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Multiscale Nonlinear Constitutive Modeling of Carbon
Nanostructures Based on Interatomic Potentials

J. Ghanbari1 and R. Naghdabadi1,2

Abstract: Continuum-based modeling of nanostructures is an efficient and suit-
able method to study the behavior of these structures when the deformation can
be considered homogeneous. This paper is concerned about multiscale nonlinear
tensorial constitutive modeling of carbon nanostructures based on the interatomic
potentials. The proposed constitutive model is a tensorial equation relating the
second Piola-Kirchhoff stress tensor to Green-Lagrange strain tensor. For carbon
nanotubes, some modifications are made on the planar representative volume ele-
ment (RVE) to account for the curved atomic structure resulting a non-planar RVE.
Using the proposed constitutive model, the elastic behavior of the graphene sheet
and carbon nanotube are studied.

Keywords: Multiscale modeling, Continuum-based modeling, Constitutive mod-
eling, Carbon nanotubes, Graphene sheet.

1 Introduction

Carbon nanostructures like nanotubes and graphene sheets have attracted researchers’
interest because of their many interesting properties. A variety of methods have
been developed to study the mechanical behavior of nanotubes [Belytschko and
Xiao (2003), Arroyo and Belytschko (2002), Wagner and Liu (2003), Zhang et al.
(2003)]. There are several methods such as ab initio, Molecular Dynamics (MD),
and Monte Carlo methods to study the atomic scale deformation which can capture
every non-homogeneous atomic level data [Arroyo and Belytschko (2002), Wagner
and Liu (2003), Tadmor et al. (1999)]. The main shortcoming of these methods is
the limitations on the length and time scales under study. When the atomic level
accuracy is not the major concern, continuum mechanics can be applied to study
the overall behavior (and not individual atomic level) of the structure.
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The methodology of the continuum mechanics is developed throughout more than a
century and the numerical applications of the developed models have been strength-
ened in recent decades. In recent years, different authors have presented various
methods concerning continuum-based method. Odegard and Gates (2002) have
suggested using an intermediate truss model for the atomic structures to be equiv-
alent to the continuum model. Using the method, they have studied and deter-
mined elastic constants such as Young’s modulus of carbon nanotubes. Odegard et
al. (2004) have recently proposed a constitutive model for cross-linked nanotubes
by using energy equivalence and determined material constants. Arroyo and Be-
lytschko (2002) have presented an atomistic based finite deformation membrane for
single layer crystalline films and carbon nanotubes. In their formulation, they have
employed a modified Born rule, the so-called exponential Born rule, to relate the
undeformed and deformed bond vectors through the deformation gradient tensor.
They have studied several deformation modes of carbon nanotubes and compared
them with the atomic simulations.

Wagner and Liu (2003) have used the method of scale decomposition on the dis-
placement field in their continuum formulation for the nanostructures. In their
method, the concept of bridging scale has been introduced and employed to cou-
ple the atomistic data with continuum data. He et al. (2004) have used a contin-
uum model for size-dependent deformation of elastic films of nano-scale thickness.
They have introduced a length scale parameter in the plate formulation and have
studied the effects of the length scale on the behavior of the nano-scale film. Zhang
et al. (2002) have determined the elastic modulus of single wall carbon nanotubes
using a continuum analysis incorporating interatomic potentials. Wu et al. (2006)
have studied the elastic properties of nanotubes using an energy-equivalent model.
Using micropolar mechanics, Xie and Long (2006) studied the vibrational behav-
ior of carbon nanotubes. In another work, Xie et al. (2007) used a continuum
model to study the vibrational behavior of multi-walled carbon nanotubes. In their
semi-analytical model, a set of eigenvalue dynamical equations derived from the
Hamilton’s principle is solved and the normal modes are obtained. Chakrabarty
and Cagin (2008) studied the mechanical and thermal properties of various nan-
otubes and carbon nanotube based nanostructures.

Behfar and Naghdabadi (2006) have studied nanoscale modeling of a multi-shell
fullerene embedded in an elastic medium, deriving explicit equations for the mo-
tion of the multi-shell fullerene based on continuum shell theory. They have also
studied the vibrational behavior of multi-shell fullerenes. Behfar and Naghdabadi
(2005) have also investigated vibrational behavior of multi-layered graphene sheets
based on the continuum plate formulation. Sohi and Naghdabadi (2007a) using a
continuum-based multi-layer shell theory have studied torsional buckling of car-
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bon nanopeapods, proposing an equivalent pressure distribution for van der Waals
interactions between fullerenes and carbon nanotubes. In a recent work, Sohi
and Naghdabadi (2007b) have investigated the stability of single-walled carbon
nanopeapods under hydrostatic pressure using the continuum shell model and de-
termined the critical hydrostatic pressure for structural instability.

Using an analytical and finite element method, Kalamkarov et al. (2006) investi-
gated the variation of elastic properties of nanotubes with respect to tube diameter.
Tserpes and Papanikos (2005) proposed a finite element model to study the be-
havior of carbon nanotubes. More exact ab-initio methods have also been used to
study the properties of nanotubes. Peng et al. (2006) used an ab-initio software to
study the effects of diameter on the mechanical and electronical properties of nan-
otube. Yu et al. (2004) studied shear modulus of nanotubes with MD simulations.
Using tight-binding theories, Hernandez et al. (1999) studied elastic properties of
single-walled nanotubes.

Multiscale approaches have also attracted researchers’ interest in studying medium
to large nanostructures with respect to MD limitations [Karakasidis and Charitidis
(2006), Ghoneim et al. (2003), Horstemeyer et al. (2003), Deymier and Vasseur
(2002), Weinman et al. (2003), Maiti (2006)]. Multiscale methods can be clas-
sified in two main categories: concurrent methods and hierarchical methods. In
concurrent methods, the domain under study is explicitly divided into some subdo-
mains in which different theories may govern the behavior of the structure [Li and
Chou (2006), Qian et al. (2004), Lourie et al. (2005), Wuite and Adali (2005)].
As an example, in crack propagation problems, since the exact modeling of crack
tip is very important in propagating crack, the subdomain that includes crack tip
is usually modeled by an exact method such as MD, or even quantum mechanics
method. The remaining part of the domain where the overall behavior of the mate-
rial is needed, is usually modeled by intrinsically averaging methods such as finite
element method. Data exchange is done in the common boundary of subdomains,
the so called handshake region. Horstemeyer et al. (2003) analyzed simple shear
deformation using a multiscale scheme. Deymier and Vasseur (2002) presented a
concurrent multiscale method of an atomic crystal coupled with elastic continuum.
Recently, Maiti (2006) studied multiscale methods and their application on model-
ing of carbon nanotubes. Li and Chou (2006) have studied compressive behavior
of carbon nanotube/polymer composites using a molecular mechanics multiscale
approach.

In hierarchical methods [Sheng et al. (2004), Hou and Wu (1997), Zbib and Ru-
bia (2002), Gosh (2003), Li et al. (2004), Kaminsky (2005), Chung and Namburu
(2003)], every scale is present in the whole domain. The smaller scale is solved
first and then the larger scale is formulated using the smaller scale results. These
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methods are suitable for problems in which the time or length scales are larger
than the computational limitations of the more exact methods such as MD, and in
problems in which the critical point is not known a priori. Sheng et al. (2004)
using a micromechanical analysis, presented a multiscale approach to the analy-
sis of polymer/clay nanocomposites. Hou and Wu (1997) presented a multiscale
finite element method for the analysis of composite materials and porous media.
Zbib and Rubia (2002) introduced a multiscale model for plasticity. Smaoui et al
(2006) studied the behavior of nonlinear porous media based on a linear iterative
homogenization scheme.

In this paper, we have proposed a multiscale nonlinear tensorial constitutive model
for the analysis of carbon nanostructures using modified Morse potential. The con-
stitutive model is presented in total Lagrangian description and is suitable for fi-
nite element implementation and studying large deformation problems. All the
atomic data provided by the modified Morse potential is represented in the con-
stitutive model without any simplification. For curved nanostructures like carbon
nanotubes, the effects of the curvature and tube diameter is considered in the for-
mulation with modifications on the bonds and bond angles. Using the presented
constitutive model, tension and shear deformation of the graphene sheet and car-
bon nanotube have been studied and the Young’s and shear modulus of nanotubes
with various diameters are compared with those available in the literature.

2 Interatomic potential for carbon nanostructures

There are several interatomic potentials for carbon nanostructures such as Tersoff-
Brenner [Brenner (1990)], Morse [Morse (1929)], and modified Morse [Belytschko
et al. (2002)]. Considering an atomic structure of a carbon nanosystem, the Morse
potential is written as:

Er = D[e−α(r−r0)−1]2 (1)

where r0 is the bond length of the atomic structure in the undeformed (relaxed) con-
figuration and r is the corresponding length in the deformed configuration. Also, D
and α are constants. The relationship between bond elongation and restoring force
is expressed as:

Fr =
dEr

dr
= {−2αDe−α(r−r0)[e−α(r−r0)−1]} (2)

As bond elongation increases, the Morse potential energy becomes more accurate.
The form of Morse potential energy originally derived empirically and later sup-
ported by quantum mechanics.
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The interatomic bonds in nanotubes are hybridized sp2 bonds. The modified Morse
potential function in which a bond angle variation term is expressed as:

E = Estretch +Eangle

Estretch = De{[1− e−β (r−r0)]2−1}
Eangle = 1

2 kθ (θ −θ0)2[1+ ksextile(θ −θ0)4]

(3)

The constants are listed as follows:

r0 = 1.39×10−10m, De = 6.03105×10−19N.m,

β = 2.625×1010/m, θ0 = 2.094rad,

kθ = 0.9×10−18N.m/rad2, ksextile = 0.754rad−4

(4)

It is noted that the elongation energy in the modified Morse potential differs from
the Morse potential (Eq. 1) in just a shift in the energy reference point, thus, upon
differentiating, the result for both will be the same.

3 Nanoscale continuum theory for carbon nanostructures

Linking the discrete atomic structure to a continuum notion is done by using two
major assumptions; namely the Born-Oppenheimer assumption [Born and Oppen-
heimer (1927)] and the Cauchy-Born rule [Ericksen (1984)]. The Born-Oppenheimer
assumption is used to link the displacement fields in the two atomic and continuous
media. It says that the displacements are equal in the two media wherever their
concepts are defined, i.e. at the atomic nuclei positions. The displacements of
the interior points in the continuous medium are obtained using a proper interpola-
tion of the displacements of the nearer nuclei positions. The other assumption, the
Cauchy-Born rule, links the deformation of the atomic bonds to the concepts de-
fined in the continuum mechanics theory. This rule states that the deformed bond
(direction and length like a vector) is related to the undeformed bond by the de-
formation gradient tensor. This assumption is an approximation to the continuum
mechanics because the deformation gradient tensor maps the infinitesimal line el-
ements in the undeformed to the corresponding infinitesimal line elements in the
deformed configuration, thus, the application of this map to finite-length line ele-
ments (in this case the bond vector) involves approximation. The Cauchy-Born rule
can be expressed as:

r = Fr0 (5)

where F is the deformation gradient tensor, r and r0 are deformed and undeformed
bond vectors, respectively.
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In order to determine the equivalent energy density, which is related to the inter-
atomic potential energy the corresponding concept to the strain energy density in
the continuum mechanics should be considered. To this end, it is necessary to se-
lect a proper representative volume element (RVE) or representative cell by which
the complete atomic structure could be reproduced. For carbon nanostructures,
there are two RVE’s, which are equivalent both in number of atoms and bonds lo-
cated in the element and types of them. By considering the honeycomb structure
in graphene sheets or carbon nanotubes, the preferred choice for the RVE is one of
the hexagonal lattices. This cell is illustrated in Fig. (1). As can be seen, there are
three types of bonds, A, B, and C with different orientations. It is noted that the
two bonds with similar letters only contribute half of their potential energy to the
RVE because they share the potential with the adjacent cell. Therefore, there are
three complete bonds in the cell. The second choice for the RVE can be selected
with rectangular shape as shown in Fig. (2).

 

A

A

B C

C

B

 Figure 1: Hexagonal representative volume element for graphene sheet

Figure 2: Rectangular representative volume element for grapehe sheet

It is obvious that in the rectangular RVE there are also three complete bonds con-
tributing to potential energy in the cell. It is note worthy that in the equivalent
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continuum model, it is more realistic to use a rectangular shaped representative
volume element. Therefore, the present RVE (Fig. 2) is an appropriate choice for
energy homogenization. In addition, the rectangular RVE has an advantage in ap-
plying the chirality of the loading or the atomic structure to the formulation. When
the orientation of the atomic structure changes, it is not necessary to choose another
RVE, but required to rotate the rectangular RVE to meet the new orientation. This
is done simply by applying the rotation tensors to the bond vectors. By computing
the volume of the both RVEs, one can notice that the volumes are the same:

VRV E−Hex. = 6× a
2
× a
√

3
2
× te f f =

3
√

3
2

a2× te f f (6)

VRV E−Rect. =
3a
2
× (a
√

3)× te f f =
3
√

3
2

a2× te f f (7)

where a is the relaxed bond length, and te f f is the effective thickness of the single
layered graphene sheet.
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Figure 3: Numbering rule for bonds and angles in the rectangular RVE

Once we have selected the RVE, the potential energy in the RVE should be com-
puted. Therefore, it is convenient to use a numbering rule for bonds and angles as
shown in Fig. (3). The total potential energy in the RVE can be written as:

φRV E =
3

∑
i=1

φ(ri)+2
3

∑
i

φ̂ (θi) (8)

where φ(ri) and φ̂(θi)represent the modified Morse potential parts due to elonga-
tion of bond i and change in angle i, respectively. Dividing the energy by the RVE
volume, the equivalent strain energy density in the RVE is calculated as follows:

ΦRV E =
φRV E

VRV E
(9)



48 Copyright © 2009 Tech Science Press CMC, vol.10, no.1, pp.41-64, 2009

3.1 Kinematics

The Using the Cauchy-Born rule, Eq. (5), the bond length ri can be written as a
function of the deformation gradient tensor, F, as follows:

ri =
√

ri.ri =
√

Fr0i.Fr0i =
√

r0i.FT Fr0i i = 1,2,3 (10)

where ri and r0i are the deformed and undeformed vector representation of bond i,
respectively. According to the polar decomposition theorem in continuum mechan-
ics, the deformation gradient tensor, F, can uniquely be decomposed into a rotation
tensor, R, and symmetric tensors, U and V, in the form of:

F = RU = VR (11)

Substituting Eq. (11) into Eq. (10), we arrive at:

ri =
√

r0i.FT Fr0i =
√

r0i.U2r0i i = 1,2,3 (12)

The Green-Lagrange strain tensor, E, is defined in terms of the right stretch tensor,
U, as follows:

E =
1
2
(U2− I) (13)

where I is the identity tensor. Now we can substitute Eq. (13) into Eq. (12) to get
the bond length in terms of the Green-Lagrange strain tensor:

ri =
√

r0i.(I+2E)r0i = r0i

√
Ni.(2E+ I)Ni i = 1,2,3 (14)

where r0i is the undeformed length of bond i, and Ni is the unit vector along the
undeformed bond i defined as:

Ni =
ri

ri
(15)

The cosine of the angle θi between bonds r j and rk can be written as:

cosθi =
r j.rk

r0 jr0k
=

N j.(2E+ I)Nk√
N j.(2E+ I)N j.

√
Nk.(2E+ I)Nk

(16)

where the indices obey the permutation rule, i.e. i = 1 corresponds to j = 2, k = 3.
Also, it is noted that since the undeformed length of all bonds are equal, we will
suppress the index from the undeformed bond lengths and represent them by r0.
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Considering the modified Morse potential (3) and using Eqs. (14) and (16), the
terms in the RVE total potential energy (8) can be written as follows:

φ(ri) = φi =De{[1− e−β r0(
√

1+2Ni.ENi−1)]2−1}

φ̂(θi) = φ̂i =1
2 kθ (arccos N j.(2E+I)Nk√

(N j.(2E+I)N j)(Nk.(2E+I)Nk)
−θ0)2

× [1+ ksextile(arccos
N j.(2E+ I)Nk√

(N j.(2E+ I)N j)(Nk.(2E+ I)Nk)
−θ0)4]

(17)

 

Figure 4: Sublattices in the non-centrosymmetric atomic structure

3.2 Cauchy-Born rule for non-centrosymmetric lattices

The Cauchy-Born rule in the form expressed in Eq. (5) is only applicable to the
atomic structures that possess centrosymmetry. Clearly, the atomic structure of
graphene sheets and carbon nanotubes do not meet this symmetry requirement. In
other words, we can not use the relations in the previous section for carbon nan-
otubes. Klein (1999) showed that for non-centrosymmetric materials, inappropriate
use of Cauchy-Born rule may lead to incorrect results.

For hexagonal lattice of graphene sheets and carbon nanotubes, we consider two
sublattices which both possess centrosymmetry, and hence, Cauchy-Born rule can
be used for either of them. These sublattices are recognized as black and white
circles in Fig. (4). If the reference sublattice is the black one, which deforms
under the action of the deformation gradient F, the white sublattice besides being
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subjected to F, may also undergo a rigid-body translation expressed as Fξξξ . Thus,
the deformed bonds in the RVE can be expressed as:

ri = Fr0i +Fξξξ = F(r0i +ξξξ ) (18)

The vector ξξξ related to the rigid-body translation, is determined by minimizing the
strain energy density with respect to it. Form Eq. (18), the bond length can be
obtained as:

ri =
√

(r0i +ξξξ ).(I+2E)(r0i +ξξξ )

= r0i

√
(Ni +η).(2E+ I)(Ni +η) i = 1,2,3

(19)

where the vector η = ξξξ/r0.

The cosine of the bond angle can also be written as:

cosθi =
r j.rk

r0 jr0k

=
(N j +η).(2E+ I)(Nk +η)√

(N j +η).(2E+ I)(N j +η)
√

(Nk +η).(2E+ I)(Nk +η)

(20)

Substituting Eqs. (19) and (20) into Eq. (8), the total potential energy of the RVE
can be obtained:

φi = De

{
[1− e−β r0(

√
1+2(Ni+η).E(Ni+η)−1)]2−1

}
φ̂i =

1
2

kθ

×

(
arccos

(N j +η).(2E+ I)(Nk +η)√
((N j +η).(2E+ I)(N j +η))((Nk +η).(2E+ I)(Nk +η))

−θ0

)2

×
[

1+ ksextile

× (arccos
(N j +η).(2E+ I)(Nk +η)√

((N j +η).(2E+ I)(N j +η))((Nk +η).(2E+ I)(Nk +η))
−θ0)4

]
(21)

As mentioned before, the vector η can be obtained by minimizing the potential
energy:

∂φRV E

∂η
= 0 (22)
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3.3 Constitutive model

Equation (21) represents a nonlinear strain energy density function, which is ex-
pressed as a function of some kinematical variables in the undeformed configura-
tion. It is required to select suitable energy conjugate measures for strain and stress
to derive the corresponding relation between them using the strain energy density
function (21). Among the various measures for the strain and stress, the conjugate
pair of the Green-Lagrange strain and the second Piola-Kirchhoff stress tensors are
used. These Lagrangian measures are suitable for finite element formulation used
for the analysis of large deformation problems. Therefore, differentiating Eq. (9)
with respect to the Green-Lagrange strain tensor, we will find the second Piola-
Kirchhoff stress tensor as follows:

S =
1

VRV E

dφRV E

dE
=

1
VRV E

3

∑
i

(
dφi

dE
+2

dφ̂i

dE
) (23)

where i runs from 1 to 3, for 3 bonds and angles. Considering Eqs. (3), the deriva-
tives of the interatomic potential can be written as follows:

dφi

dE
= 2De(1− e−β (r−r0))(β

dr
dE

e−β (r−r0))

= 2Deβ
dr
dE

[e−β (r−r0)− e−2β (r−r0)]
(24)

dφ̂i

dE
=kθ

dθ

dE
(θ −θ0)[1+ ks(θ −θ0)4]+

1
2

kθ (θ −θ0)2[4ks(θ −θ0)3 dθ

dE
]

=
dθ

dE
[kθ (θ −θ0)+3kθ ks(θ −θ0)5]

=kθ (θ −θ0)
dθ

dE
[1+3ks(θ −θ0)4]

(25)

Using Eq. (19) we can calculate the derivative of the bond length with respect to
the Green-Lagrange strain tensor:

dri

dE
= r0

(
d((Ni+η).E(Ni+η))

dE

)
√

1+2(Ni +η).E(Ni +η)
(26)
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where the components of the tensor d((Ni+η).E(Ni+η))
dE can be written as follows:[

d((Ni +η).E(Ni +η))
dE

]
pq

=
d(Nip +ηp)Epr(Nir +ηr)

dEpq

= (Nip +ηp)
dEpr

dEpq
(Nir +ηr)

= (Nip +ηp)
d(Epqδqr)

dEpq
(Nir +ηr)

= (Nip +ηp)δqr(Nir +ηr)
= (Nip +ηp)(Niq +ηq)

(27)

Eq. (27) can be written in the form of dyadic (tensorial) product:

d((Ni +η).E(Ni +η))
dE

= (Ni +η)⊗ (Ni +η) (28)

Substituting Eq. (28) into (26), the derivative of ri with respect to E can be written
as:
dri

dE
= r0

(Ni +η)⊗ (Ni +η)√
1+2(Ni +η).E(Ni +η)

(29)

The bending or bond angle variation part of the modified Morse potential contains
the angles θ1, θ2, and θ3. In order to differentiate the angles with respect to the
Green-Lagrange strain tensor, considering Eq. (20), and using the chain rule

u = cosθi

=
(N j +η).(2E+ I).(Nk +η)√

(N j +η).(2E+ I).(N j +η).
√

(Nk +η).(2E+ I).(Nk +η)
(30)

(arccosu)′ =− u′√
1−u2

(31)

we obtain

u′ =
d cosθi

dE
=

2((N j +η)⊗ (Nk +η))
[

(1+2(N j +η).E(N j +η))
×(1+2(Nk +η).E(Nk +η))

]
[(1+2(N j +η).E(N j +η))(1+2(Nk +η).E(Nk +η))]

3
2

−


((N j +η).(2E+ I)(Nk +η))×[

(N j +η)⊗ (N j +η)(1+2(Nk +η).E(Nk +η))
+(Nk +η)⊗ (Nk +η)(1+2(N j +η).E(N j +η))

] 
[(1+2(N j +η).E(N j +η))(1+2(Nk +η).E(Nk +η))]

3
2

(32)
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The derivative of the angle with respect to Green-Lagrange strain tensor dθi
dE can

be obtained by substituting Eqs. (32) and (30) into Eq. (31). By substituting the
derivatives into Eq. (23), we can write the equation for the bond elongation and
bond angle variation parts of the constitutive equation as follows:

dφi

dE
=2Deβ r0

(Ni +η)⊗ (Ni +η)√
1+2(Ni +η).E(Ni +η)

× [e−β r0(
√

1+2(Ni+η).E(Ni+η)−1)− e−2β r0(
√

1+2(Ni+η).E(Ni+η)−1)]

(33)

dφ̂i

dE
= kθ

dθi

dE

× (arccos
(N j +η).(2E+ I).(Nk +η)[ √
(N j +η).(2E+ I).(N j +η)

×
√

(Nk +η).(2E+ I).(Nk +η)

] −θ0)

× [1+3ks(arccos
(N j +η).(2E+ I).(Nk +η)[ √
(N j +η).(2E+ I).(N j +η)
×
√

(Nk +η).(2E+ I).(Nk +η)

] −θ0)4]

(34)

Substituting Eq. (34) into Eq. (23), the second Piola-Kirchhoff stress tensor can be
computed in terms of the Green-Lagrange strain tensor.

The following remarks can be made considering the nonlinear constitutive model
for carbon nanostructures derived in this section:

There were no simplification in the interatomic potential used in the formulation.

Because we have used the Lagrangian description for the formulation, the proposed
constitutive model can successfully be applied in the large deformation problems.

The orientation of the atomic structure in the undeformed or reference configura-
tion which is called chirality, is a built-in characteristic of the constitutive model,
therefore the effect of the chirality on the mechanical behavior of the atomic struc-
ture can be easily modeled by switching the chiralty parameter.

The homogenization technique, which is used to homogenize the discrete atomic
potential to a uniform continuous one, is the Cauchy-Born rule. The standard
Cauchy-Born rule is suitable for flat structures such as graphene sheet and can
be applied to flat structures without any extra work. For curved structures such
as carbon nanotubes, some modification is necessary to successfully homogenize
the deformation field. Arroyo and Belytschko presented the exponential Born rule
which is formulated using the exponential map of tangents of manifolds on them.

It is noted that although the formulation is expressed in terms of second Piola-
Kirchhoff stress tensor S, it can be converted to the Cauchy stress tensor with the
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following relation:

σσσ =
1
J

FSFT (35)

where σσσ is Cauchy stress tensor, J is the Jacobian of the deformation (determinant
of the deformation gradient, F).

3.4 Elasticity Tensor

In order to derive the elasticity tensor based on the constitutive equation developed
in the previous section, the second derivative of the potential energy (strain energy
density) should be determined. Considering Eq. (24) and differentiating it with
respect to E we arrive at:

d2φi

dEdE
= 2Deβ

d2r
dEdE

(
e−β (r−r0)− e−2β (r−r0)

)
+2Deβ

dr
dE
⊗
(
−β

dr
dE

e−β (r−r0) +2β
dr
dE

e−2β (r−r0)
)

(36)

Also, differentiating Eq. (25) we obtain:

d2φ̂i

dEdE
=

d2θ

dEdE

[
kθ (θ −θ0)+3kθ ks(θ −θ0)5]

+
dθ

dE
⊗
[

kθ

dθ

dE
+15kθ ks

dθ

dE
(θ −θ0)4

]
(37)

where the term d2r
dEdE can be calculated considering Eq. (29):

d2r
dEdE

=−r0
((N+η)⊗ (N+η))⊗ ((N+η)⊗ (N+η))

(1+2(N+η).E(N+η))3/2
(38)

It is noted that in Eqs. (36) and (37), d2r
dEdE and d2θ

dEdE are fourth-order tensors, and
dr
dE and dθ

dE are second order tensors. Therefore, the elasticity tensor is obtained by
using Eqs. (36) and (37) represent when they summed over the RVE.

3.5 Effects of the curvature

The curvature of carbon nanotube is the most important difference with the flat
atomic structure of the graphene sheet. Considering a (n,n) armchair nanotube, the
RVE is no longer planar due to the curvature of the nanotube and the angles between
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adjacent bonds are different from those in the graphene sheet. Considering the non-
planar RVE in the Fig. (5), the following relations are governing the angles:

θ1 = θ2 = π− arccos

(
1
2

cos
π

2n

)
θ3 =

2π

3
β1 = β2 = 0 β3 =

π

2n
(39)

where, θ1, θ2 and θ3 are the angles between bonds and β1, β2 and β3 are the out-
of-plane angles as defined in Fig. (5).

 

Figure 5: The non-planar RVE of an armchair nanotube

Considering the non-planar RVE of the armchair nanotube, the unit vectors aligned
in the direction of the undeformed bond vectors r1, r2, and r3 can be written as:

N1 =
{
−cos(

π

3
); 0; sin(

π

3
)
}

N2 =
{
−cos(

π

3
); 0; −sin(

π

3
)
}

N3 =
{

cos(
π

2n
); sin(

π

2n
); 0
} (40)

The unit vectors are functions of n, the Hamada index of the armchair nanotubes,
i.e. n in the (n,n) nanotube. The following remarks can be made on the effects of
the curvature on the constitutive equation:

The curvature of the nanotube modeled by a non-planar RVE affects the unde-
formed (reference) configuration of the atomic bonds and angles. In order to apply
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the curvature effects in the armchair nanotubes, modified unit vectors should be
used in the constitutive model derived in the previous section.

The radius of the nanotube appears implicitly by the Hamada index of the nanotube.
In the application, one can directly specify the Hamada index or the diameter of the
nanotube (diameter of the nanotube can be obtained knowing the Hamada index).

4 Results and Discussion

Applying Eq. (40) into the constitutive model derived in the previous section, we
have studied the elastic response of the graphene sheets and armchair carbon nan-
otubes in uniaxial extension.

4.1 Tension of the Graphene Sheet

In this section, we do some simulations to show the behavior of the graphene sheet
and carbon nanotube. We start with stretching the graphene sheet in a fixed direc-
tion and study the stress-stretch behavior of it. To this end, we apply the unidirec-
tional form of the deformation gradient tensor, Eq. (41), to the constitutive equation
and obtain the stress tensor.

F = Ue1⊗ e1 + e2⊗ e2 + e3⊗ e3 (41)

Fig. (6) shows Cauchy stress versus stretch for a single layered graphene sheet
under uniaxial tension. As can be seen from the figure, the stress-stretch relation is
a nonlinear curve that has a maximum, and afterward decays to zero. This relation
between stress and stretch is obtained merely from the constitutive model without
introducing any failure or damage function. Thus, using the presented constitutive
model, bond separations and crack propagations can be simulated with no other
special considerations.

4.2 Elastic moduli of carbon nanotubes

Elastic properties of carbon nanotubes can be calculated from the constitutive model
we obtained in the previous section. Fig. (7) shows the variation of Young’s mod-
ulus with diameter of the nanotube. Young’s modulus increases with increasing di-
ameter, and the curve flattens for large diameters of nanotube. The value of Young’s
modulus approaches to that of graphene sheet for large values of nanotube diameter
in which the curvature effect diminishes; i.e. 1.096 TPa. The same behavior is ob-
served for shear modulus of nanotubes, illustrated in Fig. (8). The shear modulus
of nanotube reaches that of graphene sheet for large values of diameter; i.e. 423
GPa.
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Figure 6: Stress-Stretch curve for a single layered graphene sheet under tension
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Figure 7: Variation of Young’s modulus with nanotube diameter

It is concluded from Figs. (7) and (8) that for small values of nanotube diameter,
e.g. smaller than 1 nm, there is a strong dependency of the Young’s and shear mod-
uli of nanotube on its diameter. However, for larger diameters, this dependency
becomes very weak. This is due to the fact that for smaller diameters, the curva-
ture of nanotube plays an important role in distorting the C-C bond; and when the
diameter increases, the curvature becomes very small and the atomic structure of
nanotube approaches to that of graphene sheet.
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Fig. (9) shows the results of the present model in comparison with the existing
results. As can be seen, the results obtained from the present model are in a good
agreement with those obtained using other approaches. It is noted that the results
reported here from the literature are obtained using direct modeling of CNT atomic
structure and detailed modeling of atomic bonds. On the other hand, our results
are solely obtained from the constitutive model without the need for using detailed
atomic structure of the nanotubes.
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Figure 8: Variation of shear modulus with nanotube diameter

Wu et al. ( 2006) obtained Young’s modulus of graphene sheet based on an energy-
equivalent model to be 1.06 TPa. Popov et al. (2000) calculated graphite Young’s
modulus to be about 1.0 TPa. Xiao et al. (2005) gave graphite Young’s modulus of
1.13 TPa using an analytical molecular structure mechanics model. Furthermore,
our predicted results are comparable to those obtained from experiments. For ex-
ample, Krishnan et al. (1998) reported an average Young’s modulus of 1.3 TPa
from measured amplitudes of 27 SWCNTs. Yu et al. (2004) got Young’s mod-
ulus ranging from 0.32 to 1.47 TPa for SWCNT and from 0.27 to 0.95 TPa for
MWCNT by performing direct tensile loading tests. Wong et al. (1997) obtained
Young’s modulus of MWCNT of 1.287 TPa by using a cantilever beam model to
simulate the deflection of MWCNT.

The shear modulus of carbon nanotube obtained using the present constitutive mod-
eling in comparison with the existing results is shown in Fig. (10). The torsion
response of nanotubes has received much less attention than the tensile behavior of
nanotubes. Some theoretical studies have been conducted by Xiao et al. (2005),
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Figure 9: Comparison of Young’s modulus between present model and existing
results
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Figure 10: Comparison of shear modulus between present model and existing re-
sults
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Popov et al. (2000) whose results are compared with our results in Fig. (10).

5 Conclusions

A multiscale nonlinear tensorial constitutive model has been presented based on
the modified Morse potential for the analysis of carbon nanostructures. Lagrangian
description is used to express the stress-strain relation in this constitutive model.
The second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor are
selected as stress and strain measures, respectively. No simplification were made
on the interatomic potential function and thus the constitutive model contains all the
atomic data provided by the interatomic potential function. For the case of armchair
carbon nanotubes, the effects of the curvature are considered in the constitutive
model using a non-planar RVE. The continuum-based constitutive model presented
here includes the effect of the curvature of the nanotube as a built-in property.
Using the presented constitutive model, the effects of the nanotube diameter on the
elastic response has been studied. The results obtained for the elastic properties of
nanotubes with varying diameters are in a good agreement with the exact modeling
of bonds and atoms using methods such as molecular mechanics and dynamics.
In addition, it has been shown that when the diameter of the nanotube becomes
smaller than a certain value for each loading case, the curvature of the nanotube
plays an important role in the elastic behavior of the nanotube.

Therefore, there is a good potential for using the presented constitutive model in
a finite element formulation in which the nanotube is modeled using continuum
shell elements. This way, complicated behavior of the nanotube, i.e. buckling,
wrinkling, etc., could be analyzed by the finite element method using the presented
constitutive model.
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