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Singular Superposition/Boundary Element Method for
Reconstruction of Multi-dimensional Heat Flux

Distributions with Application to Film Cooling Holes

Silieti, M.1, Divo, E.2 and Kassab, A.J.1

Abstract: A hybrid singularity superposition/boundary element-based inverse
problem method for the reconstruction of multi-dimensional heat flux distributions
is developed. Cauchy conditions are imposed at exposed surfaces that are readily
reached for measurements while convective boundary conditions are unknown at
surfaces that are not amenable to measurements such as the walls of the cooling
holes. The purpose of the inverse analysis is to determine the heat flux distri-
bution along cooling hole surfaces. This is accomplished in an iterative process
by distributing a set of singularities (sinks) inside the physical boundaries of the
cooling hole (usually along cooling hole centerline) with a given initial strength
distribution. A forward steady-state heat conduction problem is solved using the
boundary element method (BEM), and an objective function is defined to measure
the difference between the heat flux measured at the exposed surfaces and the heat
flux predicted by the BEM under the current strength distribution of the singular-
ities. A Genetic Algorithm (GA) iteratively alters the strength distribution of the
singularities until the measuring surfaces heat fluxes are matched, thus satisfying
Cauchy conditions. The distribution of the heat flux at the walls of the cooling
hole is determined in a post-processing stage after the inverse problem is solved.
The advantage of this technique is to eliminate the need of meshing the surfaces of
the cooling holes, which requires a large amount of effort to achieve a high qual-
ity mesh. Moreover, the use of singularity distributions significantly reduces the
number of parameters sought in the inverse problem, which constitutes a tremen-
dous advantage in solving the inverse problem, particularly in the application of
film cooling holes.
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1 Introduction

Given the large number of sustained operational hours required for industrial tur-
bines, two important demands placed on such engines are component life and over-
all engine performance. These demands are somewhat conflicting because high
temperatures are required at the inlet to the turbine in order to achieve high effi-
ciency, however, increasing turbine inlet temperature in turn causes reduced com-
ponent life. One way to overcome this problem is to employ film cooling. Film
cooling is the introduction of a secondary fluid (coolant or injected fluid) at one
or more discrete locations along a surface exposed to a high temperature environ-
ment to protect that surface not only in the immediate region of injection but also
in the downstream region [Goldstein (1971)]. To define film cooling effectiveness
(η), the surface temperature downstream of the cooling hole has to be measured or
computed. An expression is often used for compressible flow film cooling [Gold-
stein (1971)] is:

η =
T −Tr

Toc−Tr
(1)

Here, T is the measured temperature downstream of the cooling hole, Toc is the
stagnation temperature of the cooling fluid at the point of injection, and Tr is the
recovery temperature of the hot gas. The recovery temperature can be defined as
the fluid bulk temperature, or the adiabatic wall temperature. It is important to char-
acterize the efficacy of such a cooling scheme, particularly as the compressor air
employed to protect critical parts of the turbine is very expensive from an overall
engine performance perspective. The film effectiveness is a common way to report
the adiabatic wall temperature that is the driving temperature for the convection at
the exposed metal surfaces and to simultaneously provide a measure of the effi-
cacy of film cooling scheme. The film effectiveness can be measured in carefully
designed experiments. However, in determining the film coefficient distributions
at the exposed surfaces, the distributions of thermal conditions within the cooling
holes are unknown. As there are no correlations or experimental data in the open
literature available to characterize an accurate heat flux distribution in such cases,
there exists a need to determine the film coefficient distributions in a film cooling
holes.

Film cooling configurations have been investigated for several years. Concerning
the CFD research on this subject, a bibliography (1971-1996) of the most important
publications can be found in a study by Kercher [Kercher (1998)]. On the three-
dimensional film cooling side, most of the published work on predictions of film
cooling is based on either a parabolic or semi elliptic procedure. Goldstein et al.
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[Goldstein et al (1974), Goldstein at al (1998)] studied the effect of cooling holes on
turbine vanes and blades. Recent numerical studies on the leading edge film cooling
physics [York and Lylek (2002)] focused on the determination of the adiabatic film
cooling effectiveness and heat transfer coefficients.

In several industrial applications, it is necessary to accompany the computation of
the flow and associated heat transfer in the fluid with the heat conduction inside the
adjacent solid surfaces. The coupling of these two modes of heat transfer is termed
as conjugate heat transfer (CHT) in the literature. Several researchers have inves-
tigated coupled conjugate heat transfer analysis. Some of them presented a cou-
pled scheme between finite volume based Navier-Stokes solver and a finite element
based program for heat conduction [Heselhaus and Vogel(1995)], others used finite
volume based code Fluent version 5.0 [York and Lylek (2003)] and Fluent version
6.0 [Silieti et al (2004)], whereas others pursued a different method of coupling
the fluid and solid thermal problems. The basis for their technique is the boundary
element method (BEM) for the solution of solid conduction problem. Since the
thermal conduction in the solid is governed by Laplace equation for temperature, it
may be solved using only boundary discretization [Kasab et al (2003)].

Retrieval of the distribution of surface heat flux or convective heat transfer coef-
ficient (h) is often accomplished using surface temperature histories provided by
thermographic techniques applied in controlled experiments, and, in conjunction
with theoretical assumptions. It is herein proposed to use the boundary elements
method (BEM) to resolve three-dimensional heat transfer and to determine (h) by
inverse methods. The BEM is ideally suited for this inverse problem as surface tem-
peratures and fluxes appear as nodal unknowns. Surface fluxes have been retrieved
using BEM-based inverse algorithms and internal temperature measurements. In
earlier studies the authors [Kassab etl (1999), Divo et al (1999), Silieti al (2004 and
2009)] developed an inverse algorithm to reconstruct multi-dimensional surface
heat flux distribution, and minimized the functional using the Levenberg-Marquardt
method and GAs. They showed that GAs can be used successfully to retrieve sur-
face heat flux distributions. Divo et al. [Divo et al (2003 and 2004)] developed
a method relying on a superposition of clusters of sources/sinks with a boundary
element solution of the forward problem to solve the inverse geometric problem of
detection of subsurface cavities and flaws using thermographic techniques. Silieti
et al. [Silieti et al 2004] developed a hybrid singularity superposition/boundary
element-based inverse technique to reconstruct heat flux distributions for the cases
of one and two cooling slots. Their results validated the approach and revealed good
agreement between the BEM/GA predicted heat fluxes and the CHT simulated heat
fluxes along the inaccessible cooling slot walls.

In this paper, the technique developed by Silieti et al. [Silieti et al 2004] will be
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adopted and extended to three-dimensional applications, and specifically to film
cooling holes. In this technique the inlets and the exits of the cooling holes will be
assigned an adiabatic boundary condition and a distribution of singularities (sinks)
will be located inside the physical boundaries of each cooling hole (usually along
cooling hole centerline) with a given initial strength distribution. A forward steady-
state heat conduction problem will be solved using the boundary element method
(BEM), and an objective function will be defined to measure the difference between
the heat flux measured at the exposed surfaces and the heat flux predicted by the
BEM under the current strength distribution of the singularities. A GA iteratively
alters the strength distribution of the singularities until the measuring surfaces heat
fluxes are matched, thus satisfying Cauchy conditions. Subsequent to the solution
of the inverse problem, the heat flux at the inaccessible surfaces is computed using
BEM. The distribution of the heat flux at the walls of the cooling hole is determined
in a post-processing stage after the inverse problem is solved.

2 Singularity Superposition and Inverse Problem Methodology

Considering the case of a 3D film cooling hole supplied by a plenum, see Figure
1(a). The model consists of the hot gas domain, the coolant plenum supply (cold
air), and the endwall with single square/circular cooling hole. The measured tem-
perature and heat flux at overspecified surfaces (red color) are shown in Figure 1(b),
will be used as an input for the inverse problem to determine the distributions of
the temperature and heat flux along the film cooling hole walls. Also, the sides of
the endwall in addition to the inlet and the exit surfaces of the cooling hole are set
to be adiabatic.

The inverse problem algorithm developed herein is similar to the one developed
in the previous study. Again, this methodology comprised of the forward prob-
lem solver: a hybrid singular superposition/BEM method, and an inverse problem
solver: GA to determine strength distribution of the sinks to match Cauchy condi-
tions imposed at exposed surfaces.

2.1 The Forward Problem Solver

The purpose of the inverse problem is to determine the heat flux distribution (q)
at the walls of the cooling hole. This is accomplished in an iterative process. The
temperature is imposed at the exposed surfaces (top/bottom surfaces of the end-
wall), and to simulate the extraction of energy from the coolant, a distribution of
singularities (sinks) is located in the vicinity of the cooling hole surfaces within
the hole physical domain with a given initial strength distribution, see Figure 2,
usually, the sinks will be located along the cooling hole centerline. The inlet and
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(a) overall configuration. (b) domain of the inverse conduction problem.

Figure 1: . Schematic diagram for the Inverse Problem.

the exit surfaces of the cooling hole will be insulated to prevent energy from flow-
ing through them, this way all the energy that was extracted through the physical
cooling surface is captured by the sinks.

Figure 2: Thermal singularity superposition configuration.

The mathematical formulation that follows this idea consists of the Poisson equa-
tion for the temperature T (x,y) where the generation term is the summation of
singular field perturbations characterized by NS localized Dirac delta functions as:

∇.[k∇T (x,y,z)]+
NS

∑
K=1

QKδ (x,y,z,xK ,yK ,zK) = 0 (2)

where the generation term is the summation of singular field perturbations charac-
terized by the number of singularities/sinks (NS) localized Dirac delta functions,
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k is the thermal conductivity (W/m.K), QK represents the strength of the sinks,
(xK , yK ,zK) represents location of the Kth sink, and δ is Dirac delta function.
Again, the boundary elements method (BEM) approach is adopted to solve this
problem. A standard BEM formulation starts with the introduction of an arbitrary
function G(x,y,z,xi,yi,zi) and a transformation of the governing equation into an
integral equation over the domain Ω as:∫

Ω

∇.[k∇T (x,y,z)]G(x,y,z,xi,yi,zi)dΩ =

NS

∑
K=1

QK

∫
Ω

δ (x,y,z,xK ,yK ,zK)G(x,y,z,xi,yi,zi)dΩ

(3)

To transform the domain integral into contour integrals over the boundary (Γ);
Green’s second identity is applied on the left-hand side and the sifting property
of the Dirac delta function is applied on the right-hand side of the equation above
yielding:∫

Ω

∇.[k∇G(x,y,z,xi,yi,zi)]T (x,y,z)dΩ+∮
Γ

H(x,y,z,xi,yi,zi)T (x,y,z)dΩ−
∮

G(x,y,z,xi,yi,zi)q(x,y,z)dΓ =

NS

∑
K=1

QK G(xK ,yK ,zK ,xi,yi,zi)

(4)

where:

H(x,y,z,xi,yi,zi) =−k ∂G(x,y,z,xi,yi,zi)/∂n

q(x,y,z) =−k∂T (x,y,z)/∂n

(5)

Now, a Dirac delta function is used to perturb the adjoint operator on the arbi-
trary function G(x,y,z,xi,yi,zi) present in the last remaining domain integral in the
equation as:

∇.[k∇G(x,y,z,xi,yi,zi)] =−δ (x,y,z,xi,yi,zi) (6)

For 3D problems G(x,y,z,xi,yi,zi) can be found as the free-space solution to the
adjoint equation as:

G(x,y,z,xi,yi,zi) =
1

4πk
√

(x− xi)2 +(y− yi)2 +(z− zi)2
(7)
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Again, the sifting property of the Dirac delta function is recasted to lead to the
following boundary-only integral equation:

C(xi,yi,zi) T (xi,yi,zi)−
∮

Γ

T (x,y,z)H(x,y,z,xi,yi,zi)dΓ+∮
Γ

q(x,y,z) G(x,y,z,xi,yi,zi)dΓ =
NS

∑
K=1

QK G(xK ,yK ,zK ,xi,yi,zi)

(8)

Introducing boundary discretization yields the following relation:

Ci Ti−
N

∑
j=1

Ĥi j Tj +
N

∑
j=1

Gi j q j =
NS

∑
K=1

QK G(xK ,yK ,zK ,xi,yi,zi) (9)

where:

Ci = 1 if (xi,yi,zi) ∈Ω

Ci =
1
2

if (xi,yi,zi) ∈ Γ (smooth boundaries)

Ci = 0 if (xi,yi,zi) /∈Ω

(10)

Following the discretization of the boundary (Γ) with (N) nodal locations and the
collocation of (xi,yi,zi) at these (N) locations, the above equation reduces to the
following simultaneous set:

N

∑
j=1

Gi j q j−
N

∑
j=1

Hi j Tj = Si (11)

where:

Hi j = Ĥi j−
1
2

δi j

Si =
NS

∑
K=1

QK G(xK ,yK ,zK ,xi,yi,zi)

(12)

In the problems reported herein we utilize constant boundary elements, and adap-
tive Gauss-Legendre quadratures with special treatment for the self influence coef-
ficients were employed to evaluate the surface intergrals. Details of our 3D code
(that also features discontinuous bilinear and biquadratic boundary elements) along
with the quadrature and discretization procedures are provided in the monograph
[Divo and Kassab (2003)] where the treatment of variable thermal conductivity
both in terms of spatial variation and non-linear dependence on the temoperature
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are treated in detail. In the case of temperature dependence alone, the problem can
be treated via a Kirchhoff transformation [Divo et al (2003)], while in the case of
heterogeneous dependence of the thermal conductivity (dependance on space), in-
cluding anisotropy, a special Green’s function has been devised to solve the heat
conduction problem [Divo and Kassab (1997), Kassab and Wrobel (2000), Wrobel
and Aliabadi(2002), Divo et al (2003)].

The strength of singularities can be estimated by carrying out an energy balance
over the domain of the inverse problem (endwall) which yields to Equation (2),
then integrating over the domain (Ω) yields the following relations:∫

Ω

∇.[k∇T (x,y,z)]dΩ+
NS

∑
K=1

QK

∫
Ω

δ (x,y,z,xK ,yK ,zK)dΩ = 0 (13)

∮
Γ

k∇T (x,y,z).~ndΓ+
NS

∑
K=1

QK = 0 (14)

−
∮

Γ

qndΓ+
NS

∑
K=1

QK = 0 (15)

or,

NS

∑
K=1

QK =
∮

Γ

qndΓ = ∑
ΓW

qn AΓW = ∑
Γi

qn AΓi (16)

where A is the surface area of the each boundary, ΓW are the wall boundaries of
the cooling hole, and Γi are the surface boundaries for the domain of the inverse
problem. Provided that a well-posed problem is conformed with a properly defined
geometry and set of boundary conditions, see Figure 3, the discretized boundary
integral equation, Equation. (11) is reduced to:

Ai j x j = bi +Si (17)

with i = 1...N and where Si contains the effects of the added singularities QK . The
solution to this system provides the full distribution of temperatures and heat fluxes
around the boundary that can later be used in the same formulation to calculate
temperatures and heat fluxes any where in the domain Ω. Notice that the system in
Equation (17) needs to be generated and LU- decomposed only once, and changing
the strength of the singularities can be efficiently accounted for in the solution by
just updating the right-hand side vector and solving the system again by a forward
and back substitution.
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Figure 3: Set of boundary conditions for the BEM problem.

2.2 The Inverse Problem Solution

The purpose of the inverse problem is to determine the heat flux distributions at
the surfaces/walls of the film cooling hole. This is done in an iterative process; the
temperature is imposed at exposed surfaces (top/bottom surfaces) and a distribution
of singularities (sinks) is located within the physical domain of the cooling hole
(along cooling hole center line) with a given initial strength distribution. A forward
steady-state heat conduction problem is solved using the boundary element method
(BEM), and an objective function is defined to measure the difference between
the heat flux measured at the exposed surfaces and the heat flux predicted by the
BEM under current strength distribution of the sinks. This can be accomplished by
minimizing the following least-squares functional:

S(QK) =

√√√√(Nm

∑
i=1

Ri

)( 1
Nm

Nm

∑
i=1

[
qi(QK)− q̂i

]2
Ri

)
(18)

where Nm is the number of measuring points, q̂i are the measured heat fluxes at the
measuring points, and qi(QK) are the computed heat fluxes for a given set of sink
strengths, Ri is defined to measure the smallest distance between any element and
the location of the singularities (sinks); i.e. Ri is equal to the minimum of either
R1i or R2i, where R1i and R2i are defined as follows:

R1i = (xci− xexit)2 +(yci− yexit)2 +(zci− zexit)2

R2i = (xci− xinlet)2 +(yci− yinlet)2 +(zci− zinlet)2

(19)

where (xci,yci,zci)are the coordinates of the center of the i-th element, (xinlet ,yinlet ,zinlet)
is the physical center of the cooling hole inlet, and (xexit ,yexit ,zexit) is the physical
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center of the cooling hole exit. As we mentioned before that the inherent regu-
larization property of the GA (minimization method of choice in this study), in
addition to the discrete nature of a finite number of singularities (sinks) to simu-
late the extracted energy, makes it unnecessary to add any additional regularization
to the functional, and would just slow down the minimization process. Once the
functional, S(QK), is minimized, the resulting heat flux distribution along the phys-
ical walls of the film cooling hole can be smoothed-out by simple least-squares
means. Moreover, the calculation of the normal heat fluxes at the walls of the
cooling hole (four lines, one line per side) is done at a post-processing stage by
computing the heat flux vector components at internal points along the walls of the
cooling hole (4-lines).

2.3 The Genetic Algorithm

The GA optimization process begins by setting a random set of possible solutions,
called the population, with a fixed initial size or number of individuals. Each in-
dividual is defined by optimization variables and is represented as a bit string or a
chromosome, see Figure 4. A GA iteratively alters the strength distribution of the
singularities until the measuring surfaces heat fluxes are matched, thus satisfying
Cauchy conditions at the exposed measuring surfaces. It should be noted that GA’s
maximize objective function as they naturally seek the “best fit” [Goldberg (1989)].
Thus the objective function computed by the GA is actually,

ZGA(QK) = S(QK)−1 (20)

The objective function, ZGA(q̃A), is evaluated for every individual in the current pop-
ulation defining the fitness or their probability of survival. At each iteration of the
GA, the processes of selection, crossover, and mutation operators are used to up-
date the population of designs. A selection operator is first applied to the population
in order to determine and select the individuals that are going to pass information
in a mating process with the rest of the individuals in the population. This mat-
ing process is called the crossover operator, and it allows the genetic information
contained in the best individuals to be combined to form offsprings. Additionally,
a mutation operator randomly affects the information obtained by the mating of
individuals. This is a crucial step for continuous improvement.

A series of parameters are initially set in the GA code, which determine and affect
the performance of the genetic optimization process. The number of parameters per
individual or optimization variables, the size of the bit string or chromosome that
defines each individual, the number of individuals or population size per genera-
tion, the number of children from each mating, the probability of crossover, and the
probability of mutation are among the parameters that control the optimization pro-
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Figure 4: Example of an individual in the population characterized by four pa-
rameters (genes) encoded in a chromosome yielding the individual’s fitness value
F1.

cess. This set of operations are carried out generation after generation until either
a convergence criterion (a preset level of acceptable fitness) is satisfied or a maxi-
mum number of generations is reached. It is also important to point out that three
important features distinguish GA from the other evolutionary algorithms, namely:
(1) binary representation of the solution, (2) the proportional method of selection,
and (3) mutation and crossover as primary methods of producing variations.

In nature, the properties of an organism are described by a string of genes in the
chromosomes. Therefore, if one is trying to simulate nature using computers one
must encode the design variable in a convenient way. We adopt a haploid model
using a binary vector to model a single chromosome. The length of the vector
is dictated by the number of design variables and the required precision of each
design variable. Each design variable has to be bounded with a minimum and a
maximum value. The haploid GA places all design variables into one binary string,
called a chromosome or off-spring and the information contained in the string of
vectors comprizing the chromosome characterizes an individual in a population.
In turn, each individual is equipped with a given set of design variables to which
corresponds a value of the objective function. This value is the measure of “fit-
ness” of the individual design. In a GA, poorly fit designs are not discarded; rather
they are kept, as in nature, to provide genetic diversity in the evolution of the pop-
ulation. This genetic diversity is required to provide forward movement of the
population during the mating, crossover, and mutation processes which character-
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ize the GA. Details of these operations can be found in the standard optimization
literature [Goldberg (1989)]. The following suitable parameters were chosen to
generate results: a population size of 50 individuals/generation, a string of eight
bits to define each parameter within each individual. The mating process produces
one child per mating using uniform crossover which produces a high level of di-
versity, a 4% probability of jump mutation, a 20% probability of creep mutation,
and a 50% probability of crossover. The population is not allowed to grow (static
population) and elitistic generation (the best parent survives to the next generation).
The population is completely eliminated after 50 generations if there is no further
improvement, keeping the best member of the population (restart). This combina-
tion of parameters and procedures has been proven to yield efficient and accurate
optimization results for different cases carried out in this paper.

3 Numerical Results

Here, the results of the inverse problem will be presented for two cases: the results
for single square cooling hole, and the results for single circular cooling hole. For
the case of a square cooling hole, a forward problem is solved using the BEM to
generate boundary conditions at the exposed surfaces (top/bottom surfaces), those
are in turn were used to simulate inputs to the inverse problem. In contrast, for the
case of the circular hole, a full conjugate heat transfer (CHT) model is developed
to simulate the experimentally measured data at the exposed surfaces, which will
provide a numerical input for the inverse problem.

3.1 Results of the Inverse Problem for Square Cooling Hole

First, a solution to the forward problem will be established to be used in obtaining
heat flux measurements which serves as a numerical input to the inverse problem.
In specific, consider a rectangular endwall ((x = 11cm)×(y = 21cm)×(z = 3cm))
with a vertical square cooling hole located at the geometrical center of the end-
wall, the cross-sectional area of the cooling hole is (1cm× 1cm). The problem is
discretized using ((Nx = 11)×(Ny = 21)×(Nz = 3)) constant elements for the end-
wall and ((Nh = 1)×(Nh = 1)) for the cooling hole. The totalnumber of elements
is calculated according to the following relation:

N = 2(NxNy+NxNz+NyNz)+4NzNh−2NhNh (21)

Based on the above relation the total number of elements for the direct problem is
664 constant elements. The geometry, the BEM discretization, and the boundary
condition definitions are shown in Figure 5: notice that the temperature is in units of
(K) and the heat transfer coefficient is in units of (W/m2K). The endwall material
is stainless steel with a constant thermal conductivity of (k = 14.9W/m.K).
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Figure 5: Geometry, BEM mesh, and boundary conditions used in solving the for-
ward problem of a vertical square hole.

The discretized governing equations with the specified boundary conditions have
been solved, and the temperature distribution is shown in the Figure 6, it can be
seen that the temperature expands from 200K to 680K.

The inverse problem had been solved just for the rectangular endwall without the
square cooling hole in it, the same discretization was used in the direct problem is
applied in the inverse problem which gives a total number of 654 constant elements;
i.e. ((2×11× 21)+(2×11× 3)+(2×21× 3)). The boundary conditions along the
sides of the endwall are adiabatic, whereas Cauchy conditions which were obtained
from the direct solution are applied at the top and the bottom surfaces. The inlet
and the exit surfaces of the cooling hole are set to an adiabatic boundary condition
to ensure that all energy extracted by the cooling hole is captured by the sinks. In
this case, the sinks are located at the geometrical center of the cooling hole. A
distribution of three sinks were found to be a suitable number to have an optimized
solution. An initial guess of the strength of sinks (QK) is set to be between −400
and zero (W/m2) to begin the minimization process. The GA provided a global
optimum for the strength of the three uniformly distributed sinks after 600 genera-
tions with a best fitness of 0.0725. Figure 7 shows the BEM discretization as well
as the temperature contour plot field along the endwall.
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Figure 6: . Temperature distributions for the case of a vertical square cooling hole
predicted by the BEM direct solution.

After the singularity strengths were optimized, the normal heat fluxes along the
actual walls of the cooling hole were found in a post-processing stage by calculating
heat flux vector components on internal points distributed along each side of the
actual walls of the cooling hole. Because of problem symmetry, the GA predicted
temperatures and heat fluxes can be compared to the direct solution along one side
of the cooling hole. Figures 8 and 9 shows the BEM/GA reconstructed temperature
and normal heat fluxes along one side/wall of the square cooling hole in comparison
with the direct simulated temperature and normal heat fluxes. The results reveal
good accuracy in predicting the temperature and heat flux distributions. It can be
seen that a distribution of three singularities (sinks) is quite good to reconstruct heat
flux distributions along the sides of the square cooling hole.

A typical convergence plot for the GA is provided below in Figure.

3.2 Results of the Inverse Problem for Circular Cooling Hole

For the case of the circular hole, a full conjugate heat transfer (CHT) model is
developed to simulate the experimentally measured data at the exposed surfaces,
which provides a numerical input for the inverse problem. The CHT model was
simulated using the commercial CFD code Fluent version 6.1.22. In this case, the



Singular Superposition/Boundary Element Method 135

Figure 7: . BEM discretization and resulting temperature contour plot for the case
of a vertical square cooling hole predicted by the inverse solution.

endwall dimensions are ((x = 50cm)×(y = 3cm)×(z = 9cm)) with single circular
cooling hole. The cooling hole has a diameter of (D = 1cm) with an injection angle
of 30 with the axial direction. Here, the conjugate heat transfer simulations were
modeled using a linear model for the thermal conductivity (k = 16.63W/m.K).
Since the mesh for CHT model is different from the BEM mesh, the CHT simulated
temperatures and heat fluxes were interpolated from the CHT mesh to BEM mesh
using radial basis functions (RBF) interpolation with 20 points [Powell, (1992), Li
and Chen (2002)]. The inverse problem is modeled using a discretization of 1254
constant elements; i.e. ((2×50×90)+(2×50×3)+(2×9×3)). The CHT mesh and
the BEM mesh are shown in Figure 10.

The inverse problem was solved using a distribution of 20 singularities (sinks).
Those sinks were distributed along five lines such that there are four sinks per line.
The optimum location of the lines were found to be one line at the geometrical
center of the circular hole, whereas, the other four lines were located by offsetting
the centerline by a distance of (D/4) in the four sides, as shown in Figure 12.
An initial guess of the strength of sinks (QK) is set to be between −200 and 200
(W/m2) to begin the minimization process.



136 Copyright © 2009 Tech Science Press CMC, vol.12, no.2, pp.121-143, 2009

Figure 8: . Plot of GA predicted temperature compared to the direct simulated
temperature along one side of the vertical square cooling hole.

Figure 9: . Plot of the GA predicted heat flux compared to the direct simulated heat
flux along one side of the vertical square cooling hole.

The GA provided a global optimum for the strength of the twenty uniformly dis-
tributed sinks after 2000 generations with a best fitness of 0.00156. Figure 13
shows a temperature contours predicted by both the CHT simulation as well as the



Singular Superposition/Boundary Element Method 137

Figure 10: Convergence plot of the GA for the optimization of the singularity
strenghts.

(a) CHT mesh (b) BEM mesh

Figure 11: . A plot of CHT mesh and the BEM mesh used for solving the circular
cooling hole.

GA solution.

Again, after the singularity strengths were optimized, the normal heat fluxes along
the actual walls of the cooling hole were found in a post-processing stage by cal-
culating heat flux vector components on internal points distributed along each side
of the actual walls of the cooling hole. In this case, the GA reconstructed temper-
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Figure 12: . Location of the 20 singularities (sinks) along the five lines (blue) used
for solving the inverse problem of circular cooling hole.

(a) CHT solution (b) GA solution

Figure 13: . A plot of the temperature contours predicted by both CHT and GA
solutions for circular cooling hole.

atures and heat fluxes were compared to the CHT simulated ones along four lines;
Line-1 through Line-4, located at the physical walls of the cooling hole as shown
in Figure 14. Figures 15 and 16 shows the BEM/GA reconstructed temperature and
normal heat fluxes along the four lines/edges of the circular cooling hole in com-
parison with the CHT simulated temperature and normal heat fluxes. The results
reveal good accuracy in predicting the temperature and heat flux distributions. It
can be seen that a distributions of twenty singularities (sinks) along five lines is
good enough to reconstruct heat flux distributions along the sides of the circular
cooling hole.
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Figure 14: . Location of the four lines/edges used to compare the GA predicted
results to the CHT simulated ones for the case of circular cooling hole.

(a) Line-1 (b) Line-2

(c) Line-3 (d) Line-4

Figure 15: Plot of GA predicted temperature compared to the CHT simulated tem-
perature along four lines for the case of circular cooling hole.



140 Copyright © 2009 Tech Science Press CMC, vol.12, no.2, pp.121-143, 2009

(a) Line-1 (b) Line-2

(c) Line-3 (d) Line-4

Figure 16: Plot of GA predicted temperature compared to the CHT simulated tem-
perature along four lines for the case of circular cooling hole.

4 Conclusions

In this paper, a hybrid singularity superposition/boundary element-based inverse
problem method for the reconstruction of 3D heat flux distributions was devel-
oped. Cauchy conditions are imposed at exposed surfaces while convective bound-
ary conditions are unknown at surfaces that are not amenable to measurements.
The purpose of the inverse analysis is to determine the heat flux distribution along
edges/walls of the cooling holes. This is accomplished in an iterative process by
distributing a set of singularities at the vicinity of the cooling hole surfaces along
the cooling hole centerline with a given initial strength distribution. A forward
steady-state heat conduction problem is solved using the boundary element method
(BEM), and an objective function is defined to measure the difference between the
heat flux measured at the exposed surfaces and the heat flux predicted by the BEM
under the current strength distribution of the singularities. A GA iteratively alters
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the strength distribution of the singularities until the measuring surfaces heat fluxes
are matched, thus, satisfying Cauchy conditions. The hybrid singularity super-
position/BEM approach thus eliminates the need to mesh the surfaces of the film
cooling hole and the need to parametrize the heat flux over that surface. Rather,
the heat flux is determined in a post-processing stage after the inverse problem is
solved. The results provided validate the approach and reveal good accuracy be-
tween the BEM/GA predicted heat fluxes and the CHT simulated heat fluxes along
the inaccessible cooling hole walls.
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