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Influence of Temperature and High Electric Field on
Power Consumption by Piezoelectric Actuated Integrated

Structure

Deepak A Apte1 and Ranjan Ganguli1,2

Abstract: The influence of electric field and temperature on power consumption
of piezoelectric actuated integrated structure is studied by using a single degree of
freedom mass-spring-damper system model coupled with a piezoactuator. The ma-
terial lead zirconate titanate, is considered as it is capable of producing relatively
high strains (e.g., 3000µε). Actuators are often subject to high electric fields to
increase the induced strain produced, resulting in field dependant piezoelectric co-
efficient d31, dielectric coefficient ε33 and dissipation factor δ . Piezostructures are
also likely to be used across a wide range of temperatures in aerospace and un-
dersea operations. Again, the piezoelectric properties can vary with temperature.
Recent experimental studies by physics researchers have looked at the effect of high
electric field and temperature on piezoelectric properties. These properties are used
together with an impedance based power consumption model. Results show that in-
cluding the nonlinear variation of dielectric permittivity and dissipation factor with
electric field is important. Temperature dependence of the dielectric constant also
should be considered.

1 Introduction

Smart structures typically involve the actuation of operating structures using smart
materials and their control. Piezoelectric materials [Cheng and Chen (2004), Wu,
Lo and Chao (2005), Wu and Syu(2006), Singh, Rokne and Dhaliwal(2008)], shape
memory alloys [Auricchio, Petrini, Pietrabissa and Sacco (2003), and magnetostric-
tives [Zhou, Zhou and Zheng (2007)] are used as sensors and actuators in smart
structures. Piezoelectric materials such as lead zirconate titanate (PZT) have the ca-
pability of undergoing strain on the application of an electric field [Shi and Atluri
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(1990), Im and Atluri (1989), Crawley and Deluis (1987), Crawley and Lazarus
(1991)].

The piezoelectric actuated integrated structures are among the most important ’smart’
and ’adaptive’ structures and are being studied for applications in diverse systems
ranging from smart skins for submarines, controlling large space structures, active
control of helicopter and aircraft vibrations and other fields [Chopra (2002), Umesh
and Ganguli (2009), Thakkar and Ganguli (2004), Beom and Atluri (2003)]. A re-
cent review of analysis of piezoelectric plates and shells is given by [Wu, Chiu and
Wang (2008)].

Considerable work has been done in the computational modeling of piezoelectric
materials in recent years. [Arockiarajan and Menzel (2007)] used a micromechan-
ics model to study rate dependant properties of piezoelectric materials. A cou-
pled three dimensional finite element was used and rate dependant properties under
cyclic electrical and mechanical loading were studied. The model proposed in their
study provides insight into rate dependant behavior of piezoelectric materials ob-
served in experiments. In another micromechanical approach, [Jayabal et al (2008)]
captured nonlinear dissipative effects in polycrystal ferroelectric. Taking into con-
sideration of all the domain switching possibilities, they were able to improve the
modeling and response of polycrystal ferroelectric under electromechanical loading
condition.

Several researches have investigated piezoelectric structures. [Wu and Chen (2007)]
developed a two dimensional, self-similar formulation for piezoelectric materials.
The method was used to derive explicit dynamic Green’s functions and analytical
results were obtained for hexagonal 6mm materials including quartz. [Dziatkiewicz
and Fedelinski (2007)] used the dual reciprocating boundary element method to
compute frequencies and mode shapes of two-dimensional piezoelectric structures.
They considered the piezoelectric material to be homogenous, linear-elastic, trans-
versely isotropic and dielectric. Numerical results were compared with analyti-
cal solutions from the literature. [Han et al (2005)] used an analytical-numerical
method to study the effect of anisotropy and piezoelectricity on wave propagation.
A multilayered piezoelectric plate was divided into a number of layered elements
and analyzed. Coupling between elastic field and electric field was considered in
each element. [Nguyen et al (2008)] developed a novel smoothed four-node piezo-
electric element based on linear elastic analysis. A strain smoothing method of
mesh-free conforming nodal integration was used. Several examples and compar-
isons with the published literature showed the the proposed element was computa-
tionally efficient and easy to implement.

The papers discussed till now typically ignored the dependance of piezoelectric
coefficients on temperature and voltage and used linear analysis. [Sladek et al
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(2007)] developed a meshless method based on the local Petrov-Galerkin approach
to solve boundary value problems. Meshless methods have become a popular idea
in computational mechanics [Sladek, Sladek and Atluri (2004), Han and Atluri
(2004), Liu, Han, Rajendran and Atluri (2006), Li, Shu and Atluri (2008), Atluri,
Liu and Han (2006)]. Transient dynamics was considered and time dependance
was removed by Laplace transforms. This paper considered the fact that material
properties of piezoelectric materials are influenced by thermal fields. [Saldek et al
(2006)] also developed the meshless local Petrov-Galerkin method for plane piezo-
electricity. [Wu et al (2008)] developed a meshless differential reproducing ker-
nel particle (DRKP) method for static analysis of simply supported multilayered
piezoelectric plates under electro-mechanical loads. [Wu and Liu (2007)] found
exact solutions of simply supported, doubly curved functionally graded (FG) elas-
tic and piezoelectric shells using a state space approach. The direct and converse
effects on the static behavior of doubly curved, multilayered and FG piezoelec-
tric shells was studied and the accuracy and convergence of the proposed state
space approach was evaluated. [Wu and Syu (2006) found asymptotic solutions
for multilayered piezoelectric hollow cylinder using the method of perturbations.
The twenty-two basic equations of piezoelectricity were reduced to eight different
equations in terms of eight primary variables of elastic and electric fields. It was
shown that the asymptotic solutions approach 3D piezoelectric solutions. [Chen et
al (2009)] used the regularized meshless method to solve antiplane piezoelectricity
problems with multiple inclusions. They addressed a singularity problem by using
the subtract and adding techniques.

We see that most studies on the computational modeling of piezoelectric structures
have focussed on calculations of the displacements, stress, natural frequencies and
mode shapes. The research effort is directed at improving these predictions, how-
ever, the important parameter of power consumed by the effects of variations is
piezoelectric materials properties due to temperature and electric field which is im-
portant for applications is typically not addressed. This paper hopes to bring this
important problem to the attention of computational modeling researchers.

Piezoceramic actuator is a transformer that converts electrical energy into mechan-
ical energy. Apparent power is supplied to the piezoelectric actuator. Apparent
power consists of two parts: real power or dissipative power or active power and
reactive power. Dissipative power is converted into some other form of energy such
as heat which can not be reused. The reactive energy however flows and remains
within the system. When piezoelectric actuator are bonded to a structure, it allows
the alteration of system characteristics as well as the system response. The amount
of power needed to drive the piezostructure is a key design parameter. Thus actu-
ator power consumption is a very important issue in the application and design of
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intelligent material systems and structures and other devices . However, far less re-
search is focused on studying the power consumption of piezo actuated integrated
structure compared to studies on the structural analysis of such structures [Ling et
al (1997); Zhou and Rogers (1995); Ling et al (1996); Ling et al (1993)].

Piezoelectric ceramics such as Lead Zirconate Titanate, PbZr0.53Ti0.47O3 i.e. PZT-
5H are typically used for actuator applications. Unlike, sensor applications, ac-
tuator applications need a high electric field to maximize strain obtained. Also,
PZT works under varying temperature conditions and is used in aircraft applica-
tions where temperature variation ranging from −150o C to 100o C are possible.
Under these circumstances, material properties provided by manufacturers are no
longer applicable to describe actuator performance since they were measured at
low electric fields and neglect the effects of variation in temperature. Piezoelectric
material exhibits nonlinearity with parameters such as applied voltage [Ling et al
(1993); Li et al (1991); Wang et al (1999); Sirohi and Chopra (2000); Kugel and
Cross (1998); Masys et al (2003)]. Classical literature assumes it as linear while
calculating power consumption in electro-mechanical systems. Hence, at higher
applied voltages electrical power requirements can be different from that given by
a constant model. The piezoelectric strain coefficients also depends on temperature
[Wang et al (2003)]. This fact is not included in most constitutive models of piezo-
electric materials. The power supply of the smart structure must be able to cope
with the demands of structure when it is in operation. If the power supplied is less
than required, the active control algorithms will not be able to actuate properly and
there can be a significant deterioration in the performance of the structure.

Some work [Ling et al (1997); Zhou et al (1995); Ling et al (1996); Ling et al
(1993)] has been done for analyzing power consumption for piezoceramics. Here,
power is calculated assuming constant strain coefficient with respect to electric
field and temperature. In this paper, we carry out the analysis for power losses
in bending and study the effect of high electric field and variations in temperature
on power consumption. The analysis is validated for bending mode with constant
coefficients, as results are available for that mode from previous studies [Ling et al
(1997); Zhou et al (1995); Ling et al (1996); Ling et al (1993)].

2 Electro-mechanical admittance method

The governing constitutive equation [Sirohi and Chopra (2000)] for the PZT actu-
ator can be given as

S1 = d31E3 + s11σ1 (1)

D3 = ε33E3 +d31σ1 (2)
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Here, E3 is the applied electric field, σ1 is the stress, s11 is the complex compliance
at zero electric field and is equal to 1/Y 11. Y 11 is the complex modulus of PZT
at zero electric field and is equal to (Y11(1 + jη)), where η is the mechanical loss
factor of PZT, d31 is the piezoelectric coefficient, D3 is the electrical displacement,
S1 is the strain, ε33 is the dielectric permittivity and is equal to ε33 (1− tan δ ),
where δ is the dielectric loss coefficient.

Table 1: Constant Baseline Material Properties of
G1195 PZT

[1]

d32

(m/volt) −166 ∗ 10−12

Y22

(N/m2) 6.3 ∗ 1010

ρ
(kg/m3) 7560

ε
(farads/mr) 1.5 ∗ 10−8

δ 0.012
η 0.001

Table 2: Constant Baseline Material Properties of
PZT-5H

d32

(m/volt) −288 ∗ 10−12

Y22

(N/m2) 6.3 ∗ 1010

ρ
(kg/m3) 7600

ε
(farads/mr) 301 ∗ 10−10

δ 0.021
η 0.001
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Figure 1: A Schematic of a PZT actuator-driven
structure
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Figure 2: The coupled electromechanical admittance
of the PZT driven mass-spring-damper actuator sys-
tem with ζ= 0.01

13

Figure 1: A Schematic of a PZT actuator-driven structure

Power requirement of the integrated structure (piezoelectric material and struc-
ture) as shown in Fig.1 can be calculated using the electro-mechanical impedance
method derived using the constitutive Eq. (1) and Eq. (2) above. This model repre-
sents the structural dynamics using a single degree of freedom mass-spring-damper
system and provides a simple model for the preliminary design of the power supply
system. As is well known, the resonant natural frequency is a critical feature of a
structural dynamics model [Young, Tsai, Lin and Chen (2006), Reutskiy (2005),
Reddy and Ganguli (2007), Altenbach and Eremeyev (2009)]. The piezoelectric
material is poled in the 3 direction and the electric field is applied in the 3 direc-
tion. The coupled electromechanical admittance for piezoelectric actuator bonded
to structure in bending mode can be given [Ling et al (1997)] as,

Y = jω
wAlA
hA

(ε33−
Z

ZA +Z
d2

31Y 11) (3)
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Here, Z is impedance of the structure,

Z = c+m
ω2−ω2

n

jω
(4)

and m is the mass of an equivalent single degree of freedom system, c is the damp-
ing, ωn is the natural resonant frequency of the system and ω is the excitation
frequency. The actuator impedance ZA is given as,

ZA =
KA(1+η j)

ω

klA
tan(klA) j

(5)

Here, KA is equal to wAhA/lAs11, wA, lA, hA are the width, length and thickness of
the actuator, k is

√
ω2ρ/Y 11 and ρ is the density of the PZT. Putting Eq. (4) and

Eq. (5) in Eq. (3) and simplifying, we can write
Y = Real(Y)+ j Imag(Y). Where,

Real(Y ) =
A
B

; Imag(Y ) =
C
B

where,

A =−(ωwAl2
Ad2

31Y 11tan(klA)KAk(ω2mη−mω
2
n η− cω)) (6)

B = (hA(K2
Aη

2k2l2
A +2KAηklAcωtan(klA)+ c2

ω
2tan(klA)2 +K2

Ak2l2
A (7)

+2KAklAmω
2tan(klA)−2KAklAmω

2
n tan(klA)+m2

ω
4tan(klA)2

−2m2
ω

2
n ω

2tan(klA)2 +m2
ω

4
n tan(klA)2))

C = (ωwAlA(ε33K2
Aη

2k2l2
A +2ε33KAηklAcωtan(klA)+ ε33c2

ω
2tan(klA)2 (8)

+ε33K2
Ak2l2

A +2ε33KAklAmω
2tan(klA)−2ε33KAklAmω

2
n tan(klA)

+ε33m2
ω

4tan(klA)2−2ε33m2
ω

2
n ω

2tan(klA)2 + ε33m2
ω

4
n tan(klA)2

−lAd2
31Y 11cωtan(klA)KAηk−ω

2d2
31Y 11c2tan(klA)2

−ω
2lAd2

31Y 11tan(klA)KAkm−ω
4d2

31Y 11tan(klA)2m2

+2ω
2d2

31Y 11tan(klA)2m2
ω

2
n + lAd2

31Y 11tan(klA)KAkmω
2
n

−d2
31Y 11tan(klA)2m2

ω
4
n ))
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Eq. (3) shows that admittance of the integrated structure depends upon impedance
of the structure, impedance of the actuator, dimension of the piezoelectric actua-
tor, piezoelectric coefficient, dielectric constant and dissipation factor. For a given
piezostructure, the impedance of the structure and impedance of actuator are fixed.

3 Electrical power requirement of actuator

When a voltage V = Vo sin (ωt) is applied on the piezoelectric actuator, current I
= Io sin(ω t + φ ) flows through the circuit, where φ is the phase between the cur-
rent and voltage. V0 and I0 are the peak values of voltage and current respectively.
Current depends upon the admittance of integrated structures when applied voltage
V is constant. Positive sign of phase φ indicates that current leads the voltage. As
PZT is capacitive in nature, ideally current should lead the voltage by 90 degrees.
Admittance of the integrated structure as seen in Eq. (3) indicates a purely reactive
load, but due to the losses taking place in dielectric material as well as in the struc-
ture, current will lead the voltage by an angle of less than 90 degree, but close to
90 degrees. Admittance will have two parts, real part and reactive part. Electrical
power depends upon applied voltage and current flowing in the circuit. In other
words, it depends upon voltage and admittance of the integrated structure. Hence,
apparent power, real power and reactive power, can be calculated as follows.
Apparent Power (A):

A = V I =
V 2

0
2
∗Y (9)

Real Power (P)

P = Real(A) =
V 2

o

2
∗Real(Y ) (10)

Reactive Power (Q)

Q = Imag(A) =
V 2

o

2
∗ Imag(Y ) (11)

The total power or apparent power can also be expressed in terms of real power and
reactive power as

A = P+ jQ (12)

Thus, the magnitude of complex power or apparent power can be written as

|A|=
√

P2 +Q2 (13)
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PowerFactor = PF = cosφ =
P
|A| (14)

Here, V and I are the RMS values of voltage and current; Real power loss is caused
because of three things, due to dielectric losses in the PZT (δ ), mechanical losses
in the PZT (η), and due to structural damping (ζ ) related power loss in the struc-
ture. The real or dissipative power is converted into heat, sound and mechanical
energy. More energy dissipation can increase the temperature considerably and can
cause degradation in the piezoelectric properties [Chen et al (2003)]. The reactive
power remains and flows within the system. The amount of reactive power required
increases the size and weight of the amplifier [Chopra (2002)]. The apparent power
is the power supplied to the piezoceramic actuators. As an example of an integrated
structure, consider a PZT of length lA = 5.08 cm, width wA = 2.54 cm, and thickness
hA = 0.2 cm driving a one degree of freedom mass-spring-damper system. The nat-
ural frequency of the system is 500 Hz. Mass m is 2 kg, with a damping ζ of 0.01.
The damping constant c is calculated using c = 2ζ mωn. The material properties of
the PZT G-1195 are given in Table 1. These dimensions of the piezostructure and
properties are taken from [Ling et al (1997)]. Fig. 2 shows the two components of
admittance along with total admittance, and is identical to that given in [Ling et al
(1997)]. Thus, the analysis for calculation of power by the piezostructure in [Ling
et al (1997)] has been correctly implemented.
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Figure 2: The coupled electromechani-
cal admittance of the PZT driven mass-
spring-damper actuator system with ζ =
0.01
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Figure 3: The coupled electromechani-
cal admittance of the PZT driven mass-
spring-damper actuator system with ζ =
0.05

From Fig.2 it can be observed that the real part of admittance is much lower than
the imaginary part, except at resonance (ω = 500 Hz), where the real part becomes
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Figure 4: The coupled electromechani-
cal admittance of the PZT driven mass-
spring-damper actuator system with ζ =
0.1
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Figure 5: The coupled electromechani-
cal admittance of the PZT driven mass-
spring-damper actuator system with ζ =
0.5
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Figure 6: The coupled electromechanical admittance of the PZT driven mass-
spring-damper actuator system with ζ = 1

comparable in magnitude to the imaginary part. Fig.3 to Fig.6 show the electrome-
chanical admittance variation with frequency as the damping ratio increases from
ζ = 0.05 to ζ = 1. With the increase in ζ the peaks in the admittance are smoothed
and at ζ = 1 the peaks disappear and the real admittance is much lesser than the
imaginary admittance at all frequencies. It can be concluded that at resonance there
is a fall in reactive power for low damped cases which means that compact and less
bulky amplifiers can be used.
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Table 1: Constant Baseline Material Properties of G1195 PZT

d32 (m/volt) −166∗10−12

Y22 (N/m2) 6.3∗1010

ρ (kg/m3) 7560
ε ( f arads/mr) 1.5∗10−8

δ 0.012
η 0.001

4 Power consumption studies

In recent years, PZT-5H material has been extensively studied for actuator applica-
tions. This material has relatively large strain coefficient (e.g. 3000µε) compared
to other piezoceramics. It is therefore a good candidate for applications requiring
maximum displacements such as linear drive motors [Wang et al (1998)]. Future
results in the paper are carried out using PZT-5H properties. Baseline material
properties supplied by manufacturers are shown in Table 2. The structural proper-
ties remains same in either case, as given before (m = 2 Kg, ωn = 500 Hz, ζ = 0.01).
This analysis is carried out to observe the effect of temperature and electric field
dependant coefficients of PZT-5H type material on power requirements of the inte-
grated structure. The power consumption of the integrated structure depends upon
admittance of the integrated structure, and applied voltage as can be observed from
Eqs.(6)-(8). Electromechanical admittance depends upon piezoelectric coefficient
( d31 ), dielectric permittivity (ε33) and dissipation constant (δ ). It is seen from
experiments that these parameters vary with applied electric field and temperature.
Hence, the applied field and temperature conditions can also change the load on the
power supply. The following sections show the effect of variation in electric field
and temperature on power requirements of the integrated structure. At first, electri-
cal power required to drive the system is calculated assuming constant coefficients
which are supplied by manufacturers. The electrical power for various voltage
levels is predicted. Later, constant parameters are replaced by polynomial fits to
experimental data. These data have been obtained in past few years by physics re-
searchers working on characterization of the properties of piezoceramics. Again,
required driving electric power is predicted for various voltage levels and variation
in electrical power requirement of load with respect to electric field is observed.
Similar procedure is followed to see the effect of variation of temperature.
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Table 2: Constant Baseline Material Properties of PZT-5H

d32 (m/volt) −288∗10−12

Y22 (N/m2) 6.3∗1010

ρ (kg/m3) 7600
ε ( f arads/mr) 301∗10−10

δ 0.021
η 0.001

4.1 Effect of high electric field :

The effects of high electric fields on the piezoelectric coefficient d31, dielectric
permittivity ε33 and dissipation factor δ on power consumption by piezostructure
is studied. These results assume constant temperature.

4.1.1 Piezoelectric coefficient ( d31 ) :

There exists a nonlinear relation between piezoelectric coefficient d31 and electric
field which is experimentally proved but often ignored in analytical work. (Kugel
and Cross (1998)), have highlighted nonlinearity in d31 for soft piezoelectric mate-
rial PZT-5H. They investigated experimentally, the dependence of coefficient of d31
on electric field. Variation of d31 is plotted with respect to RMS value of amplitude
of electric field as per the available data by experiment. This relation was observed
to be nonlinear. Similarly, most recently in [Masys et al (2003)] have investigated
electromechanical response of piezoceramic as the function of amplitude and fre-
quency of applied voltage and studied the effect of dc bias field. Piezoceramic
coefficient is calculated as a function of frequency and applied electric field. Ex-
periments were done for both soft and hard PZT’s. For both type of PZT it was
observed that dependence of d coefficient over frequency (0.01-1000 HZ) is very
less. But these coefficient shows large dependence on applied electric field. The
following polynomial fit is obtained using experimental data for PZT-5H given in
[Kugel and Cross (1998)].

k1 = 1+0.1013Em +0.4125E2
m−0.3928E3

m +0.1313E4
m (15)

Here, Em is KVrms/cm and k1 indicates relative change in do
31. Also, do

31 is the low
field value as given in Table 2. The electrical power for various voltage level is
predicted for constant d31 as well as nonlinear d31, using the procedure described
earlier. The d31 coefficient increases with electric field as shown in Fig. 7 where an
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increase of almost 40 percent takes place at an electric field of 1.4 KV/cm. As seen
from Fig. 8 and Fig. 9, the real power or active power consumption remains almost
same for both constant as well as d31 dependant model, but reactive power required
for driving the electro-mechanical system as indicated by d31 voltage dependant
model is less than that predicted by constant d31 model. At lower electric field
(< 600 V/cm), reactive power required for the load is same in either case, but as
higher electric field (> 600V/cm) is applied, reactive power required by the system
as predicted by the models differs. Required reactive power at 1.38KV/cm electric
field is less by 13 percent when field dependant model is considered. However, the
important point to note here is that the effect of nonlinear d31 variation with the
electric field is a fall in the power requirement with the electric field. This happens
because the value of d31 increases at higher electric fields leading to greater induced
strain (d31E) compared to the constant d31 case. Thus, designing the power supply
based on constant d31 is a conservative practice.
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Figure 7: Electric field dependence of
piezoelectric strain coefficient of PZT-
5H
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4.1.2 Dielectric permittivity ( ε33 )

Dielectric permittivity is the degree to which a medium resists the flow of electric
charge, and is defined as the ratio of the electric displacement to the electric field
strength. It is equal to the product of the relative dielctric permittivity of a substance
(dielectric constant of material) and the permittivity of free space. Dielectric con-
stant is an expression of the extent to which a material concentrates electric flux,
and is the electrical equivalent of relative magnetic permeability. Materials with
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high dielectric constants result in the high-value capacitors. Electro-mechanical
impedance of the integrated structure depends upon dielectric permittivity. It is
found that dielectric constant is not constant as often assumed and it also varies as
a function of electric field as shown in Fig. 10. Dielectric constant increases upto
80 percent on application of large electric field as stated by [Sirohi and Chopra
(2000)]. The following polynomial fit is given in [Shirohi and Chopra (2000)]
from experimental data.

ke = 7.32−5.9754Em +5.3187E2
m (16)

where, ke is percent increase in the dielectric constant, Em is the electric field is
KVrms/cm. Large value of dielectric constant results in increased value of capac-
itance. This increases the load on power supply as shown by Eq. (3). Required
power is predicted by varying applied electric field. It is found that, the nonlinear
nature of dielectric permittivity results in increased power requirements at higher
electric field. It causes increase in reactive power as shown by Fig. 11. Therefore
it can be expected that much greater power will be needed to drive the piezostruc-
ture at high electric fields than suggested by constant dielectric permittivity. Hence,
power supply design should consider nonlinear variation in dielectric permittivity.

4.1.3 Dissipation factor ( δ ) :

An ideal capacitor is loss free. But in a real capacitor some energy losses always
takes place and as a result current will lead the voltage by an angle less than 90
degrees but close to 90 degrees. These losses are due to conduction currents in the
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Figure 11: Variation of reactive power
with respect to electric Field with con-
stant and field dependant dielectric con-
stant
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Figure 12: Electric field dependence of
dissipation factor of PZT-5H
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Figure 13: Variation of real power with
respect to electric field with constant
and field dependant dissipation constant
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Figure 14: Variation of reactive power
with respect to electric field with con-
stant and field dependant dissipation
constant

dielectric as well as molecular friction opposing the rotation of dielectric dipoles.
This causes the current to lead the voltage by a phase angle δ of less than 90 de-
grees. The energy losses appear as ohmic heating in the shunt resistance. The
dissipation factor tanδ is therefore a measure of the energy loss in the capacitor
and consequently, the power consumed by the actuator. It is found from the ex-
periments that the dissipation factor is not a constant as often assumed but varies
linearly as a function of electric field as shown in Fig. 12. The dissipation factor
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Figure 15: Temperature dependence of
piezoelectric strain coefficients of PZT-
5H
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Figure 16: Variation of real power with
respect to temperature with constant
and field dependant piezoelectric con-
stant
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Figure 17: Variation of reactive power
with respect to temperature with con-
stant and piezoelectric constant
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Figure 18: Temperature dependence of
dielectric constant of PZT-5H

more than doubles as the electric field is increased from 1.5 KV/cm to 4.4 KV/cm.
The following polynomial fit is proposed in [Shirohi and Chopra (2000)] using
experimental data.

tanδ = 0.0376+0.0662Em (17)

It can be observed from Fig 13 and Fig 14 that field dependant nature of dissipation
factor affects active power demand on power supply, while reactive power remains
unaffected. Variation in dissipation factor causes large change in power consump-
tion at high electric field. At an electric field of 4.4 KV/cm, real power as predicted
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Figure 19: Variation of reactive power with respect to temperature with constant
and field dependant dielectric constant

by constant model is 0.02 W but as per field dependant model its value is 0.31 W,
indicating large difference in prediction of real power. Therefore, it is important
to consider the field dependant nature of the dissipation factor when designing the
power supply.

4.2 Effect of temperature :

PZT 5H shows temperature dependant behavior [Wang et al (1998)]. It is seen in
recent experimental studies that piezoelectric strain coefficients depend upon tem-
perature. Hence, temperature plays an important role in indicating the electrome-
chanical response of piezoelectric materials. Many applications, involving smart
material like PZT 5H have to work in diverse temperature conditions. Accepted
constitutive relations for these materials do not include the influence of tempera-
ture on the electromechanical properties. Therefore, most analytical models are
inappropriate when temperature is introduced as a design variable. In addition, the
effect of temperature on power supply requirements of piezostructure needs to be
investigated. The results below are obtained at high electric field and at low elec-
tric field for piezoelectric coefficient (d31) and dielectric constant respectively (ε33),
respectively, based on the data available from [Wang et al (1998)].

4.2.1 Piezoelectric effect ( d31 ) :

The effect of temperature can be included by using a curve fit model. For these,
using data given in (Wang et al (1998)), the following curve fit is obtained.

d31 = (−366.1869−1.3979∗T ) (18)
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The temperature is varied between -120 degrees to 80 degrees centigrade as shown
in Fig. 15. Note that the magnitude of d31 and therefore the induced strain ob-
tained increases with temperature in a linear manner. The constant d31 model is not
appropriate as electrical power predicted by such a model is constant at all temper-
ature levels. Fig. 16 and Fig. 17 show that for temperature dependant d31 model,
active power required for the system increases with an increase in temperature,
while reactive power requirements of the system decreases with increase in tem-
perature. At lower temperature, the active power predicted by the constant model
is more, while reactive power is less than that predicted by temperature-dependant
model. At higher temperature active power predicted by the constant model is less
while reactive power predicted by constant model is more than that predicted by
temperature dependant model. For real power, the difference between the temper-
ature dependant model and the constant model is -0.45, 1.05 and 1.87 percent at
-120 degrees, 25 degrees and 80 degrees, respectively. And for reactive power it is
6.14, -14.36 and -25.30 percent, respectively, at -120 degrees, 25 degrees and 80
degrees. Negative sign indicates that power predicted by temperature dependant
model is less than that predicted by the constant model. It indicates that real power
requirement of the system remains almost constant in the temperature range of -
120 degrees to 80 degrees primarily because real power in piezostructures is much
less than reactive power. At very low temperature reactive power requirement of
the system is more than that predicted by constant model while in the temperature
range of -70 to 80 degrees, temperature variation results in fall in reactive power
requirement of system.

4.2.2 Dielectric permittivity ( ε33 ) :

Dielectric permittivity is also a temperature dependant parameter. Experimental
data shows that relative permittivity (dielectric constant of material) also varies
linearly with temperature up to 120 degrees. Above that temperature, the relative
permittivity increases at a very rapid rate due to the impending phase transforma-
tion at the Curie temperature of 190 degrees. It is necessary to include the effect of
temperature on permittivity. A curve fit showing variation of relative permittivity
with temperature is obtained using available data [Wang et al (1998)].

ε33 = 3227.49+18.11∗T −0.1086035∗T 2

− 0.78142667∗10−3 ∗T 3 +0.1241328∗10−4 ∗T 4 (19)

The temperature is varied between -100 degrees to 150 degrees as shown in Fig.
18. Constant ε33 model does not take into account effect of temperature. The
power predicted by such a model is constant at all temperature levels. Tempera-
ture dependant model shows that, increase in temperature causes increase in power
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requirement of actuator. Fig. 19 shows that the reactive power requirement of the
integrated system increases with increase in temperature. The demand for power
increases rapidly above 120 degrees temperature. At lower temperature, the power
required is less then that predicted by constant model, and at higher temperature
power required is more than that predicted by constant model. For real power,
the difference between temperature dependant model and constant model is -52,
-14 and 81.98 percent at temperatures of -80 degrees, 25 degrees and 150 degrees
respectively. For reactive power, the difference is -47.67, 7 and 144.65 percent
respectively. This indicates that variation in dielectric constant of material with
respect to temperature results in large change in real and reactive power require-
ments of the system. Hence, while designing power supply for such a system, it
is important to consider nonlinear variation of dielectric constant with respect to
temperature.

5 Conclusion

The influence of temperature and high electric field on power consumption of a
piezoelectric actuated structure is considered in this study. Experimental data from
recent work on the physics of piezoceramics is used in conjunction with a power
consumption model of a piezoceramic actuating a single degree of freedom spring-
mass-damper system. The following conclusions are drawn from these studies:

1. Nonlinear variation of piezoelectric coefficient with electric field has negli-
gible effect on real power but reduces the reactive power required because of
higher induced strain (d31E) produced by large value of d31 at higher electric
field. Use of the constant d31 coefficients therefore overpredicts the power
required and is a conservative practice.

2. Nonlinear variation of dielectric permittivity with electric field results in con-
siderable increase in reactive power.

3. Field dependant variation in dissipation factor substantially effects the real
power while reactive power does not change.

4. Temperature variation of piezoelectric coefficient effects both real and reac-
tive power but in opposite directions. But, variation in real power is very
small. Constant d31 model overpredicts the reactive power at high tempera-
tures and its use is a conservative practice.

5. Temperature variation of dielectric constant results in decrease in real and



Influence of Temperature and High Electric Field 157

reactive power requirements at very low temperatures while at higher tem-
peratures, both real and reactive power increases substantially.

It is therefore possible to conclude that the effect of electric field and temperature
on power consumption of piezostructures is important and should be considered for
design of power supply. In addition, the temperature and electric field dependence
of piezoelectric constants shown in this paper can be easily integrated into com-
putational studies on piezostructures which can lead to more accurate analysis and
insights into this design.
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