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The Method of Fundamental Solutions for
One-Dimensional Wave Equations

Gu, M. H.1, Young, D. L.1,2 and Fan, C. M.1

Abstract: A meshless numerical algorithm is developed for the solutions of
one-dimensional wave equations in this paper. The proposed numerical scheme is
constructed by the Eulerian-Lagrangian method of fundamental solutions (ELMFS)
together with the D’Alembert formulation. The D’Alembert formulation is used to
avoid the difficulty to constitute the linear algebraic system by using the ELMFS
in dealing with the initial conditions and time-evolution. Moreover the ELMFS
based on the Eulerian-Lagrangian method (ELM) and the method of fundamental
solutions (MFS) is a truly meshless and quadrature-free numerical method. In this
proposed wave model, the one-dimensional wave equation is reduced to an implicit
form of two advection equations by the D’Alembert formulation. Solutions of ad-
vection equations are then approximated by the ELMFS with exceptionally small
diffusion effects. We will consider five numerical examples to test the capability of
the wave model in finite and infinite domains. Namely, the traveling wave propa-
gation, the time-space Cauchy problems and the problems of vibrating string, etc.
Numerical validations of the robustness and the accuracy of the proposed method
have demonstrated that the proposed meshless numerical model is a highly accurate
and efficient scheme for solving one-dimensional wave equations.

Keywords: Eulerian-Lagrangian method of fundamental solutions, D’Alembert
formulation, one-dimensional wave equations, meshless numerical method

1 Introduction

After tremendous progress of the computer science technology, the developments
of highly accurate and efficient wave solvers still remain an important and chal-
lenging research topic nowadays in the computational physics. The wave equations
govern many interesting physical science problems such as the stress wave in an
elastic solid, water wave propagation in water bodies, scattering problems of elec-
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tromagnetic waves and sound wave propagation in a medium, etc. Although there
are many conventional mesh-dependent numerical methods available for solving
hyperbolic-type partial differential equations like wave equations, however there
is still very limited works in this area as far as meshless numerical schemes are
concerned. Therefore in this study, we will construct a meshless numerical model
to solve the wave equations in one-dimensional time-space domain based on the
ELMFS and the D’Alembert formulation.

In general the so-called meshless or meshfree numerical methods can be roughly
classified into domain-type and boundary-type methods. The famous meshless
domain-type methods such as the meshless local Petrov-Galerkin (MLPG) method
(Han and Atluri (2004), Sladek, Sladek, Zhang, Garcia and Wunsche (2006)), the
radial basis function collocation method (RBFCM) (Amaziane, Naji and Ouazar
(2004), Young, Chen and Wong (2005)), etc. were well developed to solve ho-
mogeneous or nonhomogeneous partial differential equations. The well-known
meshless boundary-type methods like the MFS (Alves and Antunes (2005)), the
hyper-singular meshless method (HMM) (Young, Chen and Lee (2005)) and regu-
larized meshless method (RMM) (Chen, Kao, Chen, Young, and Lu (2006), Chen,
Chen, and Kao (2008), Chen, Kao and Chen (2009), Chen, Wu, Kao, and Chen
(2009)), etc. were also constructed to obtain the solutions of the homogenous par-
tial differential equations.

The MFS was first used to solve the boundary value problems by the time-independent
fundamental solutions (or free-space Green’s functions) (Kupradze and Aleksidze
(1964), Mathon and Johnston (1977), Golberg (1995)). In those preceding studies,
most of works were focused on solving the elliptic-type partial differential equa-
tions. Later on the MFS was extended to deal with the parabolic-type problems by
the time-dependent fundamental solution. The homogeneous diffusion problems
(Young, Tsai, Murugesan, Fan and Chen (2004)), nonhomogeneous diffusion prob-
lems (Young, Tsai and Fan (2004)), unsteady Stokes problems (Tsai, Young, Fan
and Chen (2006)) and also the unsteady Navier-Stokes equations (Young, Chen,
and Fan (2008)) were successfully solved by using the time-dependent MFS for-
mulation.

To solve the more involved advection-diffusion equations we can extend the time-
dependent diffusion fundamental solution by combing with the concept of the ELM
(also called the method of characteristics). The ELM combining with the bound-
ary element method (BEM) was previously used to solve the multi-dimensional
advection-diffusion problems (Young, Wang and Eldho (2000)). However, the
mesh generation and numerical quadrature are still needed when the BEM is adopted.
The ELM concept is also applied to develop the adaptive particle-based advection
scheme (called AMMoC) for building the local mesh free Buckley-Leverett model
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(Iske and Käser (2005)). The MFS was combined with the ELM to develop the
ELMFS to solve the multi-dimensional advection-diffusion equations (Young, Fan,
Tsai, Chen and Murugesan (2006)). The ELMFS was further applied to solve the
non-linear Burgers’ equations (Young, Fan, Hu and Atluri (2008)) and even the no-
torious Navier-Stokes equations (Young, Lin, Fan and Chiu (2009)). The ELMFS
was also extended to approximate the solutions of the advection equations (Gou and
Young (2005)). In the above study, we have proved that the ELMFS is a superior
scheme for approximating the solution of the advection equation. The advection-
diffusion equation is considered to asymptotically approach the single hyperbolic
equation when the extremely small diffusion effects are taken. When the diffusive
term becomes very small, the advection-diffusion equation will approximate to the
pure advection equation.

Although the MFS can efficiently solve the elliptic- and parabolic-type problems
by using the time-independent or time-dependent fundamental solutions, it is still
rather difficult to directly solve the wave equations by using the MFS unless we
employ the finite difference time-marching scheme to discretize the hyperbolic-
type wave equations into the elliptic-type equations (Young, Gu and Fan (2009))
This is because the fundamental solution of wave equation always accompanies
with the Dirac delta function (or the Heaviside step function). When the funda-
mental solution of the wave equation is used directly to implement the MFS, we
have to face the difficulty of collocating or differentiating the Dirac delta function
(or Heaviside step function) with respect to the time domain for building a linear
system. This will result in difficult singularity problems for computer calculation
by directly using the MFS.

The other famous process to avoid the singularity of wave fundamental solutions
for analyzing the wave problems is to transform the physical variables of wave
equations from the time-space domain into the frequency-space domain through
the Helmholtz equations, if harmonic waves are allowed. The well-known numer-
ical models such as the desingularized boundary element method (Callsen, Estorff
and Zaleski (2004)), the least square-based finite difference method (Shu, Wu and
Wang (2005)), the MFS (Young and Ruan (2005)) and RMM (Chen, Chen and
Kao (2006)), etc. all were well developed to solve the Helmholtz equations in
the frequency domain. As a result time-dependent problems become boundary
value problems, however it is sometimes more difficult to directly capture the tran-
sient phenomena of the high frequency wave field via this mode decomposition
approach.

Another alternative not to use the wave fundamental solutions for solving wave
equations is to avoid directly dealing with the Dirac delta function. The D’Alembert
solution (Whitham (1974)) is one of the most famous formulas to avoid this kind
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of problem in the one-dimensional time-space domain. The D’Alembert formula-
tion combining with the decomposition method was used to obtain the solutions
of wave equations in the infinite domain (Wazwaz (1998)). The D’Alembert solu-
tion was also combined with the diamond rule, Laplace transform and convolution
integral to animate the one-dimensional wave phenomenon (Chen, Chou and Kao
(2009)). When the D’Alembert formula is used to transform the wave equation, the
wave equation is decomposed into a linear hyperbolic system and becomes easier
to implement the initial conditions into the linear system by the ELMFS formula-
tion. The ELMFS has been selected to combine with the D’Alembert formula for
directly solving the one-dimensional wave equation (Gu, Young and Fan (2008)),
however there exist some difficulties to deal with the finite domain problems.

In this paper, a novel numerical solver based on the ELMFS and the D’Alembert
formulation is developed to solve the one-dimensional wave equation with finite
and infinite domains. The details of the D’Alembert formulation and the numeri-
cal procedure are explained in the following sections. In the section of numerical
experiments, the problem of one-dimensional traveling wave propagation is solved
to validate the feasibility of the proposed ELMFS. In addition the proposed model
is applied to solve two kinds of Cauchy problems in the infinite domain. More-
over the present model is finally adopted to solve the vibration string problems in a
finite domain with the fixed and reflection boundaries. All numerical results com-
pare well with the analytical solutions. The conclusions and discussions based on
the numerical results are drawn in the last section.

2 Governing Equation

The initial value problem is governed by the wave equation, which can be written
as follows.
∂ 2ϕ

∂ t2 = a2 ∂ 2ϕ

∂x2 , −∞ < x < ∞, t > 0, (1)

where, φ (x, t) is the physical variable, a is the wave speed, t and x are time and
space coordinates, respectively. In Cauchy or initial value problems, the first- and
second-kind Cauchy or initial conditions are described as follows.

ϕ (x, t)|t=0 = f (x) and
∂ϕ (x, t)

∂ t

∣∣∣∣
t=0

= g(x), (2)

where the initial conditions f (x) and g(x) are arbitrary given functions.

2.1 The D’Alembert formulation

Replacing the canonical coordinates from (x, t) to (ξ ,η), the characteristic coor-
dinates ξ and η are defined as ξ = x + at and η = x− at. After the integrating
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procedures, the general solution of the wave equation can be written as:

ϕ (x, t) = Φ
+ (x−at)+Φ

− (x+at) , (3)

where, the general solution ϕ of the wave equation is separated into two trav-
eling waves Φ+ and Φ− in the opposite-directions with the wave speed a. The
D’Alembert formula for the initial value problems can be written as the following.

ϕ (x, t) =
1
2

[ f (x−at)+ f (x+at)]+
1
2c

∫ x+at

x−at
g(σ)dσ . (4)

According to the D’Alembert formulation, the solution of wave equation can be
decomposed as two solutions of advection equations, and the initial conditions can
be substituted into these two solutions. It is clearly denoted that the solution of the
wave equation is reduced to two opposite-direction advection waves Φ+ (x−at)
and Φ− (x+at) in implicit forms. The definition of the wave motions as the char-
acteristics, Φ+ and Φ− must satisfy the pure-advection equation as follows.

DΦ+

Dt
=

∂Φ+

∂ t
−a

∂Φ+

∂x
= 0 and

DΦ−

Dt
=

∂Φ−

∂ t
+a

∂Φ−

∂x
= 0. (5)

In this study, the term of artificial viscosity is introduced for feasible calculation.
The advection equations are therefore rewritten as the advection-diffusion equa-
tions:

DΦ+

Dt
=

∂Φ+

∂ t
−a

∂Φ+

∂x
= K

∂ 2Φ+

∂x2

DΦ−

Dt
=

∂Φ−

∂ t
+a

∂Φ−

∂x
= K

∂ 2Φ−

∂x2 ,

(6)

where, K is the diffusion coefficient. When the diffusion coefficient becomes an
extremely small constant, the advection-diffusion equation is reduced to the pure-
advection equation. In other words, the diffusion coefficient K controls the mag-
nitude of the diffusion effect and decides the parabolic- or hyperbolic-type type of
the partial differential equation. Following this assumption, the advection-diffusion
equation can be easily solved by employing the ELMFS which is based on the dif-
fusion fundamental solution and the ELM.

2.2 Boundary conditions

Boundary conditions of the wave field can be written as the general solution form
as equation (3). In other words, there are two opposite-direction traveling wave
solutions which must be obtained at the boundary for each time step. However,
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there is one characteristic always tracks out of the computational domain and the
other characteristic always tracks in the inner domain. The symmetrical concepts
are used for dealing the problem of boundary conditions. For satisfying the fixed
boundary, the general solution can be written as the following:

Φ
+ (L−at) =−Φ

− (L+at) . (7)

For satisfying the no flux boundary, the general solution of the no flux boundary
condition can be written as follows:

Φ
+ (L−at) = Φ

− (L+at) . (8)

3 Numerical Analysis

3.1 The Eulerian-Lagrangian method

The results of the advection-diffusion equations with convective term can be re-
trieved from the numerical diffusion results by tracking the massless particles along
the characteristic path. In the ELM, the wave speed a is expressed in terms of the
spatial and time increments as the compatibility condition as follows:
dx
dt

= a⇒ xn = xn+1−a∆t, (9)

In Fig. 1 (b), the line P2P1 is the characteristic path on which transport of the
scalar quantity can be traced. If the wave speed at point P1 is assigned, the spatial
location of point P2 can be traced by Eq.(9). When the spatial location of point P2 is
determined, the solutions along characteristics P2P1 will follow the characteristic-
diffusion equation according to the material derivative. After the diffusion process
is calculated by the MFS, the solution of the advection-diffusion equation can be
obtained directly by ELM. In Fig. 1 (b), points P2 and P3 are located at the same
spatial position but at different time levels. On the other words, the line P2P3 is the
characteristics path for describing pure diffusion phenomena. When we solve the
diffusion equation, the diffusive result of point P2 at n + 1 level will be calculated
in point P3. If the physical fields have the advection phenomenon, P2P1 is the
characteristic path which satisfies the advection phenomenon and the physical value
at point P1 is properly replaced by the diffusion results at point P3. And then the
results of the advection-diffusion equations at t = (n+1)∆t thus can be acquired.

3.2 The method of fundamental solutions

The fundamental solution of the diffusion equation is governed by the following
equation.

∂G
∂ t

= K∇
2G+δ (x− ς)δ (t− τ) , (10)
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(a)  (b)  
 

Figure 1: (a) The distribution of field and source points (b) The back-track path
along characteristics

where, G is the free-space Green’s function (also called the fundamental solution),
x and ς are the space-location of field and source points, t and τ are the time coor-
dinates of the field and source points respectively, δ () is the Dirac delta function.
The distributions of field and source points are shown in Fig. 1(a). By taking
the integral transforms, the fundamental solution of the diffusion equation can be
obtained as the follows.

G(x, t;ς ,τ) =
e
−(x−ς)2

4K(t−τ)

[4πK (t− τ)]
Ndim

2

H (t− τ) , (11)

where, Ndim is the number of dimension of the space and H () is the Heaviside step
function. Since the diffusion fundamental solution satisfies homogeneous diffusion
equation, the solution of diffusion equation can be assumed as a linear combination
of the fundamental solution of diffusion operator. According to the MFS spirit, the
numerical solution of the diffusion equation will be written as the following form:

F(x, t) =
M

∑
j=1

α jG(x, t;ς j,τ j), (12)

where, M is the number of source points, α j are the undetermined coefficients or
the source intensities in the time-space domain. The linear matrix system can be
formed by calculating by the method of collocation through the initial and boundary
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conditions.

Ai jα j = Bi and Ai j =
e

−|xi−ς j|2
4K(ti−τ j)

[4πK (ti− τ j)]
Ndim

2

H (ti− τ j) , (13)

The vector Bi is obtained from the initial and boundary conditions. After solving
the linear matrix system, the coefficients α j can be obtained. Then the solution of
diffusion equation can be expressed by Eq. (12).

3.3 The Eulerian-Lagrangian method of fundamental solutions

Following the statement of the ELM and MFS, the solution of the advection-diffusion
equation can be written as:

Fn+1
i (xn+1

i , t) =
M

∑
j=1

α jG
(
xn+1

i −a∆t, t;ς j,τ j
)
, (14)

where, α j are obtained by calculating the initial and boundary conditions. From
Eqs. (11)-(14), the physical value Fn+1

i can be easily obtained by the ELMFS.
When diffusion effects become very weak (K«1), the advection-diffusion equation
can be considered as the advection equation.

3.4 One-dimensional wave model

According to the D’Alembert formulation, the wave equation can be reduced to
two solutions of advection equation as Φ+ (x−at) and Φ− (x+at). In mesh-
dependent method, it is necessary to use the interpolation technique for back track-
ing the Φ+ (x−a∆t) and Φ− (x+a∆t) in time-space domain from level (n+1)∆t
to level n∆t. The ELMFS is the suitable meshless method to approximate the so-
lutions as Φ+ (x−a∆t) and Φ− (x+a∆t) along the characteristics path in the time-
space domain with very small diffusion coefficient. After obtaining the solutions
Φ+ (x−at) and Φ− (x+at), the solution of wave equation can be calculated as the
following.

ϕ
n+1 (xn+1

i , t
)

= Φ
+ (xn+1

i −a∆t
)
+Φ

− (xn+1
i +a∆t

)
⇒ ϕ

n+1 (xn+1
i , t

)
=

M

∑
j=1

α jG
(
xn+1

i −a∆t, t;ς j,τ j
)
+

M

∑
j=1

α jG
(
xn+1

i +a∆t, t;ς j,τ j
)

(15)

Following the definition of the D’Alembert solution and the ELMFS, the numerical
procedures of the proposed meshless model are listed below:
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1. Set the suitable initial conditions, Eq. (2).

2. Separate the initial conditions for the two opposite-direction traveling waves
Φ+ and Φ− by the D’Alembert formulation, Eq. (4).

3. Obtain the solutions of two opposite-direction waves by ELMFS, Eqs. (15).

4. Combine the opposite-direction traveling waves by the general solution, Eq.
(3), and update the initial condition for next time step.

4 Numerical Experiments

We consider five related numerical experiments to verify the proposed model for
solving the one-dimensional wave problems. The numerical examples are analyzed
to prove the idea of the proposed numerical method, and show the advantages of
the proposed scheme for the infinite and finite domains problems. We will use the
root-mean-square error ERMS to measure the accuracy, which is defined as:

ERMS =

√√√√ 1
Np

Np

∑
i=1

(
ϕi,Numerical−ϕi,Analytical

)2
. (16)

4.1 First-order wave propagation

In the first example, the first-order one-dimensional wave propagation problem is
selected to reveal the capability of the proposed ELMFS. In this case, this physical
kinematic wave field is governed by the advection or first-order wave equation with
the positive unit wave propagation speed as the following:

∂ϕ

∂ t
+

∂ϕ

∂x
= 0, −5 < x < 10, t > 0. (17)

The initial condition is written as:

ϕ (x, t)|t=0 =

{
sin(x) −π ≤ x≤ π

0 otherwise
, (18)

with the following boundary condition:

ϕ (x, t)|x=−5 = 0. (19)

The analytical solution for this problem is shown as follows:

ϕ (x, t) =

{
sin(x− t) −π ≤ x− t ≤ π

0 otherwise
. (20)
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 Figure 2: The wave evolution with 161 points of example 4.1 (a) t = 0 (b) t = 2.5
(c) t = 6.5 (d) t = 8 (e) t = 10 (f) t = 12
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Figure 3: The sensitive test of the wave propagation of example 4.1 (a) 41 points
and K = 10−9 (b) 81 points and K = 10−9 (c) 161 points and K = 10−9 (d) 161
points and ∆t = 10−2

In this case, there are two non-smooth points at x = −π and x = π of the initial
condition. When the traveling wave propagates, sometimes the non-smooth posi-
tion will appear as the non-physical oscillations and which causes the calculation
unstable. The uniform point distribution is used for all the sensitivity tests. Figures
2 (a)-(f) depicted the numerical results of the proposed scheme and analytical solu-
tion at t = 0,2.5, 6.5,8,10 and 12. In Figs. 2 (a)-(f), the numerical calculation used
161 points, time-interval ∆t = 10−2 and the diffusion coefficient was selected to be
an extremely small constant (K = 10−9). Figures 3 (a)-(c) described the depen-
dence of ERMS on different time-interval ∆t when 41, 81 and 161 points are used.
When the wave passes through the artificial boundary (x = 10), the errors still re-
main at the same order (when t > 6.5). From Figs. 3 (a)-(c), it clearly reveals that
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as the number of nodes increases, the errors will decrease. In Fig 3 (d), the error
curves reveal the diffusion coefficient K = 10−9 is small enough to approximate
the advection wave propagation phenomenon. In this sensitivity test, the solutions
are not sensitive to time-interval (∆t) by the ELMFS. From Figs. 3 (b) and (c), the
ERMS are almost smaller than 10−2. In these results, the solutions show consistent
behavior.

4.2 The Cauchy problem in infinite domain with zero initial velocity

The one-dimensional Cauchy or initial value problem is selected to demonstrate
the capability of the proposed model. The unit wave speed is used in this problem.
The initial conditions are considered as a smooth function in infinite computational
domain:

ϕ (x, t)|t=0 = e−x2
,

∂ϕ (x, t)
∂ t

∣∣∣∣
t=0

= 0, −10 < x < 10. (21)

The analytical solution for this problem is displayed as the following.

ϕ (x, t) =
1
2

[
e−(x−t)2

+ e−(x+t)2
]
. (22)

In order to deal with the artificial boundary at x = −10 and x = 10, the boundary
conditions for the Φ+ and Φ− can be written as:

Φ
+ (x, t)

∣∣
x=−10 = 0 and Φ

− (x, t)
∣∣
x=10 = 0 (23)

Figures 4 (a)-(f) depicted the comparison of numerical results and analytical solu-
tion at t = 0, 0.5, 1, 1.5, 5 and 7, respectively. The numerical simulation used 161
points for calculation, the diffusion coefficient is set an extremely small constant
(K = 10−9) and time-interval ∆t = 0.05. Figures 5 (a)-(c) describes the evolution
of ERMS with different number of calculation points. In this problem, the errors
increase gradually during the set up from t = 0 to 1, because the wave is generated
in this time framework. Afterward, the waves propagated to the upstream and the
downstream and the error curves become stable. In the sensitive tests, the ERMS

always decrease when the number of calculation points increases. From Fig. 5 (d),
we consider that the diffusion coefficient K = 10−9 is sufficiently small to asymp-
totically reach the pure advection phenomenon. Besides, the time-interval is also
not very sensitive to this numerical experiment. From Figs. 5 (a)-(d), the ERMS

of the sensitivity tests also displayed the high accuracy of the present scheme for
one-dimensional Cauchy or initial value problem.
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Figure 4: The wave evolution with 161 points,K = 10−9 and ∆t = 0.05 of example
4.2 (a) t = 0 (b) t = 0.5 (c) t = 1 (d) t = 1.5 (e) t = 5 (f) t = 7
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Figure 5: The sensitive test of the Cauchy problem of example 4.2 
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Figure 5: The sensitive test of the Cauchy problem of example 4.2 (a) 41 points and
K = 10−9 (b) 81 points and K = 10−9 (c) 161 points and K = 10−9 (d) 161 points
and ∆t = 0.05

4.3 The Cauchy problem in infinite domain with zero initial amplitude

In the third test, the one-dimensional Cauchy or initial value problem is selected
to express the proposed scheme for dealing with the non-zero second kind initial
condition of the wave field. The wave speed a is equal to one for this problem. The
initial conditions are selected as a smooth function as the following.

ϕ (x, t)|t=0 = 0,
∂ϕ (x, t)

∂ t

∣∣∣∣
t=0

= xe−x2
, −10 < x < 10. (24)

The analytical solution for this problem can be written as follows.

ϕ (x, t) =
1
4

[
e−(x−t)2

− e−(x+t)2
]
. (25)
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The artificial boundary conditions at the x = −10 and x = 10 for Φ+ and Φ− are
the same as the case 4.2.

Figures 6 (a)-(f) depicts the numerical results and analytical solution at t = 0, 0.25,
1, 2, 3.5 and 7.5, respectively. In Fig. 6, the numerical simulation used 161 pints for
calculation, the diffusion coefficient is set an excessively small constant (K = 10−9)
and time-interval ∆t = 0.05. Figures 7 (a)-(c) describe the time evolution history of
the ERMS with 41, 81 and 161 calculation points. In this problem, the setup effects
lead into the fact that the error suddenly increases during the wave generated in this
time interval. Then the error curves become smooth after the waves propagated to
positive and negative directions. In the sensitivity cases, the ERMS always decrease
when the calculation points number increases. Observing from Fig. 7 (d), it clearly
exhibits that the diffusion coefficient K = 10−9 is small enough to approximate the
solution of advection equations. In addition, the time-interval is also not sensitive
to this numerical experiment. From Figs. 6 and 7, the ERMS of the sensitivity
cases also show the high accuracy of the proposed scheme for the one-dimensional
Cauchy initial value problem.

4.4 The Cauchy problem in bounded domain

In the fourth test, the one-dimensional problem of vibration string is selected to
spread out the capability of the proposed model to the finite domain. In this prob-
lem, the wave propagation speed is set equal to one in the domain 0 < x < 2. The
initial condition is considered as a parabolic curve in bounded domain as follows.

ϕ (x, t)|t=0 = x(2− x) and
∂ϕ (x, t)

∂ t

∣∣∣∣
t=0

= 0, (26)

while boundary conditions at the x = 0 and x = 2 are considered as the fixed bound-
ary as follows.

ϕ (x, t)|x=0 = 0 and ϕ (x, t)|x=2 = 0. (27)

The analytical solution can be obtained by the method of variables separation,
which yields:

ϕ (x, t) =
32
π3

∞

∑
n=0

[
1

(2n+1)3 sin
(

(2n+1)πx
2

)
cos
(

(2n+1)πt
2

)]
. (28)

By using the D’Alembert solution to reduce the wave equations, we depicted the
numerical results and to compare with the analytical solution in Figs. 8 (a)-(i) at
t = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 and 4.5, respectively. We use 41 points for calcu-
lation, the diffusion coefficient is set the extremely small constant (K = 10−9) and



200 Copyright © 2009 Tech Science Press CMC, vol.11, no.3, pp.185-208, 2009

-10 -5 0 5 10
x

-0.50

-0.25

0.00

0.25

0.50

φ

t = 0
ELMFS model
Analytical solution

 
-10 -5 0 5 10

x

-0.50

-0.25

0.00

0.25

0.50

φ

t = 0.25
ELMFS model
Analytical solution

 
(a) (b) 

-10 -5 0 5 10
x

-0.50

-0.25

0.00

0.25

0.50

φ

t = 1
ELMFS model
Analytical solution

 
-10 -5 0 5 10

x

-0.50

-0.25

0.00

0.25

0.50

φ

t = 2
ELMFS model
Analytical solution

 
(c) (d) 

-10 -5 0 5 10
x

-0.50

-0.25

0.00

0.25

0.50

φ

t = 3.5
ELMFS model
Analytical solution

 
-10 -5 0 5 10

x

-0.50

-0.25

0.00

0.25

0.50

φ

t = 7.5
ELMFS model
Analytical solution

 
(e) (f) 

 Figure 6: The wave evolution with 161 points, K = 10−9 and ∆t = 0.05 of example
4.3 (a) t = 0 (b) t = 0.25 (c) t = 1 (d) t = 2 (e) t = 3.5 (f) t = 7.5
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Figure 7: The sensitive test of the wave propagation of example 4.3 

(a) 41 points and 910K −=  (b) 81 points and 910K −=   
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Figure 7: The sensitive test of the wave propagation of example 4.3 (a) 41 points
and K = 10−9 (b) 81 points and K = 10−9 (c) 161 points and K = 10−9 (d) 161
points and ∆t = 0.05

∆t = 0.05. The results compare well with the analytical solution. Figure 9 describes
the root-mean-square error for many cycles with stable oscillation. It means that
the results of the proposed scheme have high accuracy and very stable.

4.5 The wave vibration problem in the finite domain

In the final test, the one-dimensional wave vibration problem in the finite domain
is selected to demonstrate the feasibility of the proposed scheme. In this problem,
the wave speed is set as a = 1 in the finite domain 0 < x < 1. The initial conditions
are considered as a smooth curve as follows.

ϕ (x, t)|t=0 = x(x−2) and
∂ϕ (x, t)

∂ t

∣∣∣∣
t=0

= 0, (29)
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Figure 8: The wave evolution with 41 points, K = 10−9 and ∆t = 0.05 of example
4.4 (a) t = 0 (b) t = 0.5 (c) t = 1 (d) t = 1.5 (e) t = 2 (f) t = 2.5 (g) t = 3 (h) t = 3.5
(i) t = 4.5
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 Figure 9: The root-mean-square error of the Cauchy problem in bounded domain
of example 4.4

while boundaries at x = 0 and x = 1 are considered as the fixed and no flux boundary
conditions, respectively as follows.

ϕ (x, t)|x=0 = 0 and
∂ϕ (x, t)

∂x

∣∣∣∣
x=1

= 0. (30)

The analytical solution is listed as the following.

ϕ (x, t) =−32
π3

∞

∑
n=0

1
ω3

n
sin
(

1
2

ω
π
n x
)

cos
(

1
2

ω
π
n ct
)

, ωn = 2n+1. (31)

By using the D’Alembert solution to decompose two opposite-direction waves, the
numerical results comparing well with the analytical solution are depicted in Figs.
10 (a)-(i) at t = 0, 0.8, 1, 1.2, 2, 2.8, 3, 3.2 and 4, respectively. The simulation used
26 pints for calculation in this case, the diffusion coefficient is selected to be very
small constant (K = 10−9) and ∆t = 0.04. Figure 11 describes the evolution of
ERMS for several cycles and the errors are always small than10−4, and it clearly
shows that the curves are stably oscillating. We confirm from Figs. 10 and 11, that
the proposed meshless model is an excellent numerical scheme.

5 Conclusion

In this paper a novel meshless numerical method based on the MFS and ELM was
developed to approximate the solution of one-dimensional wave equations. The
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Figure 10: The wave evolution with 26 points, K = 10−9 and ∆t = 0.04 of example
4.5 (a) t = 0 (b) t = 0.8 (c) t = 1 (d) t = 1.2 (e) t = 2 (f) t = 2.8 (g) t = 3 (h) t = 3.2
(i) t = 4
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Figure 11: The root-mean-square error of the wave vibration problem in finite do-
main of example 4.5

proposed model based on the D’Alembert formulation transforms the wave equa-
tion into two advection equations in implicit form with the opposite-direction wave
speed. The D’Alembert formulation is used to avoid the difficulty of building the
linear system of the Cauchy conditions by MFS. The calculation works then pass
to the ELMFS which does not need the numerical integration and mesh generation
procedures in time-space domain. The solutions of traveling waves are approxi-
mated by the system of advection-diffusion equations, the small effects of the ar-
tificial diffusion term lead the process of the calculation to be stable and which
can easily handle the diffusion effects by the diffusion coefficient. The proposed
ELMFS can be easy to transpose the solutions between the Eulerian and the La-
grangian coordinates alone the characteristic path, and the model performs very
well for the hyperbolic problems. Furthermore, the present numerical method does
not need any extra integral transform to describe the transient phenomena. The
wave propagation problem and Cauchy or initial value problems in the infinite do-
main are simulated by the proposed model. Finally string vibration problems in
the finite domain are also simulated by the proposed meshless numerical scheme.
Our numerical results compare very well with the analytical solutions. The nu-
merical results demonstrated the accuracy, consistence and feasibility of the pro-
posed numerical model for the one-dimensional wave equation. Even the proposed
model selects the D’Alembert formula to solve the one-dimensional wave prob-
lems, the same idea combining with other formula can also be extended to the
multi-dimensional wave problems. From the numerical tests, it is convinced that
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the proposed model is a promising wave solver for engineering applications.
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