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Design of Non-linear Beam-type Spring for Designated
Loading and Displacement for Use in Lower-limb Orthosis

Dein Shaw1,2, Chih-Ren Huang2 and Li-Cheng Huang2

Abstract: In this study, a method for designing an in-plane, free-form, beam-type
spring for use in a lower-limb orthosis was developed. A spring designed by this
method follows a predefined relationship between loading and displacement. To
facilitate the analysis of the spring, it was divided into several beam segments. The
stiffness equations related to loading (including moment and force) and displace-
ments (linear and rotation) of each beam segment were found to follow a modified
(non-linear) Castigliano’s second theorem (NCST) and were assembled by using
the continuity of nodal points of neighbouring curve segments. Using the pro-
posed method, a spring designer can design the spring which has the relationship
between the loading and displacement of springs such as those used in lower-limb
orthoses. In order to verify the effectiveness of the proposed method, analysis re-
sults of deformation of a cantilever spring and cubic spline spring by the finite
element method, Castigliano’s second theorem, and NCST were compared. Fur-
ther, an experiment was performed in which the path of motion of the lower limb
of a subject climbing up stairs was measured. The results showed that the proposed
method was effective and NCST could be successfully used to design the shape of
the cubic spline spring.

Keywords: Spring design, non-linear beam, Castigliano’s second theorem, spring
structures.

1 Introduction

Different types of springs are employed in different applications, and each spring
usually has a spring constant. An example of use of a spring is in a lower-limb
orthosis. A patient with osteoarthritis of the knee, in addition to undergoing medical
treatment, must wear a lower-limb orthosis to lighten the burden at the knee joint.
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Designs of these orthoses vary depending on patient requirements. Most orthotic
knee joints are designed as pin joints or as a simple linkage joint to support the
rotational motion of the knee [Sawicki, Gordon, and Ferris (2005)], and a motor
is used to power the lower-limb orthosis. In reality, the motion of the human knee
joint includes rolling and sliding in addition to rotational motion. The pin joint
or simple linkage joint does not permit smooth movement of the knee joint. Such
conflicting motion between the orthosis joint and the knee joint causes discomfort
to the patient. Therefore, the movement of the joint of the orthosis joint should
be designed such that it ensures smooth movement of the patient’s knee joint. In
this study, a method for designing a non-linear beam-type spring of the lower-limb
orthosis was developed. The relationship between the external forces (including
moments) and displacements (including angles) in this study is constrained by the
motion requirement of the patient.

2 Theoretical background and proposed method

Several energy methods have been developed [Cook and Young (1999)] for calcu-
lating the displacement (or deflection) of a structure under loads; examples include
the virtual work method, the unit load method, a method employing Castigliano’s
second theorem, the Rayleigh-Ritz method, and the finite element method (FEM)
[Panthi, Ramakrishnan, Pathak and Chouhan (2007)]. In fact, some of these meth-
ods are similar in nature, the main difference between them being the way in which
they address the problem. These differences are explained as follows. Under the
static equilibrium condition, the virtual work method involvesa state in which the
virtual work due to virtual displacements is always zero; this state can be used to
determine the relation between load and displacement. In the unit load method,
the equation of virtual work due to a unit load is used to obtain the displacement
of a structure at the position of the unit load. Further, Castigliano’s second the-
orem states that displacement is equal to the first partial derivative of the strain
energy with respect to loads. The principle of the unit load method is similar to
Castigliano’s second theorem. In the unit load method, it is essential to assign the
correct sign to each term; however, in Castigliano’s second theorem, the sign is
not important (because the energy contains square terms). By the Rayleigh-Ritz
method, the minimum stationary potential energy state is sought and a displace-
ment or displacement equations prefaced by this state are determined. In recent
times, many kinds of solution methods are being developed by using the FEM [for
example, Pu, Zhihai, Xiasong, Guorong, Xiaoqin and Zhangzhi (2009)]. The fun-
damental concept of the FEM is to divide the model into a limited number of ele-
ments, each of which has several nodal points. Each nodal point has several degrees
of freedom (DOF) of displacement. The calculus of the variation method together
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with the nodal DOF is used to determine the stiffness matrix of each element. Af-
ter assembly ths stiffness matrix of every elements, all the nodal DOF and suitable
boundary conditions and external loads are applied, the displacement of the nodal
point can be calculated (the mean time stress and strain are also calculated).

A free-form curve can be drawn in several forms such as the cubic spline (CS)
curve, Bézier curve, B-spline curve, and rational curve [Piegl and Tiller (1995);
Rogers (2001)]. A CS curve is composed of several third-degree piecewise poly-
nomial curves. The CS curve has a second-order continuity of derivatives. For this
curve, end conditions at both end points must be specified, and curves can usually
be represented as implicit equations or parametric functions [Zeid (1991); Burden
and Faires (2001)].

A Bézier curve is defined in terms of several control points. Only the first and last
of the control points of a polygon actually lie on the curve. A B-spline curve is a
powerful generation of Bézier curves. B-spline curves can be used to interpolate or
approximate a set of given data points. The curves are constructed by several basic
(blending) functions. The rational curve is an improvement of the Bézier curve or
B-spline Curve. The most widely used rational curve is the non-uniform rational
B-spline (NURBS) curve.

Out of all these curves, the CS curve is most effective in describing a planar curve
with nodal points having unknown locations. Therefore, the CS curve was used
to form the shape of the spring in this study. The deformation of free-form curve
beams has not been well researched. Gontier and Vollmer (1995) proposed an in-
teresting method to solve the deformation problem of beams in the form of a Bézier
curve. In their study, the deformation of the structure was under large rotation.

In this study, the beam to be designed is divided into several small beams with un-
known initial end-point positions. The equations related to loading (including mo-
ment and force) and displacement (including displacement and rotation) for each
beam can be set up by using Castigliano’s second theorem. The equations of each
beam are connected by using the displacement continuity of nodal points. It is
noted that due to the shape of the spring is to be determined, and the CS curve is
used to form the beam-type spring; therefore, the control points of the beam-type
spring are the parameters to be determined.

When designing the beam-type spring, the relative positions of both ends of the
spring for different external loads are first determined according to the design re-
quirements. Then, these relations are input into the governing equations to obtain
several non-linear equations of the unknown nodal points of the beams that are used
to construct the spring. Solving the nonlinear equations yields the positions of the
unknown nodal points. The nodal points are then treated as the control points of
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the CS curve. By using these control points and the equation of the CS curve, a
beam-type spring that has the required load-displacement curve is obtained.

2.1 Derivation of governing equations

The orthosis designed in this study comprises a beam-type spring joint, upper and
lower frame structures, and an air muscle powered by a pneumatic muscle (config-
uration shown in Fig. 1). Force Fa-m shown in Fig. 1 is generated by the air muscle.
The relative movement between the upper and lower frame structures follows the
relative movement of the patient’s thigh and calf.

 

Figure 1: Configuration of free-form beam-type spring

As shown in Fig. 1, the spring is constructed using three CS curves. The only
constraint in each of these curves is the continuity of displacement. However, in
the design process, the beam-type spring is analyzed using a straight beam.

2.2 Derivation of non-linear beam equation using Castigliano’s second theo-
rem

The equation of Castigliano’s second theorem used to analyze the spring is ex-
pressed as follows:

δi =
∂U∗
∂Fi

(1)
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Here, U∗ is the complementary energy of the structure and δi is the generalized
displacement at the ith point where the load Fi is applied. The generalized loads
include the force, bending moment, and torque. The generalized displacements
include displacements, rotation angles, and torsion angles. However, when the
relation between σ (stress) and ε (strain) is linear, then U∗ = U(where U is the
strain energy), and Eq. (1) becomes:

δi =
∂U
∂Fi

(2)

In this study, we assumed that the cross section of the beam is uniform and that the
beam material is linear and isotropic. The Castigliano’s theorem was developed in
the framework of a beam subjected to small strain and large rotation. According
to the energy method, strain energy can be expressed by using forces and moments
[Cook and Young (1999)]:

U =
∫ N

2
Ndx
EA

+
T
2

T dx
GK

+
My

2
Mydx
EIy

+
Mz

2
Mzdx
EIz

+
Vy

2
kyVydx

GA
+

Vz

2
kzVzdx

GA
(3)

Here, N is the axial force; T is the torsion; My and Mz are the bending moments
and Vy and Vz are the shear forces in the y and z directions, respectively; E is
the Young’s modulus; G is the shear modulus; A is the cross-sectional area of the
beam; and Iy and Iz are the moments of inertia of the beam in the y and z directions,
respectively. Because the cross section is assumed to be uniform, the torsion effect
can be eliminated from Eq. (3), and then, the strain energy becomes

U =
∫

(
N
2

N
EA

+
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2
Mz
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+
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2
kyVy
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)dx (4)

Eq. (4) contains only axial force, bending moment, and shear force terms.

By using Eq. (2), Eq. (4) becomes

δi =
∂U
∂Fi

=
∫

(
N

EA
∂N
∂Fi

+
M
EI

∂M
∂Fi

+
kV
GA

∂V
∂Fi

)dx (5)

Here, δi can be the displacement δ or rotation angle θ , and Fi can be the applied
load or applied moment. Eq. (5) can be used to derive the equations for calculating
the displacement and angle. However, Castigliano’s second theorem is always used
for the analysis of linear structures. The equation of this theorem must be modified
if it is to be used for analysis of non-linear structures. In this study, we also assumed
that the spring is a wire spring and is under small strain and large rotation. These
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Figure 2: Configuration of beam element

assumptions allow each small section of the spring to be treated as a linear segment.

As shown in Fig. 2, two forces and one bending moment are applied to a cantilever
beam of length L. The left end of the beam forms an angle θs with the horizontal
axis. The deformations at the end of the beam include a rotation angle θn. If we do
not consider the influence of curvature on shortening, the length in the x direction
remains L at any load. The end-point-to-end point angle θL is shown in Fig. 2. If
L is sufficiently small, θL ≈ 1

2 × θn. If a more precise equation is required, then
the effect of length change along the x direction should be considered. If only the
moments produced by the axial force and shear force and the applied moment in
Eq. (5) are considered, the governing equation will become as shown in Eq. (6).
In Eq. 6, the strain energies of the axial and shear forces (i.e. the first and third
terms of Eq. (5)) are neglected because the magnitudes of these energies are much
smaller than the bending moment.

θn =
1

EI

L∫
0

[Fxxsin(θs +
θn

2
)+Fyxcos(θs +

θn

2
)+M]dx (6)

In order to demonstrate the method of using Eq. (6), a beam composed of three
segments, shown in Fig. 3, is used as an example. The equations of each segment
are as follows:

θn3 =
1

EI

L3∫
0

[F3xxsin(θ3 +θs3 +
θn3

2
)+F3yxcos(θ3 +θ3s +

θn3

2
)+M3]dx (7)



Design of Non-linear Beam-type Spring for Designated Loading 235

 

Figure 3: Configuration of beam divided into three elements

θn2 =
1

EI

L2∫
0

[F2xxsin(θ2 +θs2 +
θn2

2
)+F2yxcos(θ2 +θs2 +

θn2

2
)+M2]dx (8)

and

θn1 =
1

EI

L1∫
0

[F1xxsin(θ1 +θs1 +
θn1

2
)+F1yxcos(θ1 +θs1 +

θn1

2
)+M1]dx (9)

where

θtotal = θn1 +θn2 + θn3

and

F1x = F2x = F3x = Fx(n3,θn3), F1y = F2y = F3y = Fy(n3,θn3)
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The end-point coordinates of nodes 1–3 can be expressed as

n3 =n1 +n2 +[L3 cos(θs1 +θn1 +θs2 +θn2 +θs3 +
θn3

2
),

L3 sin(θs1 +θn1 +θs2 +θn2 +θs3 +
θn3

2
)]

n2 =n1 +[L2 cos(θs1 +θn1 +θs2 +
θn2

2
),L2 sin(θs1 +θn1 +θs2 +

θn2

2
)]

n1 =[L1 cos(θs1 +
θn1

2
),L1 sin(θs1 +

θn1

2
)]

(10)

The boundary conditions of the moment at each end point are

M3 = M(n3,θn3)

M2 = F3xL3 sin(θ3 +θs3 +
θn3

2
)+F3yL3 cos(θ3 +θs3 +

θn3

2
)+M3

M1 = F2xL2 sin(θ2 +θs2 +
θn2

2
)+F2yL2 cos(θ2 +θs2 +

θn2

2
)+M2

(11)

In this case, all θs are zero. The unknown parameters are θni, L1, L2, and L3. L1, L2,
and L3 are unknown and can be obtained from the coordinates of the nodal points.
The relation between the coordinates (position and rotation) of the last end point
and the applied forces (in this case, the last end point is located at n3; the rotation is
θn3; and the applied forces are Fx(n3,θn3), Fy(n3,θn3), and M(n3,θn3)) are known
functions. Once the unknown parameters are known, the designing of the spring
would be completed. Eqs. (7)–(9) can be extended to more elements to simulate
more complicated problems. However, these equations are non-linear. Therefore,
iteration is carried out to obtain the results.

3 Verification of proposed method

3.1 Analysis of straight beam

In this section, we present a comparison of beam analysis results obtained using
a nonlinear Castigliano’s Second Theorem (NCST), Castigliano’s second theorem,
and the FEM (used in cases of cantilever beam deformation) in order to verify the
effectiveness of the proposed method. The NCST results include the results of two
cases—of using one element and of using three elements.

The finite element software ANSYS (ANSYS Workbench 10) was used to simulate
large deformations of the cantilever beam. The finite-element mesh was generated
automatically by applying loads (lateral load, axial load, and moment) at the free
end. ANSYS mesh controls are also available. The element size was determined
by the proximity of other topologies, body curvature, and complexity of the beam.
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The beam was made of stainless steel; the mechanical properties of stainless steel
are and ν = 0.33. The dimensions of the beam were assumed to be and, where D
is the diameter.
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Figure 4: Results of NCST, Cas-
tigliano’s second theorem, and finite el-
ement method
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Figure 5: Results of analysis of free-
form spring by ANSYS Workbench and
NCST

The beam was loaded with a lateral load (10 N), a moment load (1 N-m), and an
axial load (varied from 10 N to 100 N) at the free end of the cantilever beam. The
results of analysis are shown in Fig. 4. In this figure, the black line shows the
results of Castigliano’s second theorem, the red line shows the NCST results for
a single element, and the blue line shows the NCST results for three elements; in
this case, the rotation angle was 16.3˚. The red circle represents the results of the
FEM. In this case, the rotation angle was 17.5˚. That is, the difference between
these rotation angles was 1.2˚. However, after increasing the number of elements,
the rotation angle calculated by the FEM became 17.3˚. These results show that
the proposed method is sufficiently effective for simulating a beam with a large
rotation angle.

3.2 Analysis of free-form spring

The material properties of a free-form spring, shown in Fig. 5, were and ν = 0.33.
The diameter of the beam was 0.006 m. The shape of the free-form spring was
determined by four control points (magenta line) and by the slope of the load point,
as shown in Fig. 5. The external loads applied to the beam were a lateral load of
25 N and a moment load of 1 N-m. The black line in Fig. 5 represents the shape of
the free-form spring; the red line shows the configuration of elements of the beam
in the case of using NCST.
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Fig. 5 shows the results of the analysis of the free-form spring by ANSYS and
NCST, calculated by using nine elements (red line). The blue and green lines in this
figure show the results obtained using ANSYS Workbench and NCST, respectively.
Thus, it can be observed that the results of NCST agree with those of ANSYS.

4 Design algorithm

This section describes the following parts of the study: measurement of the path of
motion of the lower limb of a subject while climbing stairs and design of the spring
by using the measurement data obtained in the first part.

4.1 Determination of relation between load and displacement of orthosis

A 26 year old male (weight: 60kg, height: 180 cm) participated in the study. The
lower-limb motion of the subject while climbing stairs was measured using a 3D-
space system (Vicon Motion Systems, Ltd., Oxford, UK). The subject did not have
any history of injury, trunk disorder, or lower-limb disorder that would affect his
gait. The height of the stairs was 23 cm for the first stage and 49 cm for the sec-
ond stage, as shown in Fig. 6. The measured motion data were used as the input
for LifeMOD (biomechanics simulation software). This software was used to sim-
ulate the path of the lower limb and forces generated in the human body, whose
measurement is otherwise difficult [Shaw and Huang (2006)].

 

Figure 6: Experimental setup showing 3D positions of markers

Fig. 7(a) shows a LifeMOD-simulated image of the motion of climbing stairs. Fig.
7(b) shows the simulated path of the markers on the thigh and shank. In Fig. 7(b),
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Figure 7: (a) LifeMOD-simulated image of climbing stairs and (b) Paths traced by
markers on thigh and shank while climbing stairs

0 10 20 30 40 50 60 70 80 90

-70

-60

-50

-40

-30

-20

-10

0

10

 

 

Y 
po

si
tio

n 
(c

m
)

X position (cm)

 Points on thign axis
 Relative path traced by thigh marker while climbing stairs

 

Figure 8: Relative path of motion be-
tween thigh and shank during stair
climbing

 

Figure 9: Shape of beam-type spring
with applied axial load (Fa−mi) and lat-
eral load (Fni)

the black and blue lines represent paths of the markers of the thigh and the red
and dark cyan lines represent those of the shank. Fig. 8 shows the relative path
of motion between the thigh and the shank. Using the data shown in Fig. 7(b),
the paths of the markers on the thigh and left lower limb can be determined. In
Fig. 6, the black line shows the positions of the shank axis, and the red line shows
the relative path of the thigh and shank. This relative path was used to evaluate
the comfort level of individuals who use beam-type springs. The measured (and
simulated) load and relative motion path can be used to design the spring joint of
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the orthosis.

4.2 Design of beam-type spring

As shown in Eqs. (7)–(9), the forces and moment are a function of the location of
the last end point; therefore, in order to solve these equations, one should divide
the forces into several consequent load steps; this division ensures that there are
sufficient equations to determine the unknown coordinates of each nodal point. This
implies that the external forces are Fx(nnN ,θnN), Fy(nnN ,θnN), and M(nnN ,θnN).
For each force step, the corresponding rotation angles at the nodal points should be
determined and grouped appropriately. For each step, the governing equations (Eqs.
(7)–(9)) have the same form, except for different rotation angles and external forces.
By this procedure, the number of equations becomes equal to the unknown nodal
degree of freedom. The non-linear equations are solved iteratively to determine all
unknown parameters.

According to the actuating loads and required moment, the first set of actuating
loads is fixed to Fa−m1(Fx) = 0 and Fn1(Fy) = −4.5 N; the second set of actuating
loads is fixed to Fa - m 2 = 20 N and Fn2 = −34 N; and the third set of actuating
loads is fixed to Fa - m 3 = 47 N and Fn3 =−30 N. The beam-type spring is divided
into eight control points to form the free-form spring. The shape of the spring is
shown in Fig. 9.

The beam-type spring is designed by using the eight control points to form the
shape of a CS spring. This beam-type spring is initially assumed to be M-shaped
according to the properties of the end-point movement required by human motion.
However, 21 nodal points on the CS curve are used in NCST to determine the shape
of the beam-type spring.

Fig. 10 shows the deformation results for different actuating loads on the beam-type
spring. In this figure, in this figure, the black, red, and blue lines show the defor-
mation results for the first, second, and third sets of actuating loads, respectively

These actuating loads have different deformations under different loads. Moreover,
this deformation agrees with the relative path traced by the subject while climbing
stairs (in Fig. 10, see the magenta line and dark cyan line (reference circle)).

5 Conclusions

In this study, a method for designing a non-linear beam-type spring of the lower-
limb orthosis was developed. The spring designed by this method follows a pre-
defined relationship between loading and displacement. The developed method
accounts for the effect of the moment, transverse load, and axial load of a beam.
Finally, a method employing a non-linear Castigliano’s second theorem was devel-
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Figure 10: Deformation results for different actuating loads applied to beam-type
spring

oped. Calculation results of deformation of a cantilever beam and a cubic spline
spring by ANSYS Workbench and NCST were found to be in agreement.

Further, an experiment was performed for measuring the relative movement of the
thigh and shank of a subject wearing a lower-limb orthosis while climbing up stairs;
as a result, the relative path of the subject’s motion was obtained. The forces gen-
erated in the subject’s body were also measured. The software LifeMOD was used
to simulate the motion and forces that could not be measured experimentally. The
simulation results indicated that the relative movement between the thigh and shank
follows an approximately elliptical path. Finally, the design results indicated that
the NCST could be successfully used to design the shape of the cubic spline spring.
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