we haven’t the
complete analytical solution of displacement field
till present, which brings us great difficulties to
calculate the phase velocity of borehole mode us-
ing perturbation integral equation (23). In order
to solve this problem, we choose an appropri-
ate isotropic formation without terrestrial stress
as the reference unperturbed state, and the state
of the intrinsic anisotropic formation under terres-
trial stress is still selected as the current perturbed
state. In this way, we can easily obtain the analyt-
ical solution of displacement for borehole mode
in unperturbed state. The next, the key is how
to choose the reference isotropic formation in un-
perturbed state. We know that for two transverse
waves propagation along the borehole axis and
polarized orthogonally in general anisotropic for-
mation, their velocities are different. Because the
velocity of the transverse wave in isotropic elastic
solid is determined by elastic constant λ and μ ,
the reference isotropic formation in unperturbed
reference state can be chosen from the velocities
of plane waves propagation along borehole axis in
anisotropic formation [Sinha, Norris and Chang
(1994)], namely

μqSV = ρV 2
qSV, λqSV = ρ(V2

qP−2V 2
qSV)

μqSH = ρV 2
qSH, λqSH = ρ(V2

qP−2V 2
qSH)

(26)

where VqP, VqSV and VqSH are the velocities of the
three plane wave propagation along the borehole
axis in anisotropic formation, respectively. λqSH,
μqSH and λqSV,μqSV are the elastic constants of
the reference isotropic formation in unperturbed
state when study the qSH and qSV polarized flex-
ural wave, respectively, which means that two dif-
ferent isotropic unperturbed reference models are
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established to gain the displacement solutions of
cross-dipole flexural waves polarized in different
direction in unperturbed state. This choice of the
unperturbed reference isotropic formation model
has been fully considered the difference in phase
velocity for borehole flexural waves polarized or-
thogonally in anisotropic formation and makes the
perturbative correction minimal, which results in
high accuracy of perturbed solution [Sinha, Norris
and Chang (1994)].

Because it still hasn’t been found in relevant lit-
eratures about the measured values of the third-
order elastic module for anisotropic medium until
recently, using the known values of the third-order
elastic modules for isotropic medium instead, and
assuming they are identical in different direction.
In this way, according to convention, the three in-
dependent third-order elastic modules are written
as c111, c112 and c123, respectively, and have the
relation

c144 =
1
2
(c112−c123),

c155 =
1
4
(c111−c112),

c456 =
1
8
(c111−3c112 +2c123)

(27)

Expanding the equation (23), it can be written as

Δv
vm

R
=

Δvani +Δvstr

vm
R

=
vm −vm

R

vm
R

Δvani

vm
R

=

∫
V

(
cLγMν −c◦LγMν

)
uν,M(uγ ,L)∗dV

2ω2
∫

V ρuγ(uγ)∗dV
Δvstr

vm
R

=
1

2ω2
∫

V ρuγ(uγ)∗dV[∫
V

χ0dV +c111

∫
V

χ1dV +c112

∫
V

χ2dV

+c123

∫
V

χ3dV +c144

∫
V

χ4dV

+c155

∫
V

χ5dV +c456

∫
V

χ6dV

]
(28)

where Δvani and Δvstr are the variations of the
phase velocity of borehole guided mode caused
by the formation anisotropy and the terrestrial

stress, respectively. In equation (28), we have

χ0 =
(
TLMδγν +cLγKMwν,K +cLKMν wγ ,K

)
uν,Mu∗γ ,L

χ1 =E11u1,1u∗1,1 +E22u2,2u∗2,2

χ2 =E11
[
u2,2(2u∗1,1 +u∗2,2)+u3,3(2u∗1,1 +u∗3,3)

]
+E22

[
(u1,1 +2u2,2)u∗1,1 +u3,3(2u∗2,2 +u∗3,3)

]
χ3 =2

[
E11(u3,3u∗2,2)+E22(u3,3u∗1,1)

]
χ4 =E11

[
u3,2u∗3,2 +u2,3(u∗2,3 +2u∗3,2)

]
+E22

[
u3,1u∗3,1 +u1,3(u∗1,3 +2u∗3,1)

]
+4E12u3,3(u∗1,2 +u∗2,1)

+4E13(u1,3u∗2,2 +u2,2u∗3,1)

+4E23
[
(u2,3 +u3,2)u∗1,1

]
χ5 =(E11 +E22)

[
u2,1u∗2,1 +u1,2(u∗1,2 +2u∗2,1)

]
+E11

[
u3,1u∗3,1 +u1,3(u∗1,3 +2u∗3,1)

]
+E22

[
u2,3(u∗2,3 +2u∗3,2)+u3,2u∗3,2

]
+4E12

[
(u1,2 +u2,1)u∗1,1 +u2,2(u∗1,2 +u∗2,1)

]
+4E13

[
(u1,3 +u3,1)u∗1,1 +u3,3(u∗1,3 +u∗3,1)

]
+4E23

[
(u2,3 +u3,2)u∗2,2 +u3,3(u∗2,3 +u∗3,2)

]
χ6 =4E12

[
u3,2u∗3,1 +u2,3(u∗1,3 +u∗3,1)+u1,3u∗3,2

]
+4E13(u2,3 +u3,2)(u∗1,2 +u∗2,1)

+4E23
[
u3,1u∗2,1 +u1,3(u∗1,2 +u∗2,1)+u1,2u∗3,1

]
(29)

In equation (29), the superscript m in displace-
ment components is omitted for convenience, and
the subscript 1,2,3 corresponds to the r,θ , z in
cylindrical coordinate system, respectively.

Using relation (27), integration after substituting
the analytical solutions of the static stress, strain
and displacement into equation (28), we have the
acoustoelatic equation of borehole modes as fol-
lowing

Δv
vm

R
=

Δvani +Δvstr

vm
R

=
vm −vm

R

vm
R

=
Δvani

vm
R

+QSx Sx +QSySy

(30)

where QSx and QSy are called as velocity-stress
coefficients corresponding to horizontal terrestrial
stress Sx and Sy, respectively. They are related
to eigenfrequency. From equation (30), noticing
that the last term of equation (24) is related to the
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third-order elastic module, so QSx and QSy can be
expressed as the summation of the following four
terms

QSx =
4

∑
i=1

QSx
i = CSx

1 +
CSx

2 c111

c66
+

CSx
3 c112

c66
+

CSx
4 c123

c66

QSy =
4

∑
i=1

QSy
i = CSy

1 +
C

Sy

2 c111

c66
+

CSy
3 c112

c66
+

C
Sy

4 c123

c66

(31)

where CSx
i and C

Sy
i (i = 1,2,3,4) are called as sen-

sitivity coefficients corresponding to Sx and Sy, re-
spectively. They depend on frequency and merely
can be obtained by the numerical method. Ac-
cording to the equations (30) and (31), the sensi-
tivity coefficients do not influence the phase ve-
locity of borehole mode directly, but through the
third-order elastic module, they affect the first-
order correction of phase velocity by velocity-
stress coefficient. Therefore, we can investigate
the influence of terrestrial stress on phase velocity
quantitatively by the velocity-stress coefficient.

4 Numerical computation and results

The influence of stress concentration around a
borehole in anisotropic formation on phase ve-
locity of borehole modes are all included in the
velocity-stress coefficient. The next, we provide a
numerical example for quantitative analysis of the
flexural wave dispersion in anisotropic formation
under terrestrial stress. Assuming the formation
is TI elastic solid. A schematic of a borehole and
the global coordinate system xyz are shown in Fig-
ure 2. The symmetry axis of the formation is in
xz plane and makes an angle ϕ with the borehole
axis z. The local Cartesian coordinate x′y′z′ is es-
tablished in formation, z′ axis coincides with the
TI symmetry axis and y′ axis is coincident with
y axis in global coordinate system. Fluid is full
filled in the borehole and the horizontal terrestrial
stresses in x and y direction are Sx and Sy, respec-
tively.

In computation, we set the fluid compression
wave velocity in borehole vf = 1500m/s, fluid
density ρf = 1000kg/m3, and the borehole radius
a = 0.1016m. The material parameters of the TI

formation are listed in Table 1 and Table 2, re-
spectively.

For the TI formation as shown in Figure 2, the po-
larized directions of the plane qSV and SH waves
propagation along borehole axis parallel with x
and y axis, respectively, which correspond to 0◦

and 90◦ azimuth in cylindrical coordinate. There-
fore, it refers to the 0◦ and 90◦ azimuthally polar-
ized flexural waves respectively while using the
equations (26) and (28) to calculate.

The validation calculation is given first. When
elastic modules C11 = C33 = λ +2μ , C12 = C13 =
λ , C44 = (C11−C12)/2 = μ , the TI formation is
degenerated to isotropic one. Setting the param-
eters of the formation and the fluid be identical
with that in reference [Li, Yin and Su (2006)], and
uniaxial horizontal terrestrial stress Sx = −5MPa,
the flexural wave dispersion curves obtained by
using method in this paper is shown in Figure 3,
in which curves 2 and 3 are almost consistent with
those in reference [Li, Yin and Su (2006)]. This
means the method in this paper is reliable.

4.1 Fast formation

For fast TI formation, the Figure 4 shows the flex-
ural wave velocity-stress coefficients correspond-
ing to Sx and the dispersion curves when the sym-
metry axis of TI formation makes different an-
gle ϕ with the borehole axis under the terrestrial
stress field Sx = −50MPa, Sy = 0.

Because of the anisotropy induced by stress con-
centration around a borehole and the formation in-
trinsic itself, the formation is not material sym-
metry about the borehole axis. In addition the
asymmetry of dipole sources, thus the two flex-
ural waves polarized in φ = 0◦ and φ = 90◦ az-
imuth are different. From Figure 4, the velocity-
stress coefficients in φ = 0◦ azimuth entirely dif-
fer from that in φ = 90◦. Since the third-order
elastic modules are much larger than the second-
order elastic constants for several magnitudes for
the solid formation, the last three velocity-stress
coefficients related to third-order modules c111,
c112 and c123 are dominated and the first one al-
most can be ignored. The result coincides to equa-
tion (31). With the ϕ change from 0◦ to 90◦, the
curve shape of velocity-stress coefficient QSx

i (i =
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Figure 2: A fluid-filled borehole in TI formation under terrestrial stress

Table 1: The second-order elastic module and density of TI formation

Parameter C11/(GPa) C12/(GPa) C13/(GPa) C33/(GPa) C44/(GPa) ρ(Kg/m3)
Fast stratum 37.03 12.91 8.91 27.03 9.06 2600
Slow stratum 21.58 10.18 7.5 16.6 5.3 2560

Table 2: The third-order elastic module of TI formation
Parameter C111/(GPa) C112/(GPa) C123/(GPa)
Fast stratum -21217 -3044 2361
Slow stratum -21217 -3044 2361
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Figure 3: Flexural wave dispersion when degenerated to isotropic formation under uniaxial terrestrial stress
1 reference state; 2 0◦ azimuth; 3 90◦ azimuth
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Figure 4

2,3,4) is approximately similar, in which the vari-
ations of QSx

2 is the most obvious, especially at
low frequency. From Figures 4a3, 4b3 and 4c3,
a crossover of dispersion curves for two flexural
waves polarized orthogonally is clear. And with
ϕ increase from 0◦ to 90◦, the frequencies corre-
sponding to the intersection point are of little dif-
ference and all around 7KHz. It is same with the
conclusion of the acoustoelastic effect on bore-
hole flexural wave in intrinsic isotropic formation
[Sinha and Kostek (1996)], the crossover of flex-
ural wave dispersion curves in intrinsic anisotro-
pic formation is also the unique feature of stress-
induced anisotropy, which can be used as an indi-
cator of terrestrial stress existence. Although the
phenomenon of dispersion curves crossover for
cross-dipole flexural wave has been already ob-
served in laboratory and acoustic logging, the the-
oretical research is still limited to the case of in-
trinsic isotropic formation under terrestrial stress.

Here, we proved that it still has the characteris-
tic of dispersion curves intersection for flexural
wave in stressed intrinsic anisotropic formation,
which lays a theoretical foundation for expand-
ing the terrestrial stress nondestructive examina-
tion method through cross-dipole sonic logging to
the condition of intrinsic anisotropic formation.

Under the uniaxial terrestrial stress in y axis di-
rection of Sx = 0, Sy = −50MPa, the Figure 5
shows the flexural wave velocity-stress coefficient
related to Sy and the dispersion curves with dif-
ferent ϕ . From Figure 5, the curve shape of
velocity-stress coefficient QSx

i (i = 2,3,4) is of
slight change when ϕ increase from 0◦ to 90◦.
In φ = 90◦ azimuth, the absolute values of Q

Sy

2 ,

Q
Sy

3 and Q
Sy

4 at an identical frequency decrease
gradually respectively in low frequency with the
ϕ increase, in which the decreasing range for the
absolute value of Q

Sy
2 is the most obvious. In
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Figure 4: Flexural wave velocity-stress coefficients corresponding to S and dispersion curves in fast TI
formation when Sx = −50MPa, Sy = 0. (a) φ = 0; (b) φ = 45◦; (c) φ = 90◦
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φ = 0◦ azimuth, the alteration in absolute val-
ues of Q

Sy

2 , Q
Sy

3 and Q
Sy

4 is not very great with
ϕ increase. Comparing the Figure 5a1, 5a2 with
the Figure 4a1, 4a2, respectively, it can be found
that the velocity-stress coefficients related to Sx in
φ = 0◦ and φ = 90◦ azimuth are exactly identi-
cal with coefficients for Sy in φ = 90◦ and φ = 0◦

azimuth. The reason is that the TI formation
is material symmetry about borehole axis when
ϕ = 0◦. For two cases that the formation is sub-
jected to an equal stress in x and y axis direc-
tion respectively, the stress distribution around a
borehole is completely identical except for the x
and y coordinate interchange. Thus the velocity-
stress coefficients related to Sx and Sy just ex-
change each other in φ = 0◦ and φ = 90◦ azimuth.
If ϕ 	= 0◦, the TI formation is not material sym-
metry about the borehole axis, the stress distri-
bution around a borehole under the two kinds of
uniaxial stress condition is completely different.
Therefore, the velocity-stress coefficients related
to Sx and Sy no longer equal each other, which
can be seen by comparing Figure 5b, 5c with Fig-
ure 4b, 4c. We can also find from the Figure 5
that the degree of crossover of flexural wave dis-
persion curves is quite different with the variation
of ϕ . When ϕ = 0◦, comparing Figure 5a3 from
Figure 4a3, the two group dispersion curves are
completely identical except exchange in 0◦ and
90◦ azimuth. That is because the formation is
intrinsic symmetry about the borehole axis when
ϕ = 0◦, the phase velocity alteration caused by
formation intrinsic anisotropy Δvani is completely
same in 0◦ and 90◦ azimuth, while the phase ve-
locity alteration induced by terrestrial stress Δvstr

exchange in 0◦ and 90◦ azimuth. When ϕ = 45◦,
from Figure 5b3, the difference in phase velocity
of two flexural wave is much small at high fre-
quency, which makes the crossover of dispersion
curves indistinct. Through local amplification, the
crossover is still can be seen. When ϕ = 90◦, from
Figure 5c3, the difference in two flexural waves
is the most, and also a crossover of dispersion
curves is the most significant. From above dis-
cussion, we find that for intrinsic anisotropic for-
mation, even under the unequal terrestrial stress
state, an obvious intersection of flexural wave dis-

persion curves may not be observed. The reason is
that the stress-induced anisotropy and the intrinsic
anisotropy of formation maybe partially counter-
act each other in this case, which makes the differ-
ence in phase velocity of two flexural waves po-
larized orthogonally reduction, especially in high
frequency.

4.2 Slow formation

For slow TI formation in Table 1, the velocities of
plane qSV and SH wave are all less than the veloc-
ity of fluid compression wave in borehole when ϕ
increase from 0◦ to 90◦. The flexural wave dis-
persion curves and velocity-stress coefficient are
investigated under two different terrestrial stress
fields.

Figure 6 denotes the dispersion curves and
velocity-stress coefficient related to Sx in slow TI
formation when Sx = −10MPa, Sy = 0. Similar
to the case in fast formation, the three velocity-
stress coefficients related to the third-order mod-
ules c111, c112 and c123 are major. The first one can
be almost neglected. In computation, the third-
order elastic modules of slow formation is cho-
sen as same as that of fast formation, from equa-
tion (28)∼(31), we know that the absolute value
of velocity-stress coefficient in slow formation is
greater than that in fast formation. Under the uni-
axial terrestrial stress Sx = −10MPa, the inter-
section of dispersion curves comes to more ob-
vious gradually with the ϕ increase form 0◦ and
90◦. Moreover, the intersection point moves to
low frequency and the corresponding phase veloc-
ity come to high speed with ϕ increase.

For slow TI formation, under uniaxial terrestrial
stress field Sx = 0, Sy = −10MPa, velocity-stress
coefficient related to Sy and dispersion curves of
flexural wave are shown in Figure 7. With ϕ
increase from 0◦ to 90◦, the variation of three
velocity-stress coefficient Q

Sy

2 , Q
Sy

3 and Q
Sy

4 is ob-

vious, especially for Q
Sy

2 . Simultaneously, the
crossover of dispersion curves of two flexural
waves becomes more distinct gradually. The in-
tersection points are all around 8KHz, and the
corresponding phase velocities have no significant
difference.
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Figure 5
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Figure 5: Flexural wave velocity-stress coefficients corresponding to S and dispersion curves in fast TI
formation when Sx = 0, Sy = −50MPa. (a) φ = 0; (b) φ = 45◦; (c) φ = 90◦

4.3 Influence of ratio of horizontal terrestrial
stress on crossover of dispersion curves

If it exist horizontal terrestrial stress in x, y axis di-
rection simultaneously, we let Sy = ηSx, in which
η is the ratio of horizontal terrestrial stress in y
axis direction to that in x axis direction, ranging
from 0 to 1. The TI formation with ϕ = 90◦ is
chosen as example to study the effect of the hor-
izontal terrestrial stress ration on the dispersion
curves of flexural waves polarized orthogonally.
The material parameters are listed in Table 1 and
Table 2.

For fast TI formation, letting Sx = −50MPa, the
flexural wave dispersion curves with η ranging
from 0 to 1 are plotted in Figure 8. Compar-
ing with the case of isotropic formation, in in-
trinsic anisotropic formation, the relation between

the crossover of dispersion curves and the terres-
trial stress is more complicated, some new phe-
nomenon appears. From Figure 8a, when η = 0,
the flexural wave dispersion curves intersect. In
low frequency, the phase velocity of flexural wave
at φ = 0◦ is greater. The polarized direction of
low-frequency fast flexural wave coincides with
the direction of maximum horizontal terrestrial
stress, namely x axis direction. However, with η
increase to 0.4, from Figure 8b, although the flex-
ural wave split, their dispersion curves do not in-
tersect. The polarized direction of low-frequency
fast flexural wave is still consistent with the di-
rection of maximum horizontal terrestrial stress.
From Figure 8c, when η = 0.8, the crossover
of dispersion curves can be observed again al-
though it is not obvious. But the polarized direc-
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Figure 6
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Figure 6: Flexural wave velocity-stress coefficients corresponding to and dispersion curves in fast TI forma-
tion when Sx = −10MPa, Sy = 0. (a) φ = 0; (b) φ = 45◦; (c) φ = 90◦

tion of low-frequency fast flexural wave becomes
to y axis direction, which is not the direction of
maximum horizontal terrestrial stress. It is the
sphere stress state when η = 1.0. In this con-
dition, for isotropic formation, the flexural wave
dispersion curves do not intersect [Li, Yin and Su
(2006)]. Whereas for anisotropic formation, from
Figure 8d, the crossover of dispersion curves be-
comes more obvious. Furthermore, with the fre-
quency increase, the azimuth of fast flexural wave
changes from 90◦ to 0◦, which is exactly con-
trary to the case of η = 0. From above discus-
sion, we find that for intrinsic anisotropic forma-
tion, the dispersion curves of flexural waves may
not intersect even under the unequal horizontal
terrestrial stress field, whereas it is still possible
to observe the crossover of flexural wave disper-
sion curves under the equal horizontal terrestrial
stress field. Moreover, the polarized direction of
the low-frequency fast flexural wave is no longer
consistent with the direction of the maximum hor-
izontal terrestrial stress all the time. The above
phenomenon is the unique feature of the stressed
intrinsic anisotropic formation.

For slow TI formation, setting Sx = −10MPa, the
influence of η on crossover of flexural wave dis-
persion curves is shown in Figure 9. Accord-
ing to Figure 9, we can find that with η increase
from 0 to 0.8, the degree of intersection of dis-
persion curves decrease gradually, and the po-
larized direction of the low-frequency fast flexu-

ral wave always coincides with the direction of
the maximum horizontal terrestrial stress. While
when η = 1.0, the flexural wave merely splits and
their dispersion curves do not coincide or inter-
sect. That is the result of combined effect of the
formation intrinsic anisotropy and the stress in-
duced anisotropy, which is also completely differ-
ent with the case of isotropic formation [Li, Yin
and Su (2006)].

Base on the previous analysis, the conclusion can
be made that in stressed intrinsic anisotropic for-
mation, the alteration in phase velocity of flex-
ural wave is controlled by two factors, one is
the intrinsic formation anisotropy and the other
is the stress-induced anisotropy, which also can
be seen from equation (30). The two factors all
can cause the flexural wave split, but only the
second factor result in the intersection of disper-
sion curves. The combined effect of the two fac-
tors could strengthen or weaken the phenomenon
of intersection of flexural wave dispersion curves.
Therefore, the dispersion curves of flexural waves
may not intersect even under the unequal horizon-
tal terrestrial stress field, whereas it is still possi-
ble to observe the crossover of the flexural wave
dispersion curves under the equal horizontal ter-
restrial stress field. The polarized direction of the
low-frequency fast flexural wave is no longer con-
sistent with the direction of the maximum hori-
zontal terrestrial stress all the time.
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Figure 7

5 The acoustoelastic model and method to in-
version terrestrial stress

The magnitude and the direction of the terrestrial
stress have an important significance for the oil-
field development and production. The research
of the acoustoelastic effect on borehole mode in-
duced by terrestrial stress is the theoretical foun-
dation of the terrestrial stress nondestructive ex-
amination using cross-dipole sonic logging. The
waveform of fast and slow flexural wave in time
domain can be obtained from the 4-component
(4-c) data in cross-dipole array acoustic logging.
Based on it, the dispersion curves of the flexu-
ral waves polarized in two main directions can be
also calculated. On the basis of the previous re-
searches, the acoustoelastic inversion model and
method for terrestrial stress inversion from bore-
hole flexural wave dispersion curves obtained by

cross-dipole sonic logging in stressed intrinsic an-
isotropic formation is simply discussed.

To determine terrestrial stress from flexural wave
dispersion curves, we assume that the second-
order elastic constant of the formation is known,
and the third-order elastic module as well as the
terrestrial stress is unknown quantities to be deter-
mined. The third-order elastic module is also de-
termined while inversion terrestrial stress. A gen-
eral anisotropic solid has 56 independent third-
order elastic modules. While the actual formation
is usually TI elastic solid, the number of the inde-
pendent third-order elastic modules is much less
than that of general anisotropic media. Thus, we
can assume the number of the independent third-
order elastic modules according to practical re-
quirements. While discussing the method for ter-
restrial stress inversion, without losing generality,
we assume it has 6 independent third-order elas-
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Figure 7: Flexural wave velocity-stress coefficients corresponding to and dispersion curves in fast TI forma-
tion when Sx = 0, Sy = −0MPa. (a) φ = 0; (b) φ = 45◦; (c) φ = 90◦
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Figure 8: The influence of ratio of horizontal terrestrial stress on crossover of flexural wave dispersion
curves in fast TI formation when φ = 90◦ (a) η = 0; (b) η = 0.4; (c) η = 0.8; (d) η = 1.0

tic modules of the formation here, namely c111,
c112, c123, c144, c155 and c456. There are 8 un-
known quantities to be determined including two
horizontal stresses Sx and Sy. Integration equation
(28), we have the acoustoelastic equation as fol-
lowing form

Δv
vm

R
=

vm −vm
R

vm
R

=
Δvani +Δvstr

vm
R

=
Δvani

vm
R

+
(

CSx
1 +

CSx
2 c111

c66
+

CSx
3 c112

c66
+

CSx
4 c123

c66

+
CSx
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+

CSx
6 c155

c66
+
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7 c456
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+
(
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+

C
Sy

3 c112
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+

C
Sy
4 c123

c66

+
CSx

5 c144

c66
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CSx
6 c155

c66
+

CSx
7 c456

c66

)
Sy

(32)

Based on the equation (32), the specific computa-
tion procedures of the method to inverse terrestrial
stress from flexural wave dispersion curves is:

(1) Acquiring the waveform of the fast and slow
flexural main wave from the 4-component
data in cross-dipole array acoustic logging,
and then, the dispersion curves of the flex-
ural waves polarized in two main directions
are calculated. Selecting 8 points in disper-
sion curves as the computational points, get
the frequency and flexural wave phase veloc-
ity vm for each computational point;

(2) Computing the flexural wave phase velocity
vm

R in unperturbed reference state for each
computational point, obtain the alteration in
phase velocity caused by terrestrial stress and
formation intrinsic anisotropy Δv = Δvstr +
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Figure 9: The influence of ratio of horizontal terrestrial stress on crossover of flexural wave dispersion
curves in slow TI formation when φ = 90◦ (a) η = 0; (b) η = 0.4; (c) η = 0.8; (d) η = 1.0

Δvani = vm −vm
R ;

(3) Calculating the sensitive coefficients
CSx

i ,C
Sy
i , (i = 1, ...,7) and the alteration

in phase velocity caused by formation
anisotropy itself Δvani for each computational
point using equation (28);

(4) According to equation (32), 8 independent
equations describing the variation of flexu-
ral wave phase velocity with 8 undetermined
quantities can be established. Solving the
equation, the 2 horizontal terrestrial stresses
and the 6 third-order elastic modules can be
obtained.

In intrinsic anisotropic formation, because the
direction of the maximum horizontal terrestrial
stress may be inconsistent with the polarized di-
rection of low-frequency fast flexural wave, in or-

der to get the proper direction of the maximum
horizontal terrestrial stress, the forward calcula-
tion is carried out assuming the polarized direc-
tion of low-frequency fast flexural wave is the
direction of the maximum horizontal terrestrial
stress after obtaining the magnitudes of the 2 hor-
izontal terrestrial stresses and the 6 independent
third-order elastic modules. If the computed flex-
ural wave dispersion curves coincide with those
of actual acoustic logging, which means the as-
sumed direction is correct, otherwise, the direc-
tion of the maximum horizontal terrestrial stress
is the polarized direction of low-frequency slow
flexural wave.

6 Conclusion

Some foundational problems in cross-dipole sonic
logging in stressed intrinsic anisotropic formation
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are studied in this paper. Adopting the Stroh the-
ory, nonlinear theory of acoustoelasticity and per-
turbation method, the influence of the anisotropy
of formation itself and induced by terrestrial stress
on dispersion curves of borehole flexural waves is
discussed. The results indicate that for stressed
intrinsic anisotropic formation, the variation of
flexural wave phase velocity is dominated by the
formation intrinsic anisotropy and the terrestrial
stress-induced anisotropy jointly, which makes
the relation between the intersection of flexural
wave dispersion curves and the terrestrial stress
completely different with the case of intrinsic
isotropic formation. Even under the unequal hori-
zontal terrestrial stress field, the dispersion curves
of flexural waves may not intersect, whereas it is
still possible to observe the intersection of flexu-
ral wave dispersion curves under the equal hori-
zontal terrestrial stress field. Moreover, the polar-
ized direction of the low-frequency fast flexural
wave is no longer consistent with the direction of
the maximum horizontal terrestrial stress all the
time. Based on the above researches, the terres-
trial stress inversion method from flexural wave
dispersion curves obtained by cross-dipole sonic
logging in intrinsic anisotropic formation is sim-
ply discussed.
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