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A Fictitious Time Integration Method for a Quasilinear
Elliptic Boundary Value Problem, Defined in an Arbitrary

Plane Domain

Chein-Shan Liu1

Abstract: Motivated by the evolutionary and dissipative properties of parabolic
type partial differential equation (PDE), Liu (2008a) has proposed a natural and
mathematically equivalent approach by transforming the quasilinear elliptic PDE
into a parabolic one. However, the above paper only considered a rectangular do-
main in the plane, and did not treat the difficulty arisen from the quasilinear PDE
defined in an arbitrary plane domain. In this paper we propose a new technique of
internal and boundary residuals in a fictitious rectangular domain, which are driving
forces for the ordinary differential equations based on the Fictitious Time Integra-
tion Method (FTIM). Several numerical examples validate the performance of the
FTIM, which can easily handle the nonlinear boundary value problem, defined in
an arbitrary plane domain.
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Arbitrary plane domain, Internal and boundary residuals, Fictitious rectangular do-
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1 Introduction

The Dirichlet problem of elliptic type PDE has appeared in many engineering ap-
plications. For a given quasilinear PDE, when the domain is complex, the finding
of analytical solution is not easy. If one encounters a nonlinear problem in an ar-
bitrary domain, both the geometric complexity and the nonlinearity encroach, and
typically one needs to resort on a numerical technique for solving this problem.

For the quasilinear elliptic boundary value problems (BVPs), Chen and Zhou (2000)
have presented some iteration methods, which include the mountain iteration algo-
rithm, the scaling iterative algorithm, the monotone iterative algorithm, as well as a
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direct iterative algorithm. In general, a sequence of iterations is generated by differ-
ent methods, but they are not guaranteed to converge to the true solution. Generally
speaking, a stronger condition of the differential equation is needed to guarantee
the convergence.

On the other hand, there are many papers to concern with the numerical solutions
of linear elliptic type BVPs, like as, Liu (2007a,2007b,2007c,2008b). Meshless
and meshfree methods are nowadays the main stream in numerical computations,
as strongly advocated by many researchers, to name a few, Zhu, Zhang and Atluri
(1998, 1999), Atluri and Zhu (1998a, 1998b), Atluri, Kim and Cho (1999), Atluri
and Shen (2002), Cho, Golberg, Muleshkov and Li (2004), Jin (2004), Li, Lu,
Huang and Cheng (2007), Liu (2007d,2007e), Tsai, Lin, Young and Atluri (2006),
and Young, Chen, Chen and Kao (2007). However, it cannot be overemphasized
the effectiveness of those methods, when nonlinear problems are encountered.

Many collocation techniques together with the expansions by functional bases were
employed to solve the elliptic type BVPs; see, for example, Cheng, Golberg, Kansas
and Zammito (2003), Hu, Li and Cheng (2005), Algahtani (2006), Tian, Reutskiy
and Chen (2008), Hu and Chen (2008), and Libre, Emdadi, Kansa, Rahimian and
Shekarchi (2008). Recently, Li, Lu, Hu and Cheng (2008) gave a very detailed
description of the collocation Trefftz method. Basically, the above bases expansion
methods are effective for linear problems. For nonlinear problems some iterations
of those methods are necessary.

The purpose of this paper is to develop a non-iterative algorithm, having the ad-
vantage of easy to numerical implementation, and having a great flexibility applied
to the most elliptic type BVPs. We begin with the following quasilinear elliptic
equation:

∆u(x,y) = F(x,y,u,ux,uy, . . .), (x,y) ∈Ω, (1)

u(x,y) = H(x,y), (x,y) ∈ Γ, (2)

where ∆ is the Laplacian operator, Γ is the boundary of the problem domain Ω, and
F and H are given functions. Here, the set of Ω is assumed to be a star convex one
with respect to the geometric center located at the origin; hence, the boundary Γ

can be described in the polar coordinates by a radius function with Γ = {(r,θ)|r =
ρ(θ),θ ∈ [0,2π]}. In Fig. 1(a) we give an example of the elliptic boundary. Under
a given Dirichlet boundary condition (2), we have to solve Eq. (1) in order to find
the solution of u(x,y).
It may have different strategies by adding a time-like variable t in Eq. (1), and
change it to an initial boundary value problem. Even there are many better time
integration techniques to solve the resulting time-dependent equations by using a
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Figure 1: The problem domains used in the calculations: (a) an ellipse, and a
fictitious rectangular boundary, (b) an epitrochoid, and (c) an amoeba-like domain.

semi-discretization technique, it has a big problem of the conventional approach by
viewing it as a steady-state solution, because such an equation is much deviating
from the original equation (1). In order to approach the steady state we should cal-
culate this equation to a long time, such that it is very time consumption, and on the
other hand, we do not know whether this equation has a steady state or not. Indeed,
Sincovec and Madsen (1975) have described a general-purpose package for solv-
ing PDEs, where it is simply adding a differential term ∂u/∂ t, with respect to an
artificial time t, on the right-hand side, by embedding a nonlinear elliptic PDE into
a time-dependent one. Obviously, such a simple fashion makes no improvement of
the numerical solution, because we can construct examples where this embedding
technique inspires a very long and expensive time integration to achieve a descent
approximation for the steady-state solution [Liu (2008a)].
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In order to overcome these difficulties, Liu (2008a) was the first, who treated Eq. (1)
by introducing a fictitious time coordinate, and mathematically equivalently trans-
formed Eq. (1) into a parabolic type PDE, without destroying the structure of the
original PDE. However, Liu (2008a) only considered a rectangular domain in the
plane, and did not deal with the difficult problem of quasilinear equation defined in
an arbitrary plane domain. In this paper we propose a new technique to extend the
novel numerical solution to an arbitrary plane domain.

2 A fictitious time integration method

2.1 Transformation into a parabolic type PDE

First, we propose the following transformation:

v(x,y, t) := q(t)u(x,y), (3)

where q(t) is a differentiable function of t, and q(0) = 1. Introducing a nonzero
viscosity damping coefficient ν in Eq. (1), we can obtain

0 = ν∆u−νF(x,y,u,ux,uy, . . .). (4)

By using Eq. (3) we have

0 =
ν

q(t)
∆v−νF(x,y,u,ux,uy, . . .). (5)

From Eq. (3) it follows that ∂v/∂ t = q̇(t)u(x,y), and by adding it on both the sides
of the above equation we can obtain

∂v
∂ t

=
ν

q(t)
∆v−νF(x,y,u,ux,uy, . . .)+ q̇(t)u. (6)

Then, by using u = v/q(t), ux = vx/q(t) and uy = vy/q(t), etc., we can recast
Eqs. (1) and (2) into a parabolic type PDE:

∂v
∂ t

=
ν

q(t)
∆v−νF

(
x,y,

v
q(t)

,
vx

q(t)
,

vy

q(t)
, . . .

)
+

q̇(t)v
q(t)

, (x,y) ∈Ω, (7)

v(x,y, t) = q(t)H(x,y), (x,y) ∈ Γ. (8)

The above process was first developed by Liu (2008a) with q(t) = 1 + t to trans-
form the original elliptic type Eqs. (1) and (2) into the parabolic type Eqs. (7) and
(8). When v(x,y, t) is numerically solved to a certain time t0 according to a given
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convergence criterion, the solution of u(x,y) is given by u(x,y) = v(x,y, t0)/q(t0)
according to Eq. (3).

After multiplying 1/q(t) on both sides of Eq. (7) we can obtain

∂

∂ t

[
v

q(t)

]
=

ν

q(t)
∆

[
v

q(t)

]
− ν

q(t)
F
(

x,y,
v

q(t)
,

vx

q(t)
,

vy

q(t)
, . . .

)
. (9)

Here we will use Eq. (3) again to derive a parabolic type PDE for u, but at this
moment we must understand that u is not only a function of (x,y) but also a function
of t. Therefore, from Eqs. (9) and (8) it is legal to write

∂u
∂ t

=
ν

q(t)
∆u− ν

q(t)
F (x,y,u,ux,uy, . . .) , (x,y) ∈Ω, (10)

u(x,y, t) = H(x,y), (x,y) ∈ Γ. (11)

The present approach is slightly better than that developed by Liu (2008a), because
we can directly solve u numerically, and do not need through v.

The above idea was first proposed by Liu (2008c) to treat an inverse Sturm-Liouville
problem by transforming an ordinary differential equation (ODE) into a PDE. Then,
Liu and his coworkers [Liu (2008d, 2008e); Liu, Chang, Chang and Chen (2008)]
extended this idea to develop new methods for estimating parameters in the inverse
vibration problems. Recently, Liu and Atluri (2008a) have employed the above
technique of fictitious time integration method (FTIM) to solve large system of
nonlinear algebraic equations, and showed that high performance can be achieved
by using the FTIM. Liu and Atluri (2008b) also employed this technique of FTIM
to solve mixed-complementarity problems and optimization problems. Then, Liu
and Atluri (2008c) employed the FTIM to solve the inverse Sturm-Liouville prob-
lems under specified eigenvalues. Furthermore, Liu (2008f) has used the FTIM
technique to solve the nonlinear complementarity problems, whose numerical re-
sults are very well.

Liu (2009a) employed the fictitious time integration method to solve m-point bound-
ary value problems of ODEs, and a higher-dimensional first-order ODEs obtained
from the Euler-Bernoulli beam, subjecting to three-point boundary values. Because
in the FTIM we do not require to inverse the resulting nonlinear algebraic equations,
this method is very effective to find the numerical solutions of m-point boundary
value problems of ODEs. Liu (2009b) also employed the fictitious time integra-
tion method to solve the backward in time and forward in time Burgers equation.
Because the FTIM is integrated in a new direction of fictitious time, which is inde-
pendent to the real time, the ill-posedness and noised disturbance for the backward
in time Burgers equation can be handled rather well. This method is very effective
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to find the numerical solutions of backward in time problems in PDEs. Liu (2009c)
has found that the delay ordinary differential equations are easily calculated by
using the FTIM.

There are many different choices of the time-like function q(t). Recently, Liu and
Atluri (2009) used the FTIM-based method to study the filterning effect of the
FTIM by using the different time-like functions q(t) to solve the ill-posed linear
systems. They showed that when q(t) = 1/(1 + t)γ , 0 < γ ≤ 1 is used, the fil-
terning effect of the FTIM is better than that of the Tikhonov filter. Similarly,
Ku, Yeih, Liu and Chi (2009) have advocated by using a new time-like function
q(t) = 1/(1 + t)γ , 0 < γ ≤ 1 to enhance the convergence of the numerical solu-
tions of nonlinear algebraic equations. In this paper we will use q(t) = 1/(1 + t)γ

and take different γ in the numerical calculations. Moreover, Atluri, Liu and Kuo
(2009) can extend the FTIM to a combination with the continuous Newton method,
which is convergent very fast in the solutions of nonlinear algebraic equations.

2.2 Transformation into the ODEs

In order to facilitate the numerical implementation of Eqs. (10) and (11) by an
equidistant finite difference scheme, we introduce a minimal rectangle to enclose
the problem domain Ω. See Fig. 1(a) for an example of the elliptic domain. Sup-
pose that the rectangle is given by Ω̄ := [−a0,a0]× [−b0,b0], where a0 and b0 are
the maximum length of the domain Ω in the x-axis, and in the y-axis, respectively.
Now, we divide the rectangle Ω̄ by a uniform grid with ∆x = 2a0/(m− 1) and
∆y = 2b0/(m− 1) being the uniform spatial grid lengths in the x- and y-direction,
and let ui, j(t) := u(xi,y j, t) be a numerical value of u at the grid point (xi,y j) ∈ Ω̄,
varying with time t, where xi = (i−1)∆x and y j = ( j−1)∆y.

Applying a semi-discrete procedure on the PDE in Eq. (10), which being slightly
extended to Ω̄, yields a coupled system of ODEs:

u̇i, j =
ν1

q(t)
Ri, j (12)

where

Ri, j =
1

(∆x)2 [ui+1, j−2ui, j +ui−1, j]+
1

(∆y)2 [ui, j+1−2ui, j +ui, j−1]

−F
(

xi,y j,ui, j,
ui+1, j−ui−1, j

2∆x
,
ui, j+1−ui, j−1

2∆y
, . . .

)
, i, j = 2, . . . ,m−1,

(13)

are internal residuals.
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Because Eq. (12) is an equidistant finite difference equation, it is hard to match
the boundary condition (2) exactly. Usually, one uses an adaptive grid method
to let the circumferential grid points locate on the boundary. However, this may
complicate the numerical computation for arbitrary plane domain. Because the
boundary condition is given on the contour Γ, not on the boundary of the rectangle
Ω̄, we require to derive the governing equations of these ui, j at the nodal points
on the rectangular boundary as shown in Fig. 1(a), that is, um, j, j = 1, . . . ,m,
ui,m, i = 1, . . . ,m−1, u1, j, j = 1, . . . ,m−1, and ui,1, i = 2, . . . ,m−1.

For a typical boundary nodal point (xi,y j) as shown in Fig. 1(a) by a bullet, we
can find its angle θ with respect to the x-axis, and its corresponding point on the
contour Γ by using (xa,ya) = (ρ(θ)cosθ ,ρ(θ)sinθ), which is marked by a bullet
in the top of ua. Usually, the point (xa,ya) does not just locate on a grid point,
and it has an offset (δx,δy) with respect to the grid point (xi−1,y j−1). Denote the
numerical values of ui, j at the four neighboured grid points by ui−1, j−1, ui, j−1, ui, j

and ui−1, j. Then the numerical value of u at the point (xa,ya), denoted by ua, can
be approximated by the following linear interpolation equation:

ua = ui−1, j−1 +
δy
∆y

[ui−1, j−ui−1, j−1]

+
δx
∆x

{
ui, j−1 +

δy
∆y

[ui, j−ui, j−1]−
(

ui−1, j−1 +
δy
∆y

[ui−1, j−ui−1, j−1]
)}

.(14)

However, the exact value at (xa,ya) is given by Eq. (2) with ue = H(xa,ya). Thus
we have a difference given by

Ri, j = ua−ue, (15)

where we denote this residual by Ri, j, since the corresponding boundary nodal point
is (xi,y j). Corresponding to Eq. (13), the residual defined in Eq. (15) is a boundary
residual on a fictitious boundary of Ω̄.

Thus, on the rectangular boundary nodal points we can derive the FTIM-based
governing equations as follows:

u̇m, j =
ν2

q(t)
Rm, j, j = 1, . . . ,m,

u̇i,m =
ν2

q(t)
Ri,m, i = 1, . . . ,m−1,

u̇1, j =
ν2

q(t)
R1, j, j = 1, . . . ,m−1,

u̇i,1 =
ν2

q(t)
Ri,1, i = 2, . . . ,m−1. (16)
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In the above the coefficient is ν2, which is different from the damping coefficient
ν1 used in Eq. (12). These two sets of ODEs play different roles in the solution of
u, and the weightings are also needed to be different. The damping coefficient ν1
is always positive; conversely, ν2 may be positive or negative.

In this section we have transformed the boundary value problem of the second-order
elliptic PDE in Eqs. (1) and (2) in an arbitrary plane domain, to an evolutionary
problem of a parabolic PDE in Eqs. (10) and (11), and finally arrived to an initial
value problem in the n-dimensional ODEs system (12) and (16) with dimensions
n = m2, of which the driving force is the residual. The initial values of Eqs. (12)
and (16) are given through a guess because the true initial condition of u(x,y, t) is
not known a priori.

In the previous paper by Liu (2008a), only the rectangular plane domains were
considered, and the difficult problem of quasilinear equation defined in an arbitrary
plane domain was not treated. Here, by using the interpolation equation (14) and
the ODEs in Eq. (16), which are forced by the residuals defined in Eq. (15), we can
extend the novel FTIM-based numerical solution to an arbitrary plane domain.

2.3 Numerical procedures

Starting from an initial value of ui, j, which can be guessed in a rather free way,
we may employ a simple Euler method to integrate Eqs. (12) and (16) from t = 0
to a selected final time t f . In the numerical integration process we can check the
convergence of ui, j at the `- and `+1-steps by√

m

∑
i, j=1

[u`+1
i, j −u`

i, j]2 ≤ ε, (17)

where ε is a selected convergence criterion. If at a time t0 ≤ t f the above criterion
is satisfied, then the solution of u is obtained. In practice, if a suitable t f is selected
we find that the numerical solution also approaches very well to the true solution,
even the above convergence criterion is not satisfied. The viscosity coefficients ν1
and ν2 introduced in Eqs. (12) and (16) can be used to enhance the stability of
numerical integration.

In particular, we should emphasize that the present method is a new fictitious time
integration method (FTIM). Because it does not need to face the nonlinearity in
the spatial domain, this new FTIM can calculate the boundary value problem of
quasilinear elliptic equation very stably and effectively without needing of any it-
eration. Below we give numerical examples to display some advantages of the
present FTIM.
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3 Numerical examples

In this section we will apply the FTIM to the semilinear and quasilinear BVPs. In
order to focus on the observation of the effect of the complex domain on the new
method, we suppose that some exact solutions are known and can be compared
with the numerical solutions, and the domain, in addition to the ellipse plotted
in Fig. 1(a), we also consider the other two domains in Figs. 1(b) and 1(c). The
contours of these domains are given, respectively, by

ρ(θ) =
ab√

a2 sin2
θ +b2 cos2 θ

, (18)

ρ(θ) =
√

(a+b)2 +1−2(a+b)cos(aθ/b), (19)

ρ = exp(sinθ)sin2(2θ)+ exp(cosθ)cos2(2θ). (20)

For Eq. (18) we use a = 1.5 and b = 1, while for Eq. (19) we use a = 4 and b = 1.

3.1 Example 1

We consider an analytical solution

u(x,y) = x3 +2xy (21)

of a nonlinear Poisson equation:

∆u = u2 +6x− x6−4x4y−4x2y2. (22)

For simplicity we apply the Euler method to integrate the resulting ODEs from the
FTIM, where the time stepsize is fixed to be ∆t = 0.001. By using the follow-
ing parameters: m = 41, ν1 = 0.8, ν2 = −5, ε = 10−4 and γ = 0.5 we calculate
this problem inside an elliptic domain with semiaxes lengths a = 1.5 and b = 1.
Through 1891 steps the numerical solution is obtained, whose absolute error is
plotted in Fig. 2 inside the elliptic contour, and its maximum error is 8.2×10−3.

Similarly, we use the following parameters: m = 101, ν1 = 0.01, ν2 =−5, ε = 10−4

and γ = 1 to calculate this problem inside an epitrochoid described by Eq. (19).
Through a few steps the numerical solution is obtained, whose absolute error is
plotted in Fig. 3 inside the contour, and its maximum error is smaller than 0.018.
We also use the following parameters: m = 61, ν1 = 0.1, ν2 =−0.5, ε = 10−4 and
γ = 1 to calculate this problem inside an amoeba-like irregular shape described by
Eq. (20). Through a few steps the numerical solution is obtained, whose absolute
error is plotted in Fig. 4 inside the contour, and its maximum error is smaller than
0.025.
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Figure 2: The error distribution of Example 1 over an ellipse.

3.2 Example 2

The following nonlinear diffusion reaction equation is considered:

∆u = 4u3(x2 + y2 +a2). (23)

The domains are the same as those used in Example 1. The analytic solution

u(x,y) =
−1

x2 + y2−a2 (24)

is singular on the circle with a radius a.

Algahtani (2005) has solved this problem by using a radial basis method, whose
results as shown there in Fig. 8 are not matched well to the exact solution.

By using the following parameters: m = 41, ν1 = 0.8, ν2 = −5, ε = 10−4 and
γ = 0.1 we calculate this problem inside an elliptic domain with semiaxes lengths
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Figure 3: The error distribution of Example 1 over an epitrochoid.

1.5 and 1. Through 953 steps the numerical solution is obtained, whose absolute
error is plotted in Fig. 5 inside the contour, and its maximum error is 2.46×10−3.
It can be seen that even the singularity is near to the problem domain, the numerical
solution is also good with the third-order accuracy.

Similarly, we use the following parameters: m = 101, ν1 = 0.01, ν2 =−5, ε = 10−4

and γ = 1 to calculate this problem inside an epitrochoid described by Eq. (19).
Through a few steps the numerical solution is obtained, whose absolute error is
plotted in Fig. 6 inside the contour, and its maximum error is smaller than 0.00036.
We also use the following parametersy: m = 61, ν1 = 0.1, ν2 =−0.5, ε = 10−4 and
γ = 1 to calculate this problem inside an amoeba-like irregular shape described by
Eq. (20). Through a few steps the numerical solution is obtained, whose absolute
error is plotted in Fig. 7 inside the contour, and its maximum error is smaller than
0.00012.
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Figure 4: The error distribution of Example 1 over an amoeba-like domain.

3.3 Example 3

The following quasilinear equation is calculated:

∆u+u2
xuyy +u2

yuxx−2uxuyuxy = 0, (25)

which is known as a minimal surface equation. The domain Ω is an ellipse with
a = 1 and b = 0.8, and the boundary value is zero.

Under the following parameters of ∆x = 2/50, ∆y = 1.6/50, ∆t = 0.0003, ui, j(0) =
0.15, ν1 = 0.03, ν2 =−9, ε = 10−4 and γ = 0.1 we find that the numerical solution
is convergent at the 2000 time steps. We plot a minimal surface above the ellipse
in Fig. 8.

4 Conclusions

The present paper has extended a previous result obtained by the author for the
FTIM-based method of the quasilinear elliptic PDE in a rectangular domain to the
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Figure 5: The error distribution of Example 2 over an ellipse.

Figure 6: The error distribution of Example 2 over an epitrochoid.
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Figure 7: The error distribution of Example 2 over an amoeba-like domain.

Figure 8: The minimal surface over an ellipse, calculated by the FTIM.
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one in an arbitrary plane domain. In the past, the numerical methods to solve the
elliptic boundary value problems are frustrated by nonlinearity and geometric com-
plexity, and then require some iterations, because these methods were carried out in
a spatial domain. We have introduced the concepts of internal residual and bound-
ary residual in a fictitious rectangular domain, which just encloses the problem
domain, such that the geometric complexity can be resolved. In the present paper,
the nonlinearity and geometric complexity of quasilinear elliptic equation defined
in an arbitrary plane domain can be detoured by adding a fictitious time coordinate,
since we only required numerically integrating the ODEs, driving by the residu-
als, to a certain time to obtain numerical solutions. Hence, the present FTIM can
work very effectively and accurately for the solution of boundary value problem of
quasilinear elliptic equation defined in an arbitrary plane domain. No iteration is
required, and thus the present method is very time saving.

Acknowledgement: Taiwan’s National Science Council project NSC-97-2221-
E-002-264-MY3 granted to the author is highly appreciated.

References

Algahtani, H. J. (2006): A meshless method for non-linear Poisson problems with
high gradients. Computer Assisted Mechanics and Engineering Sciences, vol. 13,
pp. 367-377.

Atluri, S. N.; Kim, H. G.; Cho, J. Y. (1999): A critical assessment of the truly
meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE)
methods. Computational Mechanics, vol. 24, pp. 348-372.

Atluri, S. N.; Liu, C.-S.; Kuo, C. L. (2009): A modified Newton method for
solving non-linear algebraic equations. Journal of Marine Science and Technology,
vol. 17, pp. 238-247.

Atluri, S. N.; Shen, S. (2002): The meshless local Petrov-Galerkin (MLPG) method:
a simple & less-costly alternative to the finite element and boundary element meth-
ods. CMES: Computer Modeling in Engineering & Sciences, vol. 3, pp. 11-51.

Atluri, S. N.; Zhu, T. L. (1998a): A new meshless local Petrov-Galerkin (MLPG)
approach in computational mechanics. Computational Mechanics, vol. 22, pp.
117-127.

Atluri, S. N.; Zhu, T. L. (1998b): A new meshless local Petrov-Galerkin (MLPG)
approach to nonlinear problems in computer modeling and simulation. Computa-
tional Modeling and Simulation in Engineering, vol. 3, pp. 187-196.

Chen, G.; Zhou, J. X. (2000): Algorithms and visualization for solutions of non-



30 Copyright © 2009 Tech Science Press CMC, vol.11, no.1, pp.15-32, 2009

linear elliptic equations. International Journal of Bifurcation and Chaos, vol. 10,
pp. 1565-1612.

Cheng, A. H. D.; Golberg, M. A.; Kansa, E. J.; Zammito, G. (2003): Exponen-
tial convergence and H-c multiquadric collocation method for partial differential
equations. Numerical Method for Partial Differential Equations, vol. 19, pp. 571-
594.

Cho, H. A., Golberg, M. A.; Muleshkov, A. S.; Li, X. (2004): Trefftz methods
for time-dependent partial differential equations. CMC: Computers, Materials &
Continua, vol. 1, pp. 1-37.

Hu, H. Y.; Li, Z. C.; Cheng, A. H. D. (2005): Radial basis collocation methods for
elliptic boundary value problems. Computers and Mathematics with Applications,
vol. 50, pp. 289-320.

Hu, H. Y.; Chen, J. S. (2008): Radial basis collocation method and quasi-Newton
iteration for nonlinear elliptic problems. Numerical Method for Partial Differential
Equations, vol. 24, pp. 991-1017.

Jin, B. (2004): A meshless method for the Laplace and biharmonic equations sub-
jected to noisy boundary data. CMES: Computer Modeling in Engineering & Sci-
ences, vol. 6, pp. 253-261.

Ku, C. Y.; Yeih, W.; Liu, C.-S.; Chi, C. C. (2009): Applications of the ficti-
tious time integration method using a new time-like function. CMES: Computer
Modeling in Engineering & Sciences, vol. 43, pp. 173-190.

Li, Z. C.; Lu, T. T.; Huang, H. T.; Cheng, A. H. D. (2007): Trefftz, colloca-
tion, and other boundary methods–A comparison. Numerical Method for Partial
Differential Equations, vol. 23, pp. 93-144.

Li, Z. C.; Lu, T. T.; Huang, H. T.; Cheng, A. H. D. (2008): Trefftz and Colloca-
tion Methods. WIT Press, Southampton.

Libre, A. N.; Emdadi, A.; Kansa, E. J.; Rahimian, M.; Shekarchi, M. (2008):
A stabilized RBF collocation scheme for Neumann type boundary value problems.
CMES: Computer Modeling in Engineering & Sciences, vol. 24, pp. 61-80.

Liu, C.-S. (2007a): A modified Trefftz method for two-dimensional Laplace equa-
tion considering the domain’s characteristic length. CMES: Computer Modeling in
Engineering & Sciences, vol. 21, pp. 53-65.

Liu, C.-S. (2007b): A highly accurate solver for the mixed-boundary potential
problem and singular problem in arbitrary plane domain. CMES: Computer Mod-
eling in Engineering & Sciences, vol. 20, pp. 111-122.

Liu, C.-S. (2007c): An effectively modified direct Trefftz method for 2D potential
problems considering the domain’s characteristic length. Engineering Analysis of



A Fictitious Time Integration Method 31

Boundary Element, vol. 31, pp. 983-993.

Liu, C.-S. (2007d): A meshless regularized integral equation method for Laplace
equation in arbitrary interior or exterior plane domains. CMES: Computer Model-
ing in Engineering & Sciences, vol. 19, pp. 99-109.

Liu, C.-S. (2007e): A MRIEM for solving the Laplace equation in the doubly-
connected domain. CMES: Computer Modeling in Engineering & Sciences, vol.
19, pp. 145-161.

Liu, C.-S. (2008a): A fictitious time integration method for two-dimensional quasi-
linear elliptic boundary value problems. CMES: Computer Modeling in Engineer-
ing & Sciences, vol. 33, pp. 179-198.

Liu, C.-S. (2008b): A highly accurate collocation Trefftz method for solving the
Laplace equation in the doubly-connected domains. Numerical Method for Partial
Differential Equations, vol. 24, pp. 179-192.

Liu, C.-S. (2008c): Solving an inverse Sturm-Liouville problem by a Lie-group
method. Boundary Value Problems, vol. 2008, Article ID 749865.

Liu, C.-S. (2008d): Identifying time-dependent damping and stiffness functions by
a simple and yet accurate method. Journal of Sound and Vibration, vol. 318, pp.
148-165.

Liu, C.-S. (2008e): A Lie-group shooting method for simultaneously estimating
the time-dependent damping and stiffness coefficients. CMES: Computer Modeling
in Engineering & Sciences, vol. 27, pp. 137-149.

Liu, C.-S. (2008f): A time-marching algorithm for solving non-linear obstacle
problems with the aid of an NCP-function. CMC: Computers, Materials & Con-
tinua, vol. 8, pp. 53-65.

Liu, C.-S. (2009a): A fictitious time integration method for solving m-point bound-
ary value problems. CMES: Computer Modeling in Engineering & Sciences, vol.
39, pp. 125-154.

Liu, C.-S. (2009b): A fictitious time integration method for the Burgers equation.
CMC: Computers, Materials & Continua, vol. 9, pp. 229-252.

Liu, C.-S. (2009c): A fictitious time integration method for solving delay ordinary
differential equations. CMC: Computers, Materials & Continua, vol. 10, pp. 97-
116.

Liu, C.-S.; Atluri, S. N. (2008a): A novel time integration method for solving
a large system of non-linear algebraic equations. CMES: Computer Modeling in
Engineering & Sciences, vol. 31, pp. 71-83.

Liu, C.-S.; Atluri, S. N. (2008b): A fictitious time integration method (FTIM)
for solving mixed complementarity problems with applications to non-linear op-



32 Copyright © 2009 Tech Science Press CMC, vol.11, no.1, pp.15-32, 2009

timization. CMES: Computer Modeling in Engineering & Sciences, vol. 34, pp.
155-178.

Liu, C.-S.; Atluri, S. N. (2008c): A novel fictitious time integration method for
solving the discretized inverse Sturm-Liouville problems, for specified eigenvalues.
CMES: Computer Modeling in Engineering & Sciences, vol. 36, pp. 261-285.

Liu, C.-S.; Atluri, S. N. (2009): A Fictitious time integration method for the nu-
merical solution of the Fredholm integral equation and for numerical differentiation
of noisy data, and its relation to the filter theory. CMES: Computer Modeling in
Engineering & Sciences, vol. 41, pp. 243-261.

Liu, C.-S.; Chang, J. R.; Chang, K. H.; Chen, Y. W. (2008): Simultaneously
estimating the time-dependent damping and stiffness coefficients with the aid of
vibrational data. CMC: Computers, Materials & Continua, vol. 7, pp. 97-107.

Sincovec, R.; Madsen, N. (1975): Software for nonlinear partial differential equa-
tions. ACM Transactions of Mathematical Software, vol. 1, pp. 232-260.

Tian, H. Y.; Reutskiy, S.; Chen, C. S. (2008): A basis function for approximation
and the solutions of partial differential equations. Numerical Method for Partial
Differential Equations, vol. 24, pp. 1018-1036.

Tsai, C. C.; Lin, Y. C.; Young, D. L.; Atluri, S. N. (2006): Investigations on the
accuracy and condition number for the method of fundamental solutions. CMES:
Computer Modeling in Engineering & Sciences, vol. 16, pp. 103-114.

Young, D. L.; Chen, K. H.; Chen, J. T.; Kao, J. H. (2007): A modified method of
fundamental solutions with source on the boundary for solving Laplace equations
with circular and arbitrary domains. CMES: Computer Modeling in Engineering &
Sciences, vol. 19, pp. 197-222.

Zhu, T,; Zhang, J.; Atluri, S. N. (1998): A meshless local boundary integral
equation (LBIE) method for solving nonlinear problems. Computational Mechan-
ics, vol. 22, pp. 174-186.

Zhu, T,; Zhang, J.; Atluri, S. N. (1999): A meshless numerical method based on
the local boundary integral equation (LBIE) to solve linear and non-linear boundary
value problems. Engineering Analysis of Boundary Element, vol. 23, pp. 375-389.


