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Abstract: A phenomenological formulation is adopted to investigate desorp-
tion in polymers. The speed of the front is studied and the well-posedness of the
general model is analyzed. Numerical simulations illustrating the dynamics of the
desorption process described by the proposed model are included.
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1 Introduction

Over the past decades the study of polymers behavior has received the attention
of many theoretical and experimental researchers. The reasons for this interest
lie on the very challenging mathematical models underlying the phenomena but
mainly on the fact that due to its properties polymers are used in a large number of
industries as pharmaceutical, equipment, clothing and sealants.

The problems reported in the literature are essentially of two different but related
kinds: sorption of penetrants by dry polymeric matrices and desorption of pene-
trants from polymeric saturated matrices.

When a penetrant diffuses into a dry polymer, its molecules take up new configu-
rations to accommodate incoming penetrant molecules. Consequently a swelling
process is initiated which transforms the polymer to its saturated rubbery state.
The behavior of the mass uptake experimentally observed, presents a great variety
(Samus and Rossi (1996)). We mention without being exhaustive the following
properties: (i) for small times the mass uptake increases linearly in time with sharp
fronts which move at constant velocity and separating the glassy and the rubbery
states, (ii) the velocity of the front slows down at later times;(iii) initially uptake
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increases like tα with α between 0.5 and 1 or increases as
√

t eventually presenting
sharp fronts which move at velocity s′ ' 1/

√
t. These behaviors can not be com-

pletely explained by Fick’s law and are usually described as anomalous or non-
Fickian. In recent years, several attempts have been made to model mathematically
such sorption behaviors. Two main approaches can be found in the literature. In
the first one a Fickian diffusion is considered in the glassy and rubbery regions and
the kinetics of the glass-rubber polymer transition is taken properly into account.
Due to this kinetics these models have a locally non Fickian character. We mention
for instance the models presented in Astarita and Sarti (1978), Astarita and Joshi
(1978), Friedman and Rossi (1997), Peterlin (1965), Qian and Taylor (2000),
Rossi et al (1995), Thomas and Windle (1980), Thomas and Windle (1981),
Thomas and Windle (1982). In the second approach globally non Fickian models
are considered as Fick’s law is modified by introducing in the flux a viscoelastic
stress as for instance in Cohen and White (1989), Cohen and White (1991), Cox
and Cohen (1989), Cox (1990), Edwards and Cohen (1995), Edwards (1995),
Edwards (2001), Hayes and Cohen (1992).

It should be pointed out that desorption is not a simple reversal of the related sorp-
tion process. In fact while in desorption a crystallization occurs requiring some
molecular organization, in sorption, which is characterized by melting, such or-
ganization doesn’t occur. In the case that a polymer, in a saturated rubbery state,
undergoes the process of desorption there is an overall outward penetrant flux. As
expected this loss of penetrant triggers a change of state in the polymer which sub-
sequently assumes a glassy crystalline configuration. In what concerns the mass
loss in desorption phenomena, it has been experimentally observed that the behav-
ior tends to be less varied, less easily detectable and presenting in many cases a
certain similarity with a Fick’s behavior. Much less attention has been placed on
the mathematical modeling of polymer desorption process. In the literature we find
mainly mathematical models where a viscoelastic stress has been introduced in the
flux ( Cairncross et al (1992), Cairncross et al (1996), Cairncross and Durning
(1996), Edwards (1997), Edwards (1999), Edwards and Cairncross (2002)). Nev-
ertheless, the numerical simulations presented in the last papers exhibit sharp fronts
which in some cases do not agree with the experimental data presented for instance
in Samus and Rossi (1996), Sanopoulou and Petropoulos (2001), Sanopoulou et al
(2002). Such models exhibit a global non Fickian character. However experimen-
talists consider that in a system where a front separates two different states the only
obvious violation of Fick’s law takes place at the front (Qian and Taylor (2000),
Rossi et al (1995), Samus and Rossi (1996)).

Following this idea we propose in the present paper a mathematical model for des-
orption that uses Fick’s law in the rubbery and glassy regions and a rate controlled
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motion of the moving front separating the glass and rubber regions. This motion
rate is analogous to the one proposed by Qian and Taylor in Qian and Taylor (2000)
for sorption phenomena and depends on the glass-rubber transition concentrations
and their fluxes. In Qian and Taylor (2000) for the case of sorption the definition
of the velocity of the front separating the two phases is completed by introducing
an analytical expression depending on the osmotic pressure. This expression gen-
eralizes the one proposed by Thomas and Windle in Thomas and Windle (1980)-
Thomas and Windle (1982). At the best of our knowledge there is no agreement
among experimentalists concerning the form of an analytical expression for the
speed of the front in the case of desorption. Due to this lack of information we
introduce a parameter varying in an admissible interval and which selection leads
to a wide range of behaviors. Consequently the model studied in this paper is an
open model. Future improvements coming from experimental studies and leading
to particular forms of the front speed can be easily introduced.

The paper is organized as follows. In Section 2 the model is presented. In Section
3 the glassy and rubbery concentrations are computed. The speed of the glass-
rubber front is studied in Section 4. In Section 5 the well-posedness of the model is
analyzed. In Section 6 numerical simulations illustrating the behavior of our model
are included. A 3D extension of the model is presented in Section 7. Finally in
Section 8 some conclusions are established.

2 A phenomenological model

The phenomenological model presented in this paper is based on the observation
of experimentalists that the only obvious violation of Fick’s law takes place at the
front separating the two different states. Following this idea we consider

 Cg
t = DgCg

xx , x < s(t)

Cr
t = DrCr

xx , x≥ s(t)
, (1)

where x = s(t) represents the position of the front and Dg and Dr represent the
molecular diffusion coefficients respectively in the glassy and rubbery regions. In
(1) Cg and Cr denote the concentrations respectively in the glassy and rubbery
regions.

The front position s(t) is defined by

s′(t)[C]s(t) = [J]s(t), (2)

where [g]s(t) = g(s(t)+, t)− g(s(t)−, t) represents the jump of g at s(t) and J =
−D(C)Cx. It is this front condition, considered for instance in Qian and Taylor
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(2000), that gives a phenomenological character to the model. Condition (2) ap-
pears as a consequence of the decreasing behavior of the overall penetrant mass in
the polymer and has some analogy with conditions often prescribed in the litera-
ture, as for instance in Edwards (1997),Edwards (1999). We postpone to Section
4 a rigorous explanation of (2).

Problem (1), (2) consists of two Fickian models linked by a non Fickian moving
front with speed (2). The model is complemented with a boundary condition at the
front which is written as

Cr(s(t), t) = C?, t > 0, (3)

where C? represents the characteristic solute concentration that distinguishes the
glassy from the swollen state. In the swollen saturated region, the concentration
Cr of the penetrant within the polymer is greater than C?, while in the glassy drier
region, Cg < C?. A discontinuity in the concentration is admissible because we do
not impose the glassy concentration, Cg(s(t), t) to be equal to C?. As it will become
clear in section 4 the value of this concentration stands for the free parameter of the
model.

The phenomenological model (1)-(3) cannot be confused with the Fickian model

Ct =−(D(C)Cx)x ,x > 0, t > 0, (4)

where

D(C) =

 Dg, x < s(t)(glassy)

Dr, x≥ s(t)(rubbery) .
(5)

In fact in the framework of the theory of weak solutions, as (2) holds and the solu-
tion C of (4) is in H1(0,∞) for each time t, we conclude

[J]s(t) = 0.

Furthermore, it can be established that in the case of the Fickian model described
the speed satisfies

s′(t)[Cx]s(t) = [Jx]s(t) .

In Section 7 numerical simulations that exhibit the difference between the behavior
of models (1)-(3) and the Fickian model (4), (5) are presented.
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To complete the model of desorption of an initially saturated polymer we consider
an initial condition

C(x,0) = Cinit , x > 0. (6)

The far end is insulated which translates to

Cx(∞, t) = 0, t ≥ 0. (7)

At x = 0 we consider

C(0, t) = Cext , t ≥ 0, (8)

where Cext stands for the external concentration. This condition corresponds to a
model with infinite permeability at the outflow end. In fact the value of the concen-
tration at x = 0 is instantaneously assigned the same value as that of the external
environment.

The desorption problem is viewed as two coupled boundary problems defined in
time depending domains (0,s(t)) and (s(t),+∞). As we do not impose a value on
the glassy concentration at the glassy side of the front, Cg(s(t)−, t), a condition is
missing to define completely the speed. We already mentioned that in desorption
phenomena there is no agrement among experimentalists concerning the form of
the front speed. We overcome this difficulty by using the free parameter, varying
in a certain interval, and depending on the characteristics of the polymer, that can
be used to control the front speed.

3 The glassy and rubbery concentrations

An integral method developed by Boley for standard diffusion problems, and adopted
by Edwards in the analysis of polymer desorption models (see e.g. Edwards (1999))
is employed in this section to compute the concentrations Cr and Cg.

We assume that diffusion equation Cg
t = DgCg

xx , x < s(t) holds in the entire domain
for some fictitious unknown initial condition f i(x). Requiring then that the solution
of such equation satisfies (7), (8) we establish a condition that f i must satisfy.

Let

Cg(x, t) = Cext +T g(x, t), 0 < x < s(t), (9)
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where T g is defined by

T g
t = DgT g

xx, x > 0, t > 0,

T g(0, t) = 0, t > 0,

T g
x (∞, t) = 0, t > 0,

T g(x,0) = f i(x),x > 0.

(10)

As the solution of (10) is given by (Crank (1973))

T g(x, t) =
1√

4πDgt

∫
∞

0
f i(y)

(
e−

(x−y)2
4Dgt − e−

(x+y)2
4Dgt
)

dy, (11)

it follows that

Cg(x, t) = Cext +
1√

4πDgt

∫
∞

0
f i(y)

(
e−

(x−y)2
4Dgt − e−

(x+y)2
4Dgt
)

dy , 0 < x < s(t). (12)

We now compute the concentration in the rubbery state Cr following an analogous
procedure. We assume that the diffusion equation Cr

t = DrCr
xx , ,x≥ s(t) holds in

the semi-infinite domain along with (6), (7) for some fictitious boundary condition
at x = 0 represented by fb(t).
Let

Cr(x, t) = Cinit −T r(x, t), x≥ s(t). (13)

where

T r
t = DrT r

xx, x > 0, t > 0,

T r(0, t) = fb(t), t > 0,

T r
x (∞, t) = 0, t > 0,

T r(x,0) = 0,x > 0.

(14)

Once again in (14), fb represents a fictitious boundary term which will be computed
in due course. We have

T r(x, t) = fb(t)+
∫ t

0

1√
4π(t− τ)

∫
∞

0
− f ′b(τ)

(
e−

(x−y)2
4Dr(t−τ) − e−

(x+y)2
4Dr(t−τ)

)
dydτ, (15)
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and as∫ t

0

1√
4π(t− τ)

∫
∞

0
− f ′b(τ)

(
e−

(x−y)2
4Dr(t−τ) − e−

(x+y)2
4Dr(t−τ)

)
dydτ =− fb(t)

+
x√

4πDr

∫ t

0
fb(τ)e−

x2
4Dr(t−τ)

1
(t− τ)3/2 dτ,

we may conclude that

Cr(x, t) = Cinit −
x√

4πDr

∫ t

0
fb(τ)e−

x2
4Dr(t−τ)

1
(t− τ)3/2 dτ, x > s(t). (16)

The forms obtained in (12) and (16) for the concentrations Cg and Cr depend re-
spectively on the fictitious conditions f i and fb.

4 On the speed of the front

4.1 The fictitious initial and boundary conditions

To study the speed of the moving front we analyse separately the small and large
times behavior of Cr and Cg. Following Edwards (1999) we make some ansatz on
the fictitious initial and boundary terms f i and fb.

1. Small time behavior: For small times a sound ansatz is to consider that f i, fb
and s are of form

f i(x)∼ f i
0, fb(t)∼ f b

0 , s(t)∼ 2s0tn,

or more precisely

f i(x) = f i
0 + f i

1,0(x), fb(t) = f b
0 + f b

1,0(t) = 0 s(t) = 2s0tn + s1,0(t), (17)

where
lim
x→0

f i
1,0(x) = 0, lim

t→0
f b
1,0(t) = 0 , lim

t→0
s1,0(t) = 0.

We compute in what follows n. As f b
0 is constant, it can be shown that the

concentration in the rubbery state (16) is given by

Cr(x, t) = Cinit − f b
0 erfc

( x√
4Drt

)
+C̃r

0(x, t), (18)

where C̃r
0(x, t)→ 0,x, t→ 0.
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At the front s(t), the rubbery concentration Cr satisfies (3) and consequently

C? = Cinit − f b
0 lim

t→0
erfc

(s0tn−1/2
√

Dr

)
(19)

For n <
1
2

, from (19) we obtain C? = Cinit .

As in a desorption problem Cinit >C?, we must therefore conclude that n≥ 1
2
.

From (12) it can be shown that the concentration in the glassy state may be
written as

Cg(x, t) = Cext + f i
0 erf

( x√
4Dgt

)
+C̃g

0(x, t) , (20)

where lim
x,t→0

C̃g
0(x, t) = 0.

At the front s(t) we obtain

lim
t→0

Cg(s(t)−, t) = Cext + lim
t→0

f i
0 erf

(s0tn−1/2√
Dgt

)
.

and consequently, for n >
1
2
,

lim
t→0

Cg(s(t)−, t) = Cext . (21)

We assume that

lim
t→0

Cg(s(t)−, t) > Cext (22)

holds. In Section 4.2 we will show that the assumption (22) is a natural

restriction at least for n =
1
2
.

Then we conclude that for small times we must have n =
1
2
.

2. Large-time behavior: An inspection of (12) and (16) shows that f i(x) and
f b(t) can’t assume an exponential form or a polynomial form. Let us analyse
the exponential case by making the following ansatz:

f i(x)∼ f i
∞eAx, fb(t)∼ f b

∞eB2t , s(t)∼ 2s∞tn,
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more precisely

f i(x) = f i
∞eAx + f i

1,∞(x), fb(t) = f b
∞eB2t + f b

1,∞(t), s(t) = 2s∞tn +s1,∞(t), (23)

where
lim
x→∞

f i
1,∞(x) = 0 lim

t→∞
f b
1,∞(t) = 0 , lim

t→∞
s1,∞(t) = 0.

From (12) and (23), it may be deduced that

Cg(x, t) = Cext +
f i
∞

2
eA2Dgt

(
eAx erfc

(
−

x+2ADgt√
4Dgt

)
− e−Ax erfc

(x−2ADgt√
4Dgt

))
+C̃g

∞(x, t) , x < s(t) ,

(24)

where C̃g
∞(x, t)→ 0,x, t→ ∞, and then A = 0 (see Appendix 1). As a conse-

quence Cg is given by

Cg(x, t) = Cext + f i
∞ erf

( x√
4Dgt

)
+C̃g

∞(x, t). (25)

Let us analyze now the concentration in the rubbery state. Considering fb(t)
into (16), we get

Cr(x, t) = Cinit −
f b
∞

2
eB2t
(

eB x√
Dr erfc

(x+2Bt
√

Dr√
4Drt

)
+e−B x√

Dr erfc
(x−2Bt

√
Dr√

4Drt

))
+C̃r

∞(x, t), x≥ s(t) ,
(26)

where C̃r
∞(x, t)→ 0,x, t→ ∞.

Next, we discuss B. If B = 0 then, from (26) we obtain

Cr(x, t) = Cinit − f b
∞ erfc

( x√
4Drt

)
+C̃r

∞(x, t). (27)

We analyze the large-time concentrations Cg and Cr at the front s(t). Replac-
ing into (27) s(t) defined by (23) we get

lim
t→∞

Cr(s(t), t) = Cinit − f b
∞ lim

t→∞
erfc

(s∞tn−1/2
√

Dr

)
. (28)
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As Cr(s(t), t) = C?, from (28), for n >
1
2
, we conclude

C? = Cinit

which is not admissible for desorption problems.

From (28), for n <
1
2
, we obtain

C? = Cinit − f b
∞.

However, from (25), for n <
1
2
, we deduce

lim
t→∞

Cg(s(t)−, t) = Cext .

As for small times we assume that for large times

lim
t→∞

Cg(s(t)−, t) > Cext (29)

holds and consequently we must have n =
1
2
.

It can be shown that if B 6= 0 then Cinit ≤ C? (see Appendix 2) which is
not admissible because in a desorption problem Cinit > C?. This means that
B = 0.

We must therefore conclude that the speed of the front behaves like t−
1
2 for small

and large times. This result justifies from a theoretical point of view several exper-
imental data reported in the literature where desorption phenomena present some
similarities with a Fickian behavior (see for instance Samus and Rossi (1996)).

4.2 Dependence of the moving front on the problem data

In this section we study the dependence of the moving front on the parameters
of the models for small and large times. As the expressions of the leading terms
of Cg and Cr assume the same form for small and large times we represent by f i

indifferently f i
0, f i

∞ and by f b the values f b
0 , f b

∞. We note however that f i (and f b)
can assume different values for small and large times. By s̄ we represent s0 and s∞.
Furthermore we identify in what follows and in Sections 4.3 and 4.4, Cg, Cr and
s(t) with the corresponding leading terms.

From (17) the expression for the front position s(t) is

s(t) = 2s̄
√

t, (30)
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and then from (19) we have

f b =
Cinit −C?

erfc
( s̄√

Dr

) (31)

which allow us to obtain

Cr(x, t) = Cinit −
Cinit −C?

erfc
( s̄√

Dr

) erfc
( x√

4Drt

)
, (32)

for x ∈ (0,∞). Moreover, as for Cg holds the representation

Cg(x, t) = Cext + f i erf
( x√

4Dgt

)
, (33)

in the front we get

lim
x→s(t)−

Cg(x, t) = Cext + f i erf
( s̄√

Dg

)
. (34)

which means that lim
x→s(t)−

Cg(x, t) is constant for small and large times. Let us rep-

resent this constant by Cg
?, j. We note that Cg

?, j can assume different values for small
and large times, that is Cg

?,0 6= Cg
?,∞. From (34) we obtain

f i =
Cg

?, j−Cext

erf
( s̄√

Dg

)
which allow us to establish for Cg the representation

Cg(x, t) = Cext +
Cg

?, j−Cext

erf
( s̄√

Dg

) erf
( x√

4Dgt

)
. (35)

Replacing (32), (35) in (2) we obtain after some straightforward computations the
following equation

√
Dr
(
C?−Cinit

)
e−

s̄2
Dr erf

( s̄√
Dg

)
+
√

Dg
(
Cg

?, j−Cext
)
e−

s̄2
Dg erfc

( s̄√
Dr

)
−s̄
√

π
(
C?−Cg

?, j

)
erf
( s̄√

Dg

)
erfc

( s̄√
Dr

)
= 0.

(36)

In this equation s̄ and Cg
?, j are unknowns. We look at Cg

?, j as a parameter and we
solve (36) for each value of this parameter. Let us denote the first member of (36)
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by g(s̄). In what follows, we establish sufficient conditions on Cg
?, j that guarantee

the existence of solutions s̄ of (36).

As we have
g(0) =

√
Dg
(
Cg

?, j−Cext)

we conclude that g(0) > 0 provided that Cg
?, j >Cext . Furthermore, the signal of g(s̄)

for s̄→ ∞ is the signal of Cg
?, j−C? which is not positive provided that Cg

?, j < C?.

From the previous considerations we finally conclude that for

Cg
?, j ∈ (Cext ,C?), j = 0,∞, (37)

which is a sound physical condition and has been assumed in (22), (29), equation
(36) always has a solution. This means that Cg

?, j does not need to assume the same
value for small and large times. For instance we can have initially a certain value
Cext ≤Cg

?,0 <C? and for late times a parameter Cg
?,∞ can be selected such that Cg

?,∞ =
C?. This corresponds to having continuous concentration at large times. We point
out that once another condition for the speed is prescribed then we do not need to
specify Cg

? .

4.3 Qualitative behavior

In this section we present some plots to illustrate the behavior of s̄, Cg and Cr for
small and large times.

For s̄ we consider

1. the dependence of s̄ on the problem data, that is C?,Cext ,Dr and Dg;

2. the dependence of s̄ on Cg
? for each set C?,Cext ,Dr and Dg.

In what follows by Cg
? we denote Cg

?, j.

Concerning the dependence of s̄ with C?,Cext ,Dr and Dg, for each Cg
? , the numerical

results confirm physical evidence. Let us argue on this point.

Figure 1-I illustrates the behavior of s̄ with the transition concentration C?. We
observe that as C? increases an increasing of s̄ is observed. In fact as C? increases
not as much penetrant needs to desorb in order for the solution to attain C? and so
s̄ increases.

The velocity of the front depends also on the exterior concentration Cext . From
Figure 1-II we conclude that an increase of Cext implies a decreases of the position
of the front. In fact as Cext increases the flux out of the front is smaller and s̄
decreases.
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Figure 1: Dependence of s̄ on Cg
? for different values of the parameters C? and Cext .
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The behavior of s̄ when the rubbery coefficient Dr increases is illustrated in Figure
2-III. As expected the increase of Dr implies a decrease of s̄. In fact as Dr increases
the flux from the rubbery region increases so there is a greater barrier to surmount
and consequently s̄ decreases. The mentioned barrier decreases as Dg increases.
Consequently as Dg increases s̄ also increases. This behaviour is illustrated in
Figure 2-IV.

Finally, in order to study the stability behavior of s̄ when Cinit is perturbed we con-
sider C̃(x,0) = Cinit − ε. Let s̄ε be the corresponding solution of (36). To establish
heuristically the stability of s(t) we plotted the error |s̄− s̄ε | for several values of
the parameters ε. The experiments carried on exhibit strong evidence of stability of
the front. In Figure 3 we show a typical plot of |s̄− s̄ε |. In Section 5 the assumption
on the stability behavior of s̄ is used to establish the stability of model (1) -(7).
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Figure 3: The error |s̄− s̄ε | for ε ∈ [10−16,10−6].

In Figure 4 we present the plots of Cr and Cg defined by (32), (35) where s̄ is
computed using (36) for two different times t1 = 1 and t2 = 5. The concentrations
Cr and Cg for small and large times are plotted in Figure 5.

The front positions for different values of Cg
? and the correspondent fluxes are plot-

ted in Figure 6 and Figure 7, respectively. We remark that when Cg
? increases an

increasing on the speed and an decreasing on the flux are observed.
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Figure 4: The concentrations Cr and Cg at t1 = 1, t2 = 5 defined by (32) and (33)
for Cg

? = 0.79 and Cinit = 1,C? = 0.8,Cext = 0,Dr = 1,Dg = 0.4.
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Figure 5: The concentrations Cr and Cg defined by (32) and (33) for Cg
? = 0.79 and

Cinit = 1,C? = 0.8,Cext = 0,Dr = 1,Dg = 0.4.
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Figure 6: The front position s(t) = 2s̄
√

t for Cg
? = 0.75,0.79 and Cinit = 1,C? =

0.8,Cext = 0,Dr = 1,Dg = 0.4 wheres̄ is computed with (36).
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Figure 7: Jump of the flux at the front s(t) for Cg
? = 0.75,0.79 and Cinit = 1,C? =

0.8,Cext = 0,Dr = 1,Dg = 0.4 computed with Cr and Cg defined by (32) and (33).
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4.4 Revisiting the moving front

In a certain number of experimental papers it is reported that the speed of the front
in some desorption problems is constant at large times. As mentioned in Section
4.1, and proved in Appendix 2, when n = 1 is considered, that is when a constant
speed is assumed, we obtain the necessary condition Cinit ≤C? which is not admis-
sible. The question then arises of how to modify our present model in order that a
constant speed of the front is admissible for large times. In what follows we give
an answer to this question by modifying the front condition (2).

In order to understand the physical meaning of the front condition (2) we introduce
M(t), the total mass of the penetrant in the polymeric matrix at each time t, which
is defined by

M(t) =
∫

∞

0
C(x, t)dx. (38)

Taking derivatives in (38) we have

M′(t) =
∫ s(t)

0
DgCg

xx(x, t)dx+
∫

∞

s(t)
DrCr

xx(x, t)dx

+s′(t)
(

Cg(s(t)−, t)−Cr(s(t)+, t)
)

,

(39)

and then

M′(t) = Dg
(
Cg

x (s(t)−, t)−Cg
x (0, t)

)
+Dr

(
Cr

x(∞, t)−Cr
x(s(t)+, t)

+s′(t)
(

Cg(s(t)−, t)−Cr(s(t)+, t)
)

,

that is

M′(t) = J(0)− J(∞)− s′(t)[C]s(t) +[J]s(t). (40)

Considering in (40) condition (2) and using the fact that the polymer has the right-
hand side isolated we obtain M′(t) = J(0). Finally, as we are dealing with a des-
orption phenomenon we conclude that M′(t)≤ 0.

Let us consider now that M′(t) satisfies (40). As the polymer is desorbing M′(t)≤ 0
and consequently from Cr

x(∞, t) = 0, we establish

DgCg
x (s(t)−, t)−DrCr

x(s(t)+, t)+ s′(t)
(

Cg(s(t)−, t)−Cr(s(t)+, t)
)

≤ DgCg
x (0, t) .

(41)
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This last inequality can be written as

[J]s(t) ≤ s′(t)[C]s(t) +DgCg
x (0, t) . (42)

When t → ∞, we deduce from (25), that Cg
x (0, t)→ 0 and consequently (42) as-

sumes the form

[J]s(t) ≤ s′(t)[C]s(t) . (43)

We note that the results in the previous subsections of Section 4 have been obtained
under the more restrictive condition (2).

Let us consider n = 1 in s(t) = 2s̄t1/n. Replacing Cr
x(s(t)+, t) and Cg

x (s(t)−, t) in
the new front condition (43) we obtain the inequality

f i
∞ ≤Cinit −Cext . (44)

Finally replacing (44) in (20) we have

lim
t→∞

Cg(s(t)−, t)≤Cinit

which is trivially verified. We can then conclude that relaxing the front condition
(2) the model admits a linear speed of the front at large times.

5 On the stability of the model

In this section we investigate the overall stability of the model (1) -(2), (6)-(8)
under a perturbation of the initial condition (6). In Section 4 we presented heuristic
evidence of the stability of s(t). Following this heuristic we assume that the front
is stable with respect to perturbations of the initial condition Cinit . The usual L2

norm is denoted by ‖.‖L2 . We shall first establish an estimate for ‖C(., t)‖L2 with
homogeneous boundary conditions.

Multiplying (1) by C, in the sense of the L2 inner product, we have

(Ct ,C) = −(DCx,Cx)+ [CJ]s(t)

+ C(0, t)J(0, t)−C(L, t)J(L, t).
(45)

It can be easily shown that

d
dt
‖C‖2

L2 = 2
∫ L

0
CtC dx+ s′(t)

(
C(s(t)−, t)2−C(s(t)+, t)2) . (46)
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Substituting (46) and the zero boundary condition at x = 0 and x = ∞ into (45) we
obtain

1
2

d
dt
‖C‖2

L2 =−(DCx,Cx)+
1
2

s′(t)
(
C(s(t), t)2

−−C(s(t)+, t)2)+[CJ]s(t). (47)

As we are considering a desorption problem we assume that Cx > 0. Under this
assumption we next prove that

1
2

s′(t)
(
C(s(t)−, t)2−C(s(t)+, t)2)+[CJ]s(t) ≤ 0 . (48)

Multiplying (2) by C(s(t)−, t)+C(s(t)+, t), we obtain

1
2

s′(t)
(
C(s(t)+, t)2−C(s(t)−, t)2)=

1
2
[J]s(t) (C(s(t)−, t)+C(s(t)+, t)) .

Therefore, (48) follows if we prove that for Cx > 0 holds the inequality

−1
2
[J]s(t) (C(s(t)−, t)+C(s(t)+, t))+ [CJ]s(t) ≤ 0. (49)

We may express (49) in the simpler form

(J(s(t)−, t)+ J(s(t)+, t))(C(s(t)−, t)−C(s(t)+, t))≥ 0 .

As C(s(t)−, t)−C(s(t)+, t)≤ 0 and Cx > 0 we have

J(s(t)−, t)+ J(s(t)+, t)≤ 0, (50)

and consequently (49) is proved.

Finally using (48) in (47) we obtain

1
2

d
dt
‖C‖2

L2 ≤−(DCx,Cx), (51)

from which we deduce

1
2

d
dt
‖C‖2

L2 ≤ 0. (52)

The previous arguments lead us to the following proposition:

Proposition 1 Let C be the solution of (1) -(2), (6)-(8) with initial conditions Cinit

and homogeneous boundary conditions. Assuming that s(t) is stable, then

‖C(., t)‖L2 ≤ ‖Cinit‖L2 , t ≥ 0. (53)
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As a consequence of Proposition 1 we can state that the initial boundary value
problem (1), (2), (3), (6), (7) and (8) has at most one solution. From Proposition 1
we can also establish the stability of the model. For the purpose of our analysis, we
consider C and C̃ to be the solutions of problems with initial conditions respectively
v0 and ṽ0, where v0− ṽ0 > 0 and v = C−C̃.

As a corollary of Proposition 1, we establish the following result:

Corollary 1 Let C and C̃ be solutions of (1)-(3) with initial conditions v0 and ṽ0,
where v0 > ṽ0. It follows that

‖v(., t)‖L2 ≤ ‖v0− ṽ0‖L2 , t ≥ 0. (54)

6 Numerical illustrations

In the previous sections the theoretical analysis carried on leads to the conclusion
that if the front position is defined by s(t) = 2s̄

√
t then Cg(s(t)−, t) is constant for

small and large times. In what follows we illustrate the behavior of the solution of
(1) -(2), (6)-(8) in two cases:

1. Cg(s(t)−, t) is constant for all times,

2. Cg(s(t)−, t) is function of the time with a prescribed behavior.

In this last case we assume that for small times Cg(s(t)−, t) = Cg
?,0 with Cg

?,0 ∈
(Cext ,C?) and Cg(s(t),t)→C? when t→ ∞.

The numerical results were obtained considering a standard finite standard finite
difference discretization (55) of the initial boundary value problem (1) -(2), (6)-(8).

Let {x j = x j−1 + h, j = 1, . . . ,N}, with x0 = 0,xN = L, be a spatial grid in [0,L]
where L is large enough. In [0,T ], T > 0, we define the time grid {tn = tn−1 +
∆t,n = 1, . . . ,M} with t0 = 0 and tM = T. By D2 we denote the second order cen-
tered finite difference operator and by D− we represent the usual backward finite
difference operator. Let Cg

j,n and Cr
j,n be the numerical approximation for Cg(x j, tn)

and Cr(x j, tn), respectively, defined by the finite difference scheme
Cg

j,n+1 = Cg
j,n +∆tDgD2Cg

j,n+1, j = 1, . . . , in+1
? −1,

Cr
j,n+1 = Cr

j,n +∆tDrD2Cr
j,n+1, j = in+1

? +1, . . . ,N,

sn+1− sn

∆t

(
C?−Cg

in?−,n

)
=−DrD−Cr

in?+1,n +DgD−Cg
in?−,n

(55)
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If

|sn+1− xin? |>
h
2

(56)

then in (55) xin+1
?

= xin?+1. Else xin+1
?

= xin? .

As initially the polymeric matrix is in the rubbery state we consider

i0? = 0, Cr
j,0 = Cinit , j = 1, . . . ,N−1, Cr

0,n = Cext , Cr
N−1,n = Cr

N+1,n,n = 0, . . . ,M.

While the polymeric matrix is in the rubbery state Cr
j,n+1 is defined by the second

equation of (55). Let n? be the first time level such that Cr
2,n?

< C?. Then we use
(55) with

Cg
0,n = Cext ,C

g
in?,n

= Cg
in?−,n,C

r
in?,n = C?, n≥ n?.

In Figure 8 we plot the numerical solution when Cg(s(t)−, t) is constant for all
times. In Figure 9 we plot the numerical solution with Cg(s(t)−, t) defined by

Cg(s(t)−, t) =

 (1− t0e−t0)C?, t ∈ (0, t0]

(1− t0e−t)C?, t ∈ (t0,+∞).
(57)

We observe that when Cg(s(t),t) = C? for all t then a Fickian model is obtained.

7 A 3D application

Let us consider now a desorption phenomenon in the 3D polymeric matrix S repre-
sented in Figure 10.

We suppose that the matrix is isolated in the top and it is soaked with a diffusing
substance at initial time. We assume that the substance reaching the bottom side
is immediately removed. The polymer is initially in the rubbery state and, as the
diffusion substance is lost by the bottom side, a glassy front arises which propagates
to the entirely polymeric matrix. As before, let C? represents Cr(s(t), t) Then the
evolution in S of the diffusing substance can be described by the partial differential
equation Cg

t = Dg∆Cg,Cg < C∗

Cr
t = Dr∆Cr,Cr ≥C∗

, (58)

where ∆ denotes the Laplace operator

∆C(x1,x2,x3, t) =
3

∑
i=1

Cxixi(x1,x2,x3, t).
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Figure 8: Numerical concentrations Cr and Cg computed with (55) for
Cg(s(t)−, t) = 0.78 and Cinit = 1,C? = 0.8,Cext = 0,Dr = 1,Dg = 0.4.
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Figure 9: Numerical concentrations Cr and Cg computed with (55) for Cg(s(t)−, t)
defined by (57) and Cinit = 1,C? = 0.8,Cext = 0,Dr = 1,Dg = 0.4.



40 Copyright © 2009 Tech Science Press CMC, vol.13, no.1, pp.17-47, 2009

Figure 10: The polymeric matrix S.

Let π represents an arbitrary horizontal section parallel to the x1Ox2 plan. We
assume that S is homogeneous in the sense that the concentration at any point P =
(x1,x2,x3) of this section depends only on x3.

In Figure 11 we illustrate the behavior of the desorption phenomenon in the 3D
polymeric matrix when C? = 0.8,Dr = 1,Dg = 0.4,Cg

? = 0.78. In Figure 12 we
compare non Fickian behavior with the Fickian one. As can be observed , in the
Fickian case the drug release is faster.

8 Conclusions

The main contribution of this paper is the explanation provided for the slowing of
the front speed and the qualitative behavior of penetrant loss in polymeric matrices.
At the best of our knowledge these two characteristics of polymer desorption have
been explained in the mathematical literature by the introduction of the viscoelastic
effect. The phenomenological model presented here avoids the global viscoelastic
effect and is based on the observation by experimentalists that the only obvious
violation of Fick’s law arises in the front.

We show that the slowing of the front and the behavior of penetrant loss can be
achieved with a local non Fickian model obtained with a natural condition. This
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Figure 11: Evolution in time of the diffusing substance in the polymer vehicle S
computed with (55).
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Figure 12: Fickian and non Fickian evolution in time of the diffusing substance in
S computed with (55).
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front condition is based on the physics of desorption and is related to the decreasing
behavior of the overall mass of the penetrant within the polymeric matrix. The
analytical results established and the numerical results presented agree with the
experimentalists observations.
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Appendices

Appendix 1

We compute A by taking limits in (24) as t→ ∞. As

lim
t→∞

e
γx+γ2t

α2 erfc
(x+2γt

2α
√

t

)
= lim

t→∞

2α
√

t√
π(x+2γt)

e−
x2

4α2t , (59)

and Cg can be written as

Cg(x, t) = Cext +
f i
∞

2

(
2eA2Dgt(eAx− e−Ax)

+e−Ax+A2Dgt erfc
(−x+2ADgt√

4Dgt

)
− eAx+A2Dgt erfc

(x+2ADgt√
4Dgt

))
, x < s(t),

(60)

we obtain, after some simplifications,

lim
t→∞

Cg(x, t) = lim
t→∞

(
Cext + f i

∞

(
eA2Dgt(eAx− e−Ax)

+e−
x2

4Dgt
( √

Dgt
√

π(−x+2ADgt)
−

√
Dgt

√
π(x+2ADgt)

)))
.

(61)

The limit in (61) is finite provided that A = 0.

Appendix 2

Let us suppose that in (26) B 6= 0. Substituting (59) into the large-time limit of (26),
we obtain

lim
t→∞

Cr(x, t) = Cinit −
f b
∞

2
lim
t→∞

e−
x2

4Drt
2
√

Drt√
π(x+2B

√
Drt)

− f b
∞

2
lim

t→+∞
eB2t− Bx√

Dr erfc
( x

2
√

Drt
−B
√

t
)
, x≥ s(t).

(62)
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The first limit in the right side of (62) is zero. To guarantee the boundness of
lim
t→∞

Cr(x, t) for x≥ s(t) we must have

Bt− x√
Dr
≤ 0, x≥ s(t), (63)

which holds if

s(t) =
√

DrBt. (64)

As Cr(s(t), t) = C? from (62) we have

C? = Cinit − f b
∞.

Computing now Cr
x(s(t)+, t) and Cg

x (s(t)−, t) and replacing in (2) we obtain in the
large time limit

−Dr(Cinit −C?)
B√
Dr

=
√

DrB
(
C?−Cext − f i

∞

)
,

that is

f i
∞ = Cinit −Cext . (65)

With this value of f i
∞ we have from (25)

lim
t→∞

Cg(s(t)−, t) = Cinit .

As the concentration on the glassy region, Cg(x, t), must satisfy

Cg(x, t)≤C?

we conclude that Cinit ≤C? which is not admissible because in a desorption problem
Cinit > C?. This means that (64) does not hold and then B = 0.



A Phenomenological Model for Desorption in Polymers 45

Appendix 3

Symbol Definition
Dr Diffusion coefficient in the rubbery state
Dg Diffusion coefficient in the glassy state
Cg Concentration in the glassy region
Cr Concentration in the rubbery region
s(t) Position of the front at time t
s′(t) Time derivative of s(t)
Cg

t First order partial derivative of Cg with respect to time variable t of Cg

Cg
xx Second order partial derivative with respect to the spatial variable x of Cg

Cr
xx Second order partial derivative with respect to the spatial variable x of Cr

[C]s(t) Jump of the concentration at s(t)
J(x, t) Flux at (x, t)
[J]s(t) Jump of the flux at the front s(t)
C? Characteristic solute concentration
Cinit Initial concentration in the polymeric matrix
Cext External concentration
f i Fictitious initial glassy concentration
fb Fictitious left boundary rubbery concentration

erf(y)
2√
π

∫ y

0
e−s2

ds

erfc(y) 1− erf(y)
f i
0 f i for small times

f i
∞ f i for large times

f b
0 fb for small times

f b
∞ fb for large times

Cg(s(t)−, t) lim
x→s(t)−

Cg(x, t)

Cg
?,0 Cg(s(t)−, t) for small times

Cg
?,∞ Cg(s(t)−, t) for large times

M(t) Total mass of the penetrant in the polymeric matrix
Cg

j,n Numerical approximation for Cg(xi, tn)
Cr

j,n Numerical approximation for Cr(xi, tn)
D2 Second order centered finite difference operator
D− Backward finite difference operator
sn Numerical approximation for s(tn)
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