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Effective Condition Number for Boundary Knot Method

F.Z. Wang', L. Ling’ and W. Chen'

Abstract:  This study makes the first attempt to apply the effective condition
number (ECN) to the stability analysis of the boundary knot method (BKM). We
find that the ECN is a superior criterion over the traditional condition number. The
main difference between ECN and the traditional condition numbers is in that the
ECN takes into account the right hand side vector to estimates system stability.
Numerical results show that the ECN is roughly inversely proportional to the nu-
merical accuracy. Meanwhile, using the effective condition number as an indicator,
one can fine-tune the user-defined parameters (without the knowledge of exact so-
lution) to ensure high numerical accuracy from the BKM.

Keywords: boundary knot method, effective condition number, traditional con-
dition number.

1 Introduction

In recent years, a variety of boundary meshless methods have been introduced,
such as the method of fundamental solutions (MFS)[Fairweather and Karageorghis
(1998);Young, Tsai, Lin, and Chen (2006);Chen, Karageorghis, and Smyrlis (2008)],
boundary knot method (BKM) [Chen and Tanaka (2002);Chen and Hon (2003); Wang,
Chen, and Jiang (2009)], boundary collocation method [Chen, Chang, Chen, and
Lin (2002);Chen, Chen, Chen, and Yeh (2004)], boundary node method [Mukher-
jee and Mukherjee (1997);Zhang, Yao, and Li (2002)], and regularized meshless
method [Young, Chen, and Lee (2005); Young, Chen, Chen, and Kao (2007);Chen,
Kao, and Chen (2009)]. All these methods are of the boundary type numerical
technique in which only the boundary knots are required in the numerical solution
of homogeneous problems.
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Despite the evident merits of the MFS being integration-free, super-convergent, and
easy-to-use [Golberg and Chen (1998);Li (2001);Qin, Wang, and Kompis (2009)],
the method also has perplexing drawbacks in requiring fictitious boundary outside
the physical domain. The artificial boundary is somewhat arbitrary and not trivial
to determine without prior knowledge of problems of interest, which causes the
method less applicable to practical engineering problems with complicated bound-
ary geometry and multiply-connected domains.

To overcome the above-mentioned problems in the MFS, Chen and coworkers
[Chen and Tanaka (2002)] recently introduced the boundary knot method, which
uses the non-singular trial functions such as T-complete functions [Kita, Kamiya,
and Ikeda (1995)] or general solutions instead of the singular fundamental solution
in the MFS. Thus, the collocation and observation points can coincident and be
placed on the physical boundary of the problem in the BKM.

It is noted that both the MFS and the BKM are of a global interpolation approach
enjoying high convergence rate. On the other hand, their full interpolation matrix
tends to be severely ill-conditioned when using a large number of boundary knots.
Consequently, small perturbations, e.g., measurement or computer rounding errors,
in boundary data may result in an enormous divergence in the final solution.

The L? condition number has been used to measure the conditioning of the inter-
polation matrix of the MFS and the BKM. Contradicting to the conventional wis-
dom. It is observed in many reports that even if the L?> condition number is exten-
sively huge when using a large number of knots, the resulting numerical accuracy,
however, is surprisingly high [Liu (2008a);Liu and Atluri (2009);Liu, Yeih, and
Atluri (2009);Wang, Chen, and Jiang (2009)]. In some cases, we can get accurate
solution while the L? condition number analysis indicates that numerical solutions
of the BKM or the MFS are not reliable. This means that the L? condition number
negatively overestimates these global interpolation methods.

It is well known that the resulting discretization algebraic equation of the MFS
and the BKM can be expressed in the standard form Ax = b. The effective condi-
tion number is introduced to replace the L? condition number in the estimation of
conditioning of the global interpolation methods [Chan and Foulser (1988);Chris-
tiansen and Hansen (1994);Li and Huang (2008a);Li and Huang (2008b)]. Their
difference lies in that the former considers the effect of the right hand side vector b.
In particular, reference [Drombosky, Meyer, and Ling (2009)] proposes a new ef-
fective condition number to more accurately measure the conditioning of the MFS
interpolation.

In this study, we extend the use of the effective condition number to the BKM.
Similar to the case of MFS, we find that numerical accuracy of the BKM is also
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inversely proportional to the corresponding effective condition number, that is to
say, ECN = O'(g;, ] ), where &4 is the maximum error in computational domain.
The ECN can also be effectively used to determine the optimal knot number with
the boundary knot method without any knowledge on the (unknown) exact solution.

This paper is organized as follows. In Section 2, the formulation of BKM is re-
viewed. Section 3 introduces the effective condition number, followed by Section
4 to present numerical experiments and discussions. We conclude this paper with
some remarks in section 5.

2 BKM formulation

Without loss of generality, we consider the Helmholtz boundary value problem
stated as follows:

Vu+A*u = 0 in Q (1)
u(x) = ulx) on Ip (2)
=24 = 40 o Ty ®

where ii(x) and G(x) are known functions, Q denotes the solution domain in R¢
with boundary dQ = I'p UT'y where d represents the dimensionality of the space
and n the unit outward normal.

In the case A is purely imaginary, we have the modified Helmholtz equation:
VZu—-Au=0 inQ. 4)

The non-singular general solutions of the homogeneous Helmholtz equation(1) and
homogeneous modified Helmholtz equation (4) are, respectively, given by

2\ (/-1
uy(r) = <m> Jinj2)—1(Ar), n>2, S)
and
R
u, (r) = 7 <27tr> Linja)-1(Ar), n>2, (6)

where J represents the Bessel function of the first kind, / denotes the modified
Bessel functions of the first kind, and r means the Euclidean norm distance. In
the BKM, all collocation knots are placed only on physical boundary and can be
used either as source or response points which cures the major problem of fictitious
boundary facing the MFS.
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By using the non-singular general solution(5) or (6) as the trial basis function, the
numerical solution of Eq. (1) can be represented by

Z oy ([|x — &) (7)

where j is the index of source points on physical boundary, N denotes the total
number of boundary knots {&§;,&,...,Ev} C dQ and o (j = 1,...,N) are the
unknown expansion coefficients. By collocating boundary equations (2) and (3)

at all collocation knots {xj,x2,...,xy} C dQ, we have N equations given as

Z oguy(rie) = a(x;), x;€Ip (®)
al r]k _
Z = q(x;), x; €Tw. )

Note that for any small wave number A, V2u4-A2u = 0, the so-called quasi-Laplace
equation, is a good approximation to the Laplace equation. Either non-singular
general solution (5) or (6), with sufficiently small A, can be used to solve VZu=0.

Egs. (8) and (9) can be written in the following N X N matrix system
Ao = b, (10)

where A = (A;;) is an interpolation matrix and ot = (o, 0, ..., o). We notice that
being a global interpolation approach, the BKM produces a highly ill-conditioned
and dense coefficient matrix, in particular when using a large number of boundary
knots, which is clearly reflected by its associated huge L? condition number [Wang,
Chen, and Jiang (2009)]. For such ill-conditioned systems encountered in deal-
ing with delay ordinary differential equations or nonlinear partial differential
equations, Liu et al [Liu and Atluri (2008);Liu (2008b);Liu (2009)] proposed a
fictitious time integration method.

It is worthy noting that the L? condition number measures the conditioning of in-
terpolation matrix by a ratio of the maximum and minimum singular values of the
interpolation matrix A. This is the worst case scenario among all possible right
hand vectors. The fixed vector b in the right hand side of Eq. (10) is usually not
the worst case in the L? condition number. As an alternative measurement index,
the effective condition number is introduced to include the effect of the vector b
[Drombosky, Meyer, and Ling (2009)]. More details are given in the next section.
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3 Measurement of interpolation matrix conditioning

The L? condition number of a nonsingular square matrix A in Eq. (10) is defined
by Cond(A) =||A | - || A~" ||, where the matrix 2—norm is used, the L? condition
number can be stated as Cond(A) = 6/0,, 0] and o, are the largest and smallest
singular value of A, respectively.

As a matter of fact, the matrix A can be decomposed by singular value decomposi-
tion as

A=UDVT, (11)

where U = [u1,us, -+ ,uy] and V = [v,v2,- - ,vy] are orthogonal matrices, UT U =
VTV = Iy, where Iy denotes the identity matrix and D is a diagonal matrix with
diagonal elements

01 >0y>--->0y >0, (12)

where 0;,1 < i < N are called the singular values of A while the vectors u; and v;
are the left and right singular vectors of A, respectively.

Substituting Eq.(11) into Eq.(10), we have

o = Z :)_ Vi. (13)

In some cases, the boundary data b may be disturbed by some noise. Clearly, we
should not rely solely on the L? condition number to predict the accuracy of the
computed solution of all practical ill-conditioned BKM systems. Most importantly,
the accuracy of the BKM has an obvious dependence on the right hand vector. Since
the L? condition number does not involve the right hand side vector b, any research
of the stability of the system regardless of the choice of b is not appropriate. In
many applications, b is problem-dependent but fixed. In this case, we are interested
in the stability of the system with this specific problem-dependent b, and are not
concerned with the worst case among all possible right hand vectors. Under these
conditions, as a tool to estimate the accuracy of the BKM, we consider the effective
condition number ECN = ECN(A,b), which is defined as follows [Drombosky,
Meyer, and Ling (2009)].

Consider a perturbed matrix system A(x + Ax) = b+ Ab. We can derive

N N
b=Y Bui, Ab=Y ABu;. (14)
i=1 i=1
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Let B = (by,...,by)T = U*b and AB = (Aby,...,Aby)T = U*/A\b. The solution
can be expressed in terms of the inverse of A, namely

=A'"b:=VvD'UTh, Ax=A""Ab. (15)
Suppose p < N is the largest integer such that 6, > 0. Then

= Diag(o; ',...,0,1,0,...,0). (16)

Since U is orthogonal, we have

; N A, Ab
Ixll= /X NS =L Bo 14 ” a7
G O;

If Ax=b and A(x+ Ax) = b+ Ab, then

[ Ax |
(B3

Substituting Eq.(17) into the inequality(18) results in a new error bound for Eq.(10)
with ECN, as an alternative replacement of L> condition number

Ab
< Cond(A) | 45 |

- 18
151 (1%

2]
o /(2) .+ (8)

Section 4 will investigate the relationship between solution accuracy and the effec-
tive condition number.

19)

ECN(A, b) =

4 Numerical results and discussions

To demonstrate the relationship between the ECN of a linear system and its accu-
racy of results when using the boundary knot method, several numerical results are
considered for homogeneous Helmholtz and modified Helmholtz problems. To ver-
ify the claim under the influence of noise, random number is added to the discrete
boundary conditions by

u=u+d8, qg=q+9d, (20)

where u, g are the exact boundary values, respectively, in (2) and (3). We use the
uniform random number generator to produce random numbers Rand in [—1, 1] and
let 8§ = € x Rand where € denotes the level of the noise.
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4.1 Case 1: Helmholtz equation with noisy data

In this case, the homogeneous Helmholtz equation (1) with an elliptic domain
Q = {(x,y) : x*/4+y*> = 1} with only Dirichlet boundary is considered. Wave
number is taken to be A = /2 with corresponding analytical solution given by
u = sin(x)cos(x). The matrix A is solely determined by the positioning of the
boundary knots, while the right hand side vector is determined only by Dirichlet
boundary data and the imposed noise level. Thus, the added noise will only affect
the right hand side vector b but not the BKM coefficient matrix.

Table 1: Elliptic domain for case 1: Number of boundary knot is N = 30, and
number of randomly distributed boundary test knots is M = 150.

Noise percent Cond ECN Emax

0.0 2.74 x 10Y7 4.87 x 10° 537%x 1078
0.001 2.74 x 10'7 1.37 x 10° 7.49 x 1074
0.005 2.74 x 107 2.04 x 10* 5.60 x 1073
0.01 2.74 x 107 1.53 x 10* 9.20x 1073
0.05 2.74 x 107 1.76 x 103 6.40 x 102
0.1 2.74 x 107 1.40 x 103 7.07 x 1072
0.5 2.74 x 107 1.94 x 102 5.67 x 107!

It is seen from Table 1 that the ECN decreases while the maximum absolute error
increases. We observe a shape drop in the effective condition number as a tiny
amount of noise is added. Even though all runs in Table 1 have exactly the same
condition number, completely different error behaviors are observed in cases with
higher noise levels.

The data in Table 1 strongly support the relation ECN = /(¢!

). As more noise
is added, the relationship becomes weaker, but by this point the effective condition
number is small enough (ECN < 10?) to indicate that the BKM solution will not be
accurate enough. This example is a proper starting point to show the relationship
between the accuracy of the BKM and the effective condition number because only
the right hand vector b is altered with all other factors, including the ill-conditioned

matrix A, stay constant.

4.2 Case 2: modified Helmholtz equation with noisy data

Similar to Case 1, the homogeneous modified Helmholtz equation (4) on a unit
square domain Q = {(x,y)|0 <x < 1,0 <y < 1} is solved under the influence of
noise. Two Dirichlet boundary x =1 and y = 1 and others Neumann boundary is
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considered. Accompanied with analytical solution u = ) A in the correspond-
ing non-singular general solution (6) is equal to v/2. Number of boundary knot is
N =116, and M = 900 domain test knots are randomly chosen over the region of
interest.

Table 2: A unit square domain with mixed boundary conditions for case 2.

Noise percent Cond ECN Emax

0.0 1.72 x 10" 3.08 x 10° 9.24 x 1077
0.001 1.72 x 10" 1.17 x 10° 7.70 x 1073
0.005 1.72 x 10" 4.92 x 10* 7.90 x 102
0.01 1.72 x 10" 6.69 x 10* 1.30 x 107!
0.05 1.72 x 10" 6.99 x 103 493 x 107!

The relationship between ECN and accuracy of BKM is shown in Table 2. From
which we can see that the relation ECN = &(g,, 1) still holds for problems with
mixed boundary conditions. Despite of all runs in Table 2 have exactly the same
condition number, we observe completely different error behaviors in cases with
higher noise levels. For the noise free case, the ECN is again of the order of 10°
even though the condition number is two order larger than that in Case 1. Once
again, we see the drop in both ECN and maximum error once € = 0.001 of noise
is added. As the percentage of noise added to the vector b is increased, we see in
Table 2 that the effective condition number decreases and maximum absolute error
increases in the same order of magnitude.

4.3 Case 3: quasi-Laplace equation

If the wave number A is sufficiently small, then the general solution for (modified)
Helmholtz equations is a good approximation to that of the Laplace equation Au =
0. In this example, the corresponding non-singular general solution (6) can also be
used. In this case, analytical solution # = 1 is chosen. Numerical results is shown
in Table 3 with different A. We can see that the ECN is a nice indicator to the
accuracy of such approximation.

4.4 Case 4: medium wave numbers

To investigate the Helmholtz problems with the medium wave numbers, consider
the homogeneous Helmholtz equation on a unit square domain with analytical so-
lution

u = sin(Ax) +cos(Ay) (21)
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Table 3: A unit square domain with only Dirichlet boundary for Case 3, number of
boundary knot is 40, test boundary knot 100.

A Cond ECN Emax
5.0e-8 3.31x 10'8 8.80 x 1013 1.78 x 10~15
5.0e-4 5.57 x 10'8 9.56 x 108 2.98 x 1077
0.005 1.34 x 10'8 1.69 x 107 2.38x 1076
0.05 3.54 x 10'8 1.42 x 10° 1.70 x 1073

We impose Dirichlet boundary on x = 1 and y = 1 and Neumann boundary on the
others. In this example, M = 400 test knots are randomly distributed over the region
of interest. We are interested in investigating the effect of varying the number of
boundary knots N.

Table 4: A unit square domain mixed boundary for case 4.

N Cond ECN Enax

44 1.61 x 10° 5.92 x 10° 8.80 x 1073
48 4.76 x 10'! 3.54 x 10° 4.96 x 104
52 2.00 x 104 2.74 x 108 6.43 x 107
56 2.31x 106 1.48 x 10° 1.43x 1073
60 4.14 x 10V 7.39 x 10° 2.38x 1077
64 2.15 x 10V 1.97 x 10° 3.88x 107
68 7.77 x 1017 4.82 x 10° 5.19x 107

The wave number of the non-singular general solution (5) is A = 20 for this case.
The relationship between ECN of BKM and its accuracy with increasing boundary
knots number is shown in Table 4. It is found that N = 60 boundary knots give
the largest effective condition number 7.39 x 10° corresponding with the smallest
maximum error 2.38 x 10~7. Meanwhile, N = 60 boundary knots can also give
the largest traditional condition number 4.14 x 10'7 corresponding with the same
maximum error, but it is almost twice larger than the effective condition number.
For boundary knot number N > 60, the maximum error increases as the effective
condition number decreases. Thus, we may conclude that the effective condition
number can be used to determine the optimal knot number with the boundary knot
method to get the best numerical accuracy.
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4.5 Case 5: irregular domain

As many problems are encountered on very complex physical domains in practical
engineering applications, our last example considers the Helmholtz on irregular
domain. (see Fig.1). Mixed boundary conditions is considered in this problem
with two Neumann edges on the x— and y—axes. Dirichlet boundary conditions are
imposed on the remaining. Analytical solution is given as

u(x,y) = sin(x) cos(y). (22)

with wave number A = /2.

T
0

0 f

Figure 1: Configuration of 2D irregular domain for case 5.

Table 5: Fix noise level € = 0.00001 with M = 210 test knots

N Cond ECN Emax

25 1.05 x 10'? 3.06 x 10° 413 x 1072
33 8.51 x 1016 9.70 x 10* 3.37x 107!
41 3.77 x 10"7 9.25 x 10* 1.04 x 107!
49 5.28 x 107 2.04 x 10° 1.35x 1072

It is not reasonable to assume that data from real applications to be noise free.
When the noise level is sufficiently small, one may solve the problem as if it is
noise free. On the other hand, when the noise level is significant, some proper
regularization methods should be employed. When the data is noise free, using
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Table 6: Fix noise level € = 0.001 with M = 210 test knots

N Cond ECN Emax
25 1.05 x 1012 5.68 x 10° 2.32
33 8.51 x 106 1.33 x 103 16.10
41 3.77 x 10"7 2.18 x 10° 3.20
49 5.28 x 107 9.57 x 10? 5.52

(M,N) = (210,41), BKM results in a maximum accuracy of 1.42 x 107> with ECN
1.44 x 10°. The author also observe that the relationship between the ECN of BKM
and its accuracy is irrelevant to the numbers of boundary knots N. In Table 5 and
Table 6, respectively, the maximum error and the corresponding are shown under
noise levels € = 0.00001 and € = 0.001. Using the observations in the previous
observation, one may guess that the numerical approximation will agree with the
exact solution up to about one decimal place; that is good enough for many engi-
neering problems. On the other hand, the small ECN found in Table 6 suggests that
the numerical solutions are not trustworthy. In this case, one should employ regu-
larization technique instead of applying BKM directly [Hon and Wei (2005); Wang,
Chen, and Jiang (2009)].

5 Conclusions

In this study, we introduce the effective condition number to the stability analysis
of the BKM. Numerical experiments strongly suggest that the effective condition
number is a superior criterion over the L? condition number.

We also observe an underlying relationship between the effective condition number
and the BKM solution accuracy. Namely, the BKM accuracy is inversely propor-
tional to the effective condition number. More interestingly, using the effective
condition number as an indicator, one can fine-tune the user-defined parameters
(without the knowledge of exact solution) to ensure high accuracy from the BKM.
It is revealed that when the noise level is sufficiently small, one may solve the prob-
lem as if it is noise free. On the other hand, when the noise level is significant, some
proper regularization methods should be employed. All remarks above are based
on numerical experiments. Theoretical study of this issue is still under way.
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