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Research on Activated Carbon Supercapacitors
Electrochemical Properties Based on Improved PSO-BP

Neural Network
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Abstract: Supercapacitors, also called electrical double-layer capacitors (EDLCs),
occupy a region between batteries and dielectric capacitors on the Ragone plot de-
scribing the relation between energy and power. BET specific surface area and
specific capacitance are two important electrochemical property parameters for ac-
tivated carbon EDLCs, which are usually tested by experimental method. However,
it is misspent time to repeat lots of experiments for EDLCs’ studies. In this investi-
gation, we developed one theoretical model based on improved particle swarm op-
timization algorithm back propagation (PSO-BP) neural network (NN) to simulate
and optimize BET specific surface area and specific capacitance. Comparative stud-
ies between the predicted data and experimental data–earlier deduced by Liu et al,
have revealed that improved PSO-BPNN model bears higher prediction accuracy,
faster computation speed and better generalization performance.It is concluded that
the improved PSO–BP NN is one simple and effective method to find optimal con-
ditions of BET specific surface area and specific capacitance for activated carbon
EDLCs.

Keywords: Activated Carbon EDLC; Electrochemical Property; Neural Network;
Particle Swarm Optimization

1 Intruduction

In recent years, it has aroused lots of interest in supercapacitors (EDLCs) because
they fi11 in a gap between batteries and conventional capacitors in terms of energy
and power EDLCs have been touted as a solution to the mismatch between the fast
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growth in power required by devices and the inability of batteries to efficiently dis-
charge at high rates [Chmiola, Yushin, Gogotsi, Portet, Simon and Taberna (2006);
Arico, Bruce, Scrosati, Tarascon and Schalkwijk (2005)]. This large capacity for
high power discharge is directly related to the absence of charge-transfer resis-
tances that are characteristic of battery faradaic reactions and subsequently leads to
better performance at low temperature. Improvements in the energy density may
accelerate the advent of electrical and fuel-cell cars, as well as enable numerous in-
dustrial and consumer applications for supercapacitors [Brodd, Bullock and Leising
(2004)]. The main classes of the EDLCs are activated carbon, nano-carbon fiber
and carbon aerogel, etc. Among of them, activated carbon has been applied widely
because it have many advantages of cheap cost, easy to access and consistent per-
formance.

BET specific surface area and specific capacitance are two important parameters
that affect the electrochemical performances (mainly including energy density and
power density) of activated carbon EDLCs. During the process of searching for
relationship between the technical parameters and desired performance indicators
of EDLCs lots of experiments have to be repeated. Such traditional material design
method would be bound to waste lots of manpower and resources. However, theo-
retical modeling offers reasonable alternative because total or part of complex and
time-consuming experiments can be replaced[Yang, Gu and Liang (2007); Husain,
Guniganti, Sehgal and Pandey (2009)].

Recently, with the development of modern science and technology, artificial intel-
ligent technology has been widely used to predict, estimate and optimize for ma-
terial engineering[Aymerich and Serra(2006); Kerh, Lai, Gunaratnam and Saun-
ders(2008); Wu, Chiu and Wang (2008)]. BPNN(Back Propagation Neural Net-
work) and PSO (Particle Swarm Optimization) algorithm are two branches of arti-
ficial intelligence technology that can be combined to optimize complex non-linear
problems [Pidaparti and Neblett(2007)]. In this paper, we proposed a new improved
PSO algorithm to optimize electrochemical properties of activated carbon EDLCs.
It is found that the improved PSO–BPNN has great potential to handle problems
such as estimating and optimizing variables in material chemometrics systems.

2 Experimental process

2.1 Activated Carbon Preparation

A series of activated carbon EDLCs samples, including A1 ∼ A18and B1-B5 were
prepared by means of KOH activation method. The pitch coke powder and KOH
solution were mixed with different ratios of alkali / carbon in different heat treat-
ment processes at different activation times. The mixture should be mixed fully,
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and then was activated from 700◦C to 830◦C under nitrogen protection in a nickel
autoclave.

2.2 Activated Carbon Electrodes Preparation and Simulation Capacitor Assem-
bly

60£¥ Polytetrafluoroethylene(PTFE) emulsion was added to the electrodes materi-
als as binder and the mass ratio of activated carbon and PTFE was fixed at 95:5. In
an agate grinder, the mixture was milled for two hours in order to obtain a homo-
geneous product. Then, the mixture was kneaded and pressed to shape the round
slices electrodes with 13.3mm long and 0.5mm thick by hydraulic machines at
10MPa. The carbon electrode films were made by suppressed carbon film on the
nickel foam (100ppi) collector. In an argon glove box, the two equal mass of nickel
electrode films were laid face to face and interrupted by polypropylene (PP) sep-
tum. Before assembling into simulation capacitors, carbon electrode and PP sep-
tum were immersed in a vacuum electrolyte. Finally, they were assembled into a
simulated capacitor. The process chart of EDLC electrode was shown in Figure 1.

 Figure 1: The process chart of EDLC electrode

2.3 Methods of BET Specific Surface area and Specific Capacitance Test

Specific surface area of EDLC electrode was tested by multipoint BET method and
the BET specific surface area was measured by Micromeritics ASAP2020.

Constant current charge-discharge circulating was tested with DTS which is a kind
of high-precision capacitors test system. The range of charge voltage was 0.05V
∼0.9 V and the number of charge and discharge circulating was more than one hun-
dred. We obtained the specific capacitance of activated carbon simulation capacitor
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according to [Qu and Shi (1998)]:

C = 2I(m×∆V/∆t), (1)

where I(A) is the discharge current, m(g) is the mass of single carbon electrode and
∆V /∆t is the slope of constant current discharge .

2.4 Experiment Data

BET specific surface area or SBET and specific capacitance of activated carbon
EDLCs were determined by lots of factors. In this study, we focused on three key
factors: activation dosage, activation time and activation temperature. The prac-
tice for producing activated carbon EDLCs showed that selecting appropriate acti-
vation dosage, activation time and activation temperature can effectively adjusting
and controlling experiment condition, achieve good technical parameters.Technical
parameters of experimental samples were listed in Table 1.

3 BP Artificial Neural Networks

Artificial neural network or NN was founded by McCulloch and Coworkers in early
1940s [Perlovsky (2001)]. NNs had emerged as a result of simulation of biological
nervous system (such as the brain) on a computer. Nowadays, as one of the most
powerful computer analysis techniques, neural networks have been used in many
fields. By way of researching the application of nerve network technique, lots of the
computer neural network models were established [Gorynin and Ushkov (2000)].

Materials chemometrics involves the relationships among components, process,
organization and performance. However, it is difficult to establish mathematical
model due to complex and unclear internal laws of material system. To overcome
this problem, NNs use samples data to establish material intelligent system mod-
els. NNs have many advantages such as strong ability of nonlinear approximation,
self-learning and so on. More importantly, NNs have the ability to solve multi-
parameter and multi-step prediction problems. Just for that, NNs are very suitable
for materials chemometrics problems.

There are dozens of neural network model such as BP, Radial Basis Function or
RBF, Kohonen, Hopfield and Generalized Regression Neural Network or GRNN.
Among of them, BPNN is the most extensive and practical one. The vast ma-
jority of neural networks are rooted in the standardized BP algorithm. Figure 2
showed the typical structure of BPNN[Yuan (2002)]. BP neural network is usually
comprised by three layers. The first layer is input layer consisting of a group of
processing units which are responsible for acceptance of data imported to the net-
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Table 1: Technical parameters of experiment samples

Sample KOH/ Activation Activation SBET Capacitance
Pitch coke time /h temperature/oC /m2.g−1 /F.g−1

A1 6: 1 1.5 830 3396 298
A2 5: 1 1.5 830 3134 269
A3 4: 1 1.5 830 2787 238
A4 3: 1 1.5 830 2261 228
A5 5: 1 1.5 800 2532 247
A6 4: 1 1.5 800 2465 236
A7 4.5£º1 1.5 800 2649 248
A8 3: 1 1.5 800 1861 223
A9 4: 1 2 800 2663 269
A10 4: 1 3 800 2963 257
A11 3: 1 4 800 2459 236
A12 3: 1 3 800 1827 219
A13 3: 1 2 700 1750 212
A14 6: 1 1.5 770 3365 287
A15 5: 1 1.5 770 3124 241
A16 4: 1 1.5 770 2598 233
A17 3: 1 1.5 770 1980 222
A18 2: 1 1.5 800 1229 203
B1 6: 1 2 800 3013 284
B2 4: 1 1.5 800 2663 237
B3 4: 1 2 770 2559 226
B4 3: 1 1.5 700 2169 219
B5 5: 1 3 800 2732 245

work. The output layer is responsible for output data to the network. Other layers
which do not accept any input data or output data are called hidden layers.

In Figure 2, supposing that wl
ji is connection weight from i node of l − 1 layer

to j node of l layer, net l
jand out l

j are input and output values of j node of l layer,
Xi(i = 1, · · ·N)is input factor, f is neurons activation function. Usually, BPNN is
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Figure 2: Basic structure of BPNN

represented by following model:

out1
j = x j ( j = 0,1, . . . ,N) (2)

net l
j =

pot(l−1)

∑
i=0

ω
l
jiout l−1

i (l = 2,3, . . . ,L) (3)

out l
j = f (net l

j) ( j = 1,2, . . . , pot(l)) (4)

Ê j = outL
j ( j = 1,2, . . . ,M) (5)

Here, pot(l) (l = 1,2, · · · ,L) in Eq.(4) is the node number of each layer Ê j is es-
timated value of design objective. In BPNN, hidden layers error is determined by
back propagating algorithm. BP algorithm is repeated several times until obtain-
ing reasonable residual error. Steps of optimization procedure are similar to those
detailed in [Guessasma, Montavon, Gougeon and Coddet (2003)] and the learning
algorithm is detailed in [Hamzaoui, Guessasma, ElKedim and Gaffet (2005)].

4 Improved Particle Swarm Optimization Algorithm

The particle swarm optimization algorithm was first put forward by Kennedy and
Eberhart[Eberhart and Kennedy (1995)] who was inspired by the swarming behav-
ior of animals and human social behavior. In PSO algorithm, a point in the problem
space is called a particle which consists of a position vector~x and a velocity vector~v.
Each particle’s position property is treated as a solution in D-dimensional space.
Each particle is ‘flown’ through the multidimensional search space and adjusts its
position according to its own experience and those of neighboring particles. The
performance of each particle is evaluated by a predefined fitness function.
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PSO is initialized by a group of random particles with different positions property
and velocities property. The optimal solution is obtained through iteration. The two
‘extremes’ are the best position ~pobtained by the particle so far and the overall best
position ~pg obtained by all particles. Two ‘extremes’ are updated in each iteration.
The updates of each particle consist of velocity update and position update.

Usually, the particle position is updated according to:

~x(t +1)←~x(t)+~v(t +1), (6)

and the velocity is updated according to:

~v(t +1) = ω~v(t)+ϕ1(~p−~x(t))+ϕ2(~pg−~x(t)), (7)

where ϕ1 and ϕ2 are accelerated coefficient used to adjust the~vg and~v respectively.
They are often selected as random numbers typically within[0,2]. w is the nonlinear
variation inertia weight that represents speed inertial of particles.

In this work, step expression is replaced by Eq.(8):

~x(t +1)← c1rand1~x(t)+ c2rand2~v(t +1), (8)

where c1 and c2are step coefficients which are used to adjust the ~xg and ~x respec-
tively. To accelerate convergence rates and improve numerical precision,c1 and c2
often are selected as 2. rand1and rand2 are random numbers typically within the
limits of [-1,1]. In comparing improved variable step length PSO algorithm with the
traditional PSO, improved PSO has following advantages: straight-forward logic,
easy implement, few parameters to adjust and rapidly convergence rates because the
step length is controlled by the autocorrelation estimation of error signal. Improved
variable steplength PSO algorithm constantly updates using Eq.(7) and Eq.(8) until
specified number of iteration is exceeded or the particle velocity is close to zero.

5 Improved Particle Swarm Optimization Neural Network Model

Gradient algorithm has been widely used for training the weights of feed forward
neural networks. BP algorithm has strong ability of searching for local optimal,
however it is difficult for BP algorithm to get the global optimization as BP is a
kind of gradient-based method. The weight is often updated according to:

ω
N
ji (k) = ω

N
ji (k−1)+∆ω ji, (9)

where N is the number of input node and K is the number of iteration. As usual,
BP algorithm has exposed these shortcomings: slowly convergence training speed,
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easily to get stuck into a local minimum and the final weight value depending heav-
ily on the initial weight. As the initial weight is given randomly, this would also
heavily affect speed and accuracy if the free given initial value is not ideal. To
overcome these problems the PSO algorithm has been adopted.

PSO is one of global algorithm which has strong ability of searching for global
optimal. PSO improves the efficiency of search and avoids precocity because its
optimization process dose not depend on the gradient information. By introduc-
ing the nonlinear variation weight and step coefficients into the standard particle
swarm algorithm ensures the overall convergence and enhances the accuracy of
convergence. By introducing inertia factor, the movement inertia of particle main-
tains good momentum. It is helpful to search for the new better regional for the
particles. The optimization results of NN would less depend on the random initial
particles.

In this paper, improved PSO was used to optimize the initial weight and train
threshold of BPNN model. Firstly, using PSO algorithm, optimized input and out-
put weights and threshold of BP model were obtained. Then, after initial value
optimizing, the optimized PSOBPNN model was used to predict electrochemical
properties of activated carbon EDLCs. Thus, some problems about BPNN such
as slowly convergences training peed, easily to get stuck into a local minimum,
sensitive initial weight and other issues could be well solved.

6 PSO-BPNN Predicting Model for Activated Carbon EDLC’s Electrochem-
ical Properties

The main process and method of PSO-BPNN predicting model for activated carbon
EDLC electrochemical properties were as follows.

6.1 BPNN Predicting Model

In order to predict activated carbon EDLC electrochemical properties, a mathemat-
ical model expressed electrochemical properties in terms of experimental data was
required. In this study, the mathematical model was built using BP neural network.
During the BPNN model design process, we focused on the following aspects:

a. Experimental Database. The first step of BPNN modeling was to build an
input-output training database according to activated carbon EDLC electrode ex-
perimental data. The experiment process was detailed in section 2 of this paper.
The experimental database was used to train and test BPNN model.

b. Input-output Vector. In order to identify input vector, influence factors about
activated carbon EDLC electrochemical properties should be carefully analyzed.
There are lots of influent factors and their mutual influences are even strong. How-
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ever, among of them, activation dosage, activation time and activation temperature
are three key factors, so they were all selected as input vectors. Output vectors are
BET specific surface area(SBET ) and specific capacitance.

The first 18 experimental data (No.A1 to No.A18 in Table 1) were used to train
BPNN model, while the last 5 data (No.B1 to No.B5 in Table 1) were used to test
BPNN model. In order to eliminate dimension different, all input and output data
were normalized with the Eq.(10):

Xnorm =
2(X−Xmin)
Xmax−Xmin

−1. (10)

All input and output data are mapped to the range of [-1,1].

c.Transfer Function Selection. How to select transfer function and activation
function of BPNN is important. There are many transfer functions for neural net-
works such as logarithmic, tangent hyperbolic and gauss. In this paper, among
these transfer functions, tangent hyperbolic sigmoid (tansig) led to the minimum
mean square error (MSE) and was selected as hidden layer transfer function there-
fore. Because log-sigmoid(logsig) function mapped neurons value well to [0,1],
and it was selected as output layer transfer function .

Tansig function was represented as follow:

f (x) = 2/(1+ e−2x)−1. (11)

Logsig function was represented as follow:

f (x) = 2/(1+ e−2x). (12)

d. Number of Hidden Layer Neurons. NN training seems to be highly sensitive
to number of hidden layer neurons; however, the number of hidden layer neurons is
usually determined by trial and error. It is known that too few neurons can lead to
under-fitting whereas too many neurons can contribute to over-fitting. In this work,
gradually growth method was used to train network until the number of hidden layer
nodes met the requirements of error. During training process, number of hidden
layer neurons had been increased from 5 to 9 in order to define output accurately.
Statistical methods were used to compare the training results. Mean-squares error
(MSE) was defined as follows:

MSE =
1

mp

p

∑
p=1

m

∑
s=1

(dps− yps)2, (13)

where m is the number of output nodes, p is the number of training sample, dpsis
desired output value of NN model and ypsis actual output value of NN model.
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Figure 3 illustrated the performance of BPNN training with different numbers of
hidden layer neurons. As seen from Figure 3, when the number of hidden layer
neurons was 6, it met the requirements of model design because MSE of the NN
model was close to 0.0012 and gradually fell to 0.001 after 150 epoch. Hence 6
were set as optimal number of hidden layer neurons.
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Figure 3: Relationship diagram among MSE, number of hidden layer neurons and
iteration epochs

6.2 Optimized PSO-BPNN Predicting Modeling

BPNN structure was composed of three layers: three input layer neurons corre-
sponding to activation dosage, activation time and activation temperature, two out-
put layer neurons corresponding to BET specific surface area and specific capaci-
tance and one hidden layer with 5-9 neurons. Table 2 summarized learning factors
of BPNN model during training and testing processes.

Table 2: Learning factors of BPNN

Parameter item Value
Learning rate (η) 0.04

Momentum constant 0.9
Maximum number of epochs 500

Goal of MSE 0.01
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In PSO-BPNN model, all particles were encoded by real number strings. Each
real number string represented weights of BPNN model. The improved PSO–BP
predicting and optimizing modeling approach of activated carbon EDLCs’ electro-
chemical properties can be described as follows:

Step 1. Set parameters for improved PSO.

This step included setting the numbers of PSO particles, dimension D, randomly
initial string with adaptive group-scale, the initial w, learning factor c1, c2 and
iteration stop conditions. In this study, s was set as 18, D was set as 47, w was set
as 0.6, c1 and c2 were set as 2 and largest iterative number was set as 500.

Step 2. Calculate the fitness function value according to Eq.(14)

J =
1
2 ∑

n
∑
k

(Yn,k−
−
Y
n,k

) (14)

If the function value met certain conditions, training process would be terminated
and we obtained output results. Otherwise the fitness information will be returned
to the next step.

Step 3. Update ω according to fitness function.

Step 4. Return to the second step and calculate the new fitness with renewed ω .

Step 5.Get optimal solution.

When iteration was terminated, an improved PSO-BP algorithm was obtained based
on initial optimal solution of improved PSO algorithm.

Step 6. The optimized PSO-BPNN model was used to predict activated carbon
EDLCs’ electrochemical properties.

6.3 PSO-BPNN Testing

The performance of trained PSO-BPNN model can be evaluated by errors of train
and test sets. The PSO-BPNN model was tested by eighteen input data and five
output data. For each data, the predicted values of electrochemical properties were
compared with mean error percentage (MRE) and root mean squared (RMS). MRE
and RMS were defined as follows respectively:

RMS = ((1/p)Σ |Ve−Vp|2)1/2, (15)

MRE = (1/p) |(Ve−Vp)/Ve|×100%, (16)

where p is the number of experimental data, Ve is the experimental value of elec-
trochemical properties, and Vp is the predicted value of electrochemical properties.
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7 Results and Discussion

Comparison of experimental data and prediction data of train set were shown in
Figure 4 when training MSE was 0.001. It showed that improved PSO-BPNN
model were characterized by high training precision and well fitting prediction re-
sult (experimental data represented by “·” and prediction data represented by “ ”).
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Figure 4: Comparison of experimental and predicted data of train set

Generalization ability is used to verify if the prediction data of test set and exper-
imental data fit very well. The generalization ability of the system is more impor-
tant. By comparing the prediction data with experimental data of test set, it could
be clearly seen that experimental data were very close to the predicted data of test
set from Figures 5 and 6.

RMS and MRE of train and test sets were shown in Table 3. It can also be real-
ized that the PSO-BPNN model characterize perfect prediction and generalization
performances.

Table 3: RMS and MRE of train and test sets
RMS-train MRE-train RMS-test MRE-test

SBET 0.0018 0.0021 0.052 0.0102
Specific capacitance 0.0024 0.0023 0.065 0.0322

Before this study, activated carbon EDLCs’ electrochemical properties prediction
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Figure 6: Comparison of experimental and predicted date of test set for specific
capacitance

model based on BPNN had been established. To further verify the accuracy of the
PSO-BPNN model, we compared the prediction results of BPNN model with the
results of PSO-BPNN model. The comparison results were shown in Table 4.

It can be seen from the Table 4 that BPNN model did enough to meet a require-
ment for predicting application of activated carbon EDLCs’ electrochemical prop-
erties,but the largest relative error percentage of BPNN model is more 5.5% than
that of improved PSO-BPNN model and the average relative error percentage is
more 5% than that of improved PSO-BPNN model. In the light of the maximum,
minimum, RMS or average errors, the PSO-BPNN’s are all less than BPNN’s.In ad-
dition, during training and testing process, execution time of PSO-BPNN is quicker
3.4 times than BPNN’s. It is clear that the prediction and generalization perfor-
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mance of PSO BPNN model have been greatly improved.

8 Conclusions

The aim of this paper was to show material chemometrics and NNs intelligent the-
ory application possibility for the activated carbon EDLCs’ electrochemical prop-
erties. Results show that the NNs can be used as an alternative theoretic method
in material systems. In this work, the electrochemical properties prediction model
was developed and optimized using improved PSO BPNN algorithm. Based on ex-
perimentation and investigation carried out, the following conclusions are drawn:

a. NN model with three layers and one hidden layer of 6 neurons is a powerful
method for predicting activated carbon EDLCs’ electrochemical properties.

b. The combined improved PSO-BPNN model can be well used to optimize pre-
diction model. The prediction model is characterized by good approximation per-
formance as RMS-test of SBET and RMS–test of specific capacitance are 0.052 and
0.065 respectively. MRE of SBET and specific capacitance between experimental
data and the predicted output are 1.02% and 3.22% respectively. Hence, prediction
model for activated carbon EDLCs’ electrochemical properties based on improved
PSO-BPNN is possessed with good approximation, rapidly converging and high
precision.

c. The advanced PSO-BPNN modeling method is simple, rapid and reliable. The
essential principle can be popularized to prediction and simulation of other material
system.

In addition, by defining more impact factors and more experimental data, the im-
proved PSO-BPNN model would present better prediction and generalization per-
formance, however, this would increase experiment cost and time.

Although PSO-BPNN is an efficient intelligent theory method for activated carbon
EDLCs’ electrochemical properties, it should consider more variables of experi-
mental conditions. These extensions will be the focus of our future work.
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