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Relaxation of Alternating Iterative Algorithms for the
Cauchy Problem Associated with the Modified Helmholtz

Equation

B. Tomas Johansson1 and Liviu Marin2

Abstract: We propose two algorithms involving the relaxation of either the given
Dirichlet data or the prescribed Neumann data on the over-specified boundary, in
the case of the alternating iterative algorithm of Kozlov, Maz′ya and Fomin (1991)
applied to Cauchy problems for the modified Helmholtz equation. A convergence
proof of these relaxation methods is given, along with a stopping criterion. The
numerical results obtained using these procedures, in conjunction with the bound-
ary element method (BEM), show the numerical stability, convergence, consistency
and computational efficiency of the proposed methods.
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1 Introduction

Helmholtz-type equations characterise many physical applications related to wave
propagation and vibration phenomena, as well as heat conduction problems. These
equations are often used to describe, for example, the vibration of a structure
[Beskos (1997)], the acoustic cavity problem [Chen and Wong (1998)], the radia-
tion wave [ Harari, Barbone, Slavutin and Shalom (1998)], the scattering of a wave
[Hall and Mao (1995)], the problem of heat conduction in fins [ Kraus, Aziz and
Welty (2001)], Debye-Hückel theory [Debye and Hückel (1923)], the linearization
of the Poisson-Boltzmann equation [Liang and Subramaniam (1997)]. In many
engineering problems, either the boundary conditions are incomplete, or the geom-
etry of the domain under investigation is not completely known, or the so-called
wave number, κ > 0, that characterises the Helmholtz-type equation is unknown.
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These are inverse problems and it is well-known that they are generally ill-posed,
in the sense that the existence, uniqueness and stability of their solutions are not
always guaranteed, see e.g. Hadamard (1923).

Inverse problems are currently a very active research area, in particular for param-
eter, boundary and data reconstructions in solid mechanics and heat transfer, see
e.g. Huang and Wu (2007), Qian, Cao, Zhang, Raabe, Yao and Fei (2008),
Liu (2008a,b), Liu, Chang, Chang and Chen (2008), Liu, Chen and Chang
(2009), Marin and Karageorghis (2009), Marin (2009b), Silieti, Divo and Kassab
(2009). A classical example of an inverse boundary value problem associated with
Helmholtz-type equations is represented by the Cauchy problem. In this case, the
boundary conditions are incomplete, in the sense that a part of the boundary of
the solution domain is over-specified by prescribing on it both the primary field
and its normal derivative, while the remaining boundary is under-specified and the
boundary conditions on the latter boundary have to be determined. The uniqueness
of the Cauchy problem is guaranteed without the necessity of removing the eigen-
values for the Laplacian operator, as it happens in the case of direct problems for
the Helmholtz equation, see e.g. Chen and Zhou (1992). However, the Cauchy
problem suffers from the possible non-existence and instability of the solution.

Over the last decade, many theoretical and numerical studies have been devoted to
the Cauchy problem associated with Helmholtz-type equations. DeLillo, Isakov,
Valdivia and Wang (2001) detected the source of acoustical noise inside the cabin
of a midsize aircraft from measurements of the acoustical pressure field inside the
cabin by solving a linear Fredholm integral equation of the first kind and they ex-
tended this study to three-dimensional problems, see DeLillo, Isakov, Valdivia and
Wang (2003). The alternating iterative algorithm of Kozlov, Maz′ya and Fomin
(1991), which reduces the Cauchy problem to solving a sequence of well-posed
boundary value problems, was implemented numerically using the boundary el-
ement method (BEM) for the two-dimensional modified Helmholtz equation by
Marin, Elliott, Heggs, Ingham, Lesnic and Wen (2003a). Marin, Elliott, Heggs,
Ingham, Lesnic and Wen (2003b) used the conjugate gradient method (CGM), in
conjunction with the BEM, in order to solve the same inverse problem for both
the Helmholtz and the modified Helmholtz equations. Four regularization meth-
ods for the stable solution of the Cauchy problem associated with Helmholtz-type
equations, namely the Tikhonov regularization, the singular value decomposition
(SVD), the CGM and the alternating iterative algorithm of Kozlov, Maz′ya and
Fomin (1991), were compared by Marin, Elliott, Heggs, Ingham, Lesnic and Wen
(2004a). The Landweber-Fridman method and the BEM were used to solve the
Cauchy problem for two-dimensional Helmholtz and modified Helmholtz equa-
tions with L2−boundary data by Marin, Elliott, Heggs, Ingham, Lesnic and Wen
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(2004b). Jin and Zheng (2005a) solved some inverse boundary value problems
for the Helmholtz equation using the boundary knot method and a SVD regulariza-
tion and they also extended this method to some inverse problems associated with
the inhomogeneous Helmholtz equation Jin and Zheng (2005b). The numerical
solution for the Cauchy problem for two- and three-dimensional Helmholtz-type
equations by employing the method of fundamental solutions (MFS), in conjunc-
tion with the Tikhonov regularization method and SVD, was investigated by Marin
and Lesnic (2005) and Marin (2005), and Jin and Zheng (2006), respectively.
Tumakov (2006) addressed the use of the Fourier transformation method for the
Cauchy problem for the Helmholtz equation. Some spectral regularization methods
and a modified Tikhonov regularization method to stabilize the Cauchy problem for
the Helmholtz equation at fixed frequency were proposed by Xiong and Fu (2007),
while Jin and Marin (2008) employed the plane wave method and the SVD to solve
stably the same problem. Wei, Qin and Shi (2008), Qin and Wen (2009) and Qin,
Wei and Shi (2009) reduced the Cauchy problem associated with Helmholtz-type
equations to a moment problem and also provided an error estimate and conver-
gence analysis for the latter. Qin and Wei (2009a, 2010) proposed two regular-
ization methods, namely a modified Tikhonov regularization method and a trun-
cation method, for the stable approximate solution to the Cauchy problem for the
Helmholtz equation and they also presented convergence and stability results un-
der suitable choices of the regularization parameter. The quasi-reversibility method
and a truncation method were used to solve the Cauchy problem for the modified
Helmholtz equation in a rectangular domain by Qin and Wei (2009b), who also
analysed the stability and convergence of the proposed regularization procedures.
Shi, Wei and Qin (2009) addressed a fourth-order modified method for the solution
of the Cauchy problem associated with the modified Helmholtz equation in an infi-
nite strip domain and they also provided convergence estimates under the suitable
choices of regularization parameters and the a priori assumption on the bounds of
the exact solution. Recently, the Cauchy problem for two-dimensional Helmholtz-
type equations with L2−boundary data was approached by combining the BEM
with the minimal error method by Marin (2009a).

Jourhmane and Nachaoui (2002) and Jourhmane, Lesnic and Mera (2004) pro-
posed the relaxation of the given Dirichlet data in the case of the alternating it-
erative algorithm of Kozlov, Maz′ya and Fomin (1991) applied to the Cauchy
problem for steady-state heat conduction in isotropic and anisotropic media, re-
spectively. This procedure drastically reduced the number of iterations required to
achieve convergence for the inverse problems considered. Recently, a relaxation
of the alternating method in elasticity was both numerically and theoretically in-
vestigated, see Ellabib and Nachaoui (2008) and Marin and Johansson (2010).



156 Copyright © 2009 Tech Science Press CMC, vol.13, no.2, pp.153-189, 2009

Encouraged by their results, we do further investigations and propose a relaxation
of both the measured temperature and the prescribed normal heat flux on the over-
specified boundary, in the case of the modified Helmholtz equation. Moreover,
we also prove the convergence of these schemes and introduce appropriate optimal
stopping rules.

The paper is organized as follows: Section 2 is devoted to the mathematical for-
mulation of the inverse problem investigated, as well as the introduction of the
function spaces used herein. The alternating iterative algorithms with relaxation
for the Cauchy problem associated with the modified Helmholtz equation are then
presented in Section 3, while the proof of the convergence theorem for this proce-
dure is given in Section 4. The implementation of the proposed numerical method
is realized using the BEM and this is briefly discussed in Section 5. In Section 6, the
algorithms introduced in Section 3 are applied to solving three Cauchy problems
with exact and noisy Cauchy data. Finally, some concluding remarks and possible
future work are provided in Section 7.

2 Mathematical formulation

2.1 Notation and function spaces

Consider a bounded Lipschitz domain Ω ⊂ Rd , where d is the dimension of the
space where the problem is posed, usually d ∈ {1,2,3}. Let Γ0 6= ∅ be an arc
of ∂Ω having non-zero length and set Γ1 = ∂Ω \Γ0. Let H1(Ω) be the Sobolev
space of real-valued functions in Ω endowed with the standard norm. We denote
by H1

0(Ω) and H1
Γi

(Ω), i = 0,1, the subspaces of functions from H1(Ω) that vanish
on ∂Ω and Γi, i = 0,1, respectively.

The space of traces of functions from H1(Ω) to ∂Ω is denoted by H1/2(∂Ω), while
the restrictions of the functions belonging to the space H1/2(∂Ω) to the subset Γi ⊂
∂Ω, i = 0,1, define the space H1/2(Γi), i = 0,1. The set of real valued functions
in ∂Ω with compact support in Γi, i = 0,1, and bounded first-order derivatives are
dense in H1/2(Γi), i = 0,1. Furthermore, we also define the space H1/2

00 (Γi), i = 0,1,
that consists of functions from H1/2(∂Ω) and vanishing on Γ1−i, i = 0,1. The space
H1/2

00 (Γi), i = 0,1, is a subspace of H1/2(∂Ω) with the norm given by:

‖ f‖
H1/2

00 (Γi)
=
(∫

Γi

f 2(x)
dist(x,Γi)

dΓ(x)+
∫

Γi

∫
Γi

| f (x)− f (y)|2

|x−y|d
dΓ(x)dΓ(y)

)1/2

. (1)

It should be mentioned that the space of restrictions from H1/2
00 (Γi) to Γi, i = 0,1, is

dense in H1/2(Γi), i = 0,1. Nonetheless, H1/2
00 (Γi) 6= H1/2(Γi). Finally, we denote

by
(
H1/2

00 (Γi)
)∗ the dual space of H1/2

00 (Γi), i = 0,1.
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2.2 The Cauchy problem

Helmholtz equations arise naturally in many physical applications, some examples
being the vibration of a structure, the acoustic cavity problem, the radiation wave,
the scattering of a wave, the heat conduction in fins, Debye-Hückel theory and the
linearization of the Poisson-Boltzmann equation. In this work, in order to refer to
a specific physical problem, we shall consider Helmholtz problems in the context
of heat transfer problems, see e.g. Kraus, Aziz and Welty (2001). We therefore
assume that the temperature field, u(x), satisfies the modified Helmholtz equation
in a bounded Lipschitz domain Ω⊂ Rd , namely

L u(x)≡
(
∆−κ2)u(x) = 0, x ∈Ω, (2)

where κ > 0. The partial differential equation (2) models the heat conduction in
a fin where u is the dimensionless local fin temperature, κ2 = h

/(
k̃ δ f

)
, h is the

surface heat transfer coefficient [W
/(

m2K
)
], k̃ is the thermal conductivity of the

fin [W
/(

mK
)
] and δ f is the half-fin thickness [m].

We now let n(x) =
(
n1(x), . . . ,nd(x)

)T be the outward unit normal vector at x∈ ∂Ω

and N u(x)≡ q(x) = ∇u(x) ·n(x) be the normal heat flux at a point x∈ ∂Ω, where
N is the boundary-differential operator associated with the modified Helmholtz
differential operator, L ≡ ∆−κ2, and Neumann boundary conditions on ∂Ω. In
the direct problem formulation, the knowledge of the constant κ, the location, shape
and size of the entire boundary ∂Ω, the temperature and/or the normal heat flux
on the entire boundary ∂Ω gives the corresponding Dirichlet, Neumann, or mixed
boundary conditions, which enable one to determine the unknown boundary condi-
tions, as well as the temperature distribution in the solution domain.

A different and more interesting situation arises when it is possible to measure both
the temperature and the normal heat flux on a part of the boundary ∂Ω, say Γ0, and
this leads to the mathematical formulation of the Cauchy problem consisting of the
partial differential equation (2) and the boundary conditions

u(x) =ϕ(x), N u(x)≡ q(x) =ψ(x), x ∈ Γ0, (3)

where ϕ ∈ H1/2(Γ0) and ψ ∈
(
H1/2

00 (Γ0)
)∗ are prescribed temperature and normal

heat flux, respectively. In the above formulation of the boundary conditions (3),
it can be seen that the boundary Γ0 is over-specified by prescribing both the tem-
perature u

∣∣
Γ0

= ϕ and the normal heat flux q
∣∣
Γ0

= ψ, while the boundary Γ1 is
under-specified since both the temperature u

∣∣
Γ1

and the normal heat flux q
∣∣
Γ1

are
unknown and have to be determined. We also assume that data are chosen such that
there exists a solution to this Cauchy problem. This solution is unique according to
the so-called unique continuation properties for elliptic equations.
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The Cauchy problem for the modified Helmholtz equation is considerably more
difficult to solve than the direct problem, both analytically and numerically, since
the solution does not satisfy the general conditions of well-posedness. Although the
problem may have a unique solution, it is well-known that this solution is unstable
with respect to small perturbations in the data on Γ1, see Hadamard (1923). Thus
the problem is ill-posed and we cannot use a direct approach in order to solve
the system of linear equations which arises from the discretization of the partial
differential equation (2) and the boundary conditions (3).

3 Alternating iterative algorithms with relaxation

In this section we propose two alternating iterative algorithms with relaxation which
aim to improve the computational time of the alternating iterative algorithm intro-
duced by Kozlov, Maz′ya and Fomin (1991), at the same time maintaining the
accuracy of the numerical results obtained with the latter.

Alternating iterative algorithm with relaxation I:

Step 1.1. If k = 1 then choose an arbitrary function ξ(1) ∈
(
H1/2

00 (Γ1)
)∗.

Step 1.2. If k ≥ 2 then solve the direct problem
L u(2k−2)(x) = 0, x ∈Ω,

q(2k−2)(x)≡ ∇u(2k−2)(x) ·n(x) =ψ(x), x ∈ Γ0,

u(2k−2)(x) = η(k−1)(x), x ∈ Γ1,

(4)

where η(k−1)(x) = u(2k−3)(x), x ∈ Γ1, to obtain u(2k−2)(x), x ∈Ω, and q(2k−2)(x)≡
∇u(2k−2)(x) ·n(x), x ∈ Γ1.

Step 2. Provided that k ≥ 2 update the unknown Neumann data on Γ1 as:

ξ(k)(x) = θq(2k−2)(x)+(1−θ)ξ(k−1)(x), x ∈ Γ1, (5)

where the relaxation factor, 0≤ θ≤ 2, is fixed. For k ≥ 1 solve the direct problem
L u(2k−1)(x) = 0, x ∈Ω,

u(2k−1)(x) =ϕ(x), x ∈ Γ0,

q(2k−1)(x)≡ ∇u(2k−1)(x) ·n(x) = ξ(k)(x), x ∈ Γ1,

(6)

to determine u(2k−1)(x), x ∈Ω, and u(2k−1)(x), x ∈ Γ1.

Step 3. Set k = k +1 and repeat Steps 1 and 2 until a prescribed stopping criterion
is satisfied.
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Remark 3.1 The value θ = 1 in Eqn. (5) corresponds to the alternating iterative
algorithm introduced by Kozlov, Maz′ya and Fomin (1991) with an initial guess for
the Neumann data, whilst values θ ∈ (0,1) and θ ∈ (1,2) in Eqn. (5) correspond
to the alternating iterative algorithm introduced by Kozlov, Maz′ya and Fomin
(1991) with an initial guess for the Neumann data and a constant under- and over-
relaxation factor, respectively.

Alternating iterative algorithm with relaxation II:

Step 1.1. If k = 1 then choose an arbitrary function η(1) ∈ H1/2(Γ0).
Step 1.2. If k ≥ 2 then solve the direct problem


L u(2k−2)(x) = 0, x ∈Ω,

u(2k−2)(x) =ϕ(x), x ∈ Γ0,

q(2k−2)(x)≡ ∇u(2k−2)(x) ·n(x) = ξ(k−1)(x), x ∈ Γ1,

(7)

where ξ(k−1)(x) = q(2k−3)(x), x ∈ Γ1, to obtain u(2k−2)(x), x ∈ Ω, and u(2k−2)(x),
x ∈ Γ1.

Step 2. Provided that k ≥ 2 update the unknown Dirichlet data on Γ1 as:

η(k)(x) = θu(2k−2)(x)+(1−θ)η(k−1)(x), x ∈ Γ1, (8)

where the relaxation factor, 0≤ θ≤ 2, is fixed. For k ≥ 1 solve the direct problem


L u(2k−1)(x) = 0, x ∈Ω,

q(2k−1)(x)≡ ∇u(2k−1)(x) ·n(x) =ψ(x), x ∈ Γ0,

u(2k−1)(x) = η(k)(x), x ∈ Γ1,

(9)

to determine u(2k−1)(x), x ∈Ω, and q(2k−1)(x)≡ ∇u(2k−1)(x) ·n(x), x ∈ Γ1.

Step 3. Set k = k +1 and repeat Steps 1 and 2 until a prescribed stopping criterion
is satisfied.

Remark 3.2 The value θ = 1 in Eqn. (8) corresponds to the alternating iterative
algorithm introduced by Kozlov, Maz′ya and Fomin (1991) with an initial guess for
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the Dirichlet data, whilst values θ ∈ (0,1) and θ ∈ (1,2) in Eqn. (8) correspond
to the alternating iterative algorithm introduced by Kozlov, Maz′ya and Fomin
(1991) with an initial guess for the Dirichlet data and a constant under- and over-
relaxation factor, respectively.

Remark 3.3 In was reported in Marin and Johansson (2010) that, in the case of
elasticity, both these relaxation versions numerically produced similar results and
this turns out to be valid also in the case of the modified Helmholtz equation (2).
Thus, since it is easier and somewhat more natural to make a guess for function
values on the boundary part Γ1 than for normal derivatives on Γ1, from now on,
we shall mainly concentrate on producing theoretical and numerical results for the
alternating iterative algorithm with relaxation II.

4 Convergence of the alternating iterative algorithms with relaxation

Following the ideas of Jourhmane and Nachaoui (2002) we shall prove:

Theorem 4.1 Let ϕ ∈ H1/2(Γ0) and ψ ∈
(
H1/2

00 (Γ0)
)∗. Assume that the Cauchy

problem (2) and (3) has a solution u ∈ H1(Ω). Let u(k) be the k-th approximate so-
lution in the alternating procedure II described above. Then there exists a number
1 < b≤ 2 such that when the relaxation parameter θ is chosen with 1≤ θ≤ b, then

lim
k→∞

∥∥u−u(k)∥∥
H1(Ω) = 0 (10)

for any initial data element η(1) ∈ H1/2(Γ1).

To obtain a proof of this theorem we shall first rewrite the Cauchy problem (2) and
for this we need to introduce an operator. To define this operator, let u(1) be the
solution to (9) with k = 1 for given functions η(1) = η and ψ= 0. Let then u(2) be
the solution to (7) for k = 2 with ϕ= 0 and ξ(1) = q(2k−3) on Γ1. Define the linear
operator Tθ : H1/2(Γ1)−→ H1/2(Γ1) for θ≥ 0 by

Tθη= θu(2)(η)
∣∣
Γ1

+(1−θ)η, (11)

which is well-defined. In a similar way, let v(2) be the element obtained from the
second approximation in the alternating iterative algorithm with relaxation II, with
the initial guess η= 0, and define the element Gθ(ϕ,ψ) by

Gθ(ϕ,ψ) = θv(2)∣∣
Γ1

. (12)
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The Cauchy problem (2) is equivalent to the fixed point equation

Tθη+Gθ(ϕ,ψ) = η. (13)

Thus, to show convergence of the procedure, we shall investigate the properties of
the operator Tθ. We point out that to the authors’ knowledge, in the previous works
on alternating iterative methods, the operator Tθ has not been examined, and the
reason for this is represented by the fact that, previously, mostly Neumann data
have been the starting initial guess instead of the trace.

To find the properties of Tθ, we first introduce the bilinear form

a(u,v) =
∫

Ω

∇u ·∇vdx+κ2
∫

Ω

uvdx, (14)

for u,v ∈ H1(Ω). We also define the following bilinear form in H1/2(Γ1)(
η,ζ
)

= a(u,v), (15)

where u solves (9) with η(k) = η andψ= 0, and similarly v solves (9) with η(k) = ζ
and ψ = 0, where η and ζ are in H1/2(Γ1). Since κ is a real number it is straight-
forward to check that

(
·, ·
)

is a well-defined inner product in H1/2(Γ1) and that the
corresponding norm

∥∥ ·∥∥ is equivalent with the standard norm on H1/2(Γ1).

Lemma 4.1 Let T = T1, where T1 is defined by (11). Then T is injective, self-
adjoint, positive definite, non-expansive with respect to the inner product (15), and
one is not an eigenvalue.

Proof: This follows using techniques from Kozlov and Maz′ya (1989) and Ko-
zlov, Maz′ya and Fomin (1991). For the sake of completeness, we show that T is
non-expansive; the other properties of T can be deduced in the similar way. Let
u(k) be generated from the alternating iterative algorithm II, with ϕ= 0 and ψ= 0.
Since u(k)

∣∣
Γ0

= 0 or q(k)
∣∣
Γ0

= 0, for k = 1,2,3, we find using Green’s formula

a
(
u(k),u(k))=

∫
Γ1

u(k) q(k) dΓ(y), k = 1,2,3. (16)

Similarly, since q(3) = 0 on Γ0 and u(2) = u(3) on Γ1,

a
(
u(2),u(3))=

∫
Γ1

u(3) q(3) dΓ(y). (17)
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Using (16), we obtain, from Eqn. (17), a
(
u(2),u(3)

)
= a
(
u(3),u(3)

)
. From this,

a
(
u(3)−u(2),u(3)−u(2))= a

(
u(2),u(2))−a

(
u(3),u(3)). (18)

In a similar way,

a
(
u(2)−u(1),u(2)−u(1))= a

(
u(1),u(1))−a

(
u(2),u(2)). (19)

Since
(
η,η
)

= a
(
u(1),u(1)

)
and

(
Tη,Tη

)
= a
(
u(3),u(3)

)
, where

(
·, ·
)

is defined by
(15), combining (18) and (19) we have(
Tη,Tη

)
≤
∥∥η∥∥2

,

and thus T is non-expansive. Note that if the number one is an eigenvalue, then an
eigenfunction u has u = 0 and q = 0 on Γ0. Using the uniqueness of the Cauchy
problem, we conclude that u is zero, hence one is not an eigenvalue, which implies
that T has the norm less than unity.

We can now finish the proof of Theorem 4.1. It is sufficient to consider the case
when ϕ = 0 and ψ = 0. Let then u(k) be generated from the second alternating
iterative algorithm with the initial guess η. Note that

Tθη= θTη+(1−θ)η. (20)

Clearly, using Lemma 4.1, we find that Tθ is self-adjoint for θ≥ 0. Using Lemma 4.1
and the representation (20), following the steps in the proof of Theorem 4.1 in
Marin and Johansson (2010), one can verify that Tθ is positive definite for 1≤ θ≤
b, non-expansive with respect to the inner product and one is not an eigenvalue.
One can then check that

a
(
u(2k+1),u(2k+1))=

(
T (2k+1)
θ η,T (2k+1)

θ η
)
. (21)

Thus, from the properties of the operator Tθ, we conclude that the right-hand side
tends to zero and therefore also lim

k→∞

a
(
u(2k+1),u(2k+1))= 0. Now, a

(
u(2k+1),u(2k+1)

)
≥

min{1,κ2}
∥∥u(2k+1)

∥∥
H1(Ω), and we conclude that lim

k→∞

∥∥u(2k+1)∥∥
H1(Ω) = 0. Fi-

nally, using the identity

a
(
u(2k+2)−u(2k+1),u(2k+2)−u(2k+1))= a

(
u(2k+1),u(2k+1))−a

(
u(2k+2),u(2k+2)),

(22)

we find that also lim
k→∞

∥∥u(2k)∥∥
H1(Ω) = 0, which completes the proof.
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Remark 4.1 Let v be the solution to the Helmholtz equation (2) with Neumann
conditions q =ψ on Γ0 and q = ξ0 on Γ1, and put η= v

∣∣
Γ1

. Starting the alternating

iterative algorithm II with the initial guess η0 = η, the approximations u(k) obtained
for k ≥ 2 will be precisely those produced by the alternating iterative algorithm I
with the initial guess ξ = ξ0. Thus, from Theorem 4.1, convergence is settled also
for the the alternating iterative algorithm I.

5 Boundary element method

In the two-dimensional case, i.e. d = 2, the modified Helmholtz equation (2) can
be formulated in integral form as, see e.g. Chen and Zhou (1992),

c(x)u(x)+ −
∫

∂Ω

[∇yF (x,y) ·n(y)] u(y)dΓ(y) =
∫

∂Ω

F (x,y)q(y)dΓ(y),

x ∈Ω, y ∈ ∂Ω,

(23)

where the first integral is taken in the sense of the Cauchy principal value, c(x) = 1
for x∈Ω and c(x) = 1/2 for x∈ ∂Ω (smooth). Here F is the fundamental solution
for the two-dimensional modified Helmholtz equation given by

F (x,y) =
1

2π
K0
(
κ
∥∥x−y

∥∥), x,y ∈ R2, (24)

where K0 is the modified Bessel function of the second kind of order zero.

A BEM with constant boundary elements is employed in order to discretise the
integral equation (23), see Chen and Zhou (1992). If the boundaries Γ0 and
Γ1 are discretised into N0 and N1 constant boundary elements, respectively, such
that N = N0 + N1, then on applying the boundary integral equation (23) at each
node/collocation point, we arrive at the following system of linear algebraic equa-
tions

AU = BQ. (25)

Here A and B are matrices which depend solely on the geometry of the boundary
∂Ω and material properties, i.e. the so-called wave number, κ, and can be calculated
analytically, while the vectors U and Q consist of the discretised values of the
boundary temperatures and normal heat fluxes, respectively. The BEM system of
linear algebraic equations (25) can be re-written as[

A(00) A(01)

A(10) A(11)

](
U(0)

U(1)

)
=
[

B(00) B(01)

B(10) B(11)

](
Q(0)

Q(1)

)
, (26)
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where the vectors U(0) =
(
u(1), . . . ,u(N0)

)T ∈ RN0 and T(0) =
(
q(1), . . . ,q(N0)

)T ∈
RN0 contain the values of the temperature and normal heat flux, respectively, at
the nodes/collocation points on the under-specified boundary Γ0, while the vectors
U(1) =

(
u(N0+1), . . . ,u(N0+N1)

)T ∈ RN1 and T(1) =
(
q(N0+1), . . . ,q(N0+N1)

)T ∈ RN1

consist of the values of the temperature and normal heat flux, respectively, at the
nodes/collocation points on the over-specified boundary Γ1. Here the matrices
A(i j) ∈ RNi×N j and B(i j) ∈ RNi×N j , i, j = 0,1, contain the elements of the BEM
matrices A and B, respectively, corresponding to the decomposition of the global
vectors U and Q, in the sense that the indices i and j denote the fact that the
nodes/collocation points belong to the the boundary Γi, i = 0,1, and the field points
are located on the boundary Γ j, j = 0,1, respectively.

It should be mentioned that at each step of the two alternating iterative algorithms
with relaxation presented in Section 3 two direct mixed well-posed problems are
solved using the BEM. Consequently, the general form of the BEM system of linear
algebraic equations associated with these direct problems may be recast as

CX = F, (27)

where

C =
[

A(00) −B(01)

A(10) −B(11)

]
, X =

(
U(2k−2)

Q(2k−2)

)
,

F =
[

B(00) −A(01)

B(10) −A(11)

] (
Ψ

E(k−1)

)
,

(28.1)

U(2k−2) =
(
u(2k−2;1), . . . ,u(2k−2;N0)

)T
,

Q(2k−2) =
(
q(2k−2;N0+1), . . . ,q(2k−2;N0+N1)

)T
,

(28.2)

Ψ =
(
ψ(1), . . . ,ψ(N0)

)T
, E(k−1) =

(
η(k−1;N0+1), . . . ,η(k−1;N0+N1)

)T
, (28.3)

and

C =
[
−B(00) A(01)

−B(10) A(11)

]
, X =

(
Q(2k−1)

U(2k−1)

)
,

F =
[
−A(00) B(01)

−A(10) B(11)

] (
Φ

Ξ
(k)

)
,

(29.1)

Q(2k−1) =
(
q(2k−1;1), . . . ,q(2k−1;N0)

)T
,

U(2k−1) =
(
u(2k−1;N0+1), . . . ,u(2k−1;N0+N1)

)T
,

(29.2)
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Φ =
(
ϕ(1), . . . ,ϕ(N0)

)T
, Ξ

(k) =
(
ξ(k;N0+1), . . . ,ξ(k;N0+N1)

)T
, (29.3)

for the direct mixed well-posed problems (4) and (6), respectively, in the case of
the alternating iterative algorithm with relaxation I. Formulae (28) and (29) are
also valid for the direct mixed well-posed problems (9) and (7), respectively, corre-
sponding to the alternating iterative algorithm with relaxation II, with the mention
that the pairs of indices (2k−2,k−1) and (2k−1,k) are interchanged.

6 Numerical results and discussion

Due to Remark 3.3, we shall mainly produce numerical results for the alternating
iterative algorithm with relaxation II. Therefore, it is the purpose of this section to
present the numerical implementation of this method using the BEM presented in
Section 5, for the Cauchy problem associated with the two-dimensional modified
Helmholtz equation and analyse the numerical convergence and stability of this
procedure, as well as the influence of the constant relaxation parameter, θ.

6.1 Examples

We consider three typical examples in both simply and doubly connected smooth
geometries in which the two-dimensional modified Helmholtz equation is satisfied
and we solve the Cauchy problem (2)− (3) for:

Example 1. (Doubly connected, smooth geometry) We consider the following
analytical solutions for the temperature and normal heat flux on the boundary ∂Ω:

u(an)(x) = exp(a1x1 + a2x2) , x = (x1,x2) ∈Ω, (30.1)

and

q(an)(x) = exp(a1x1 + a2x2) [a1 n1(x)+ a2 n2(x)] , x = (x1,x2) ∈ ∂Ω, (30.2)

respectively, where κ = 2.0, a1 = 1.0, a2 = −
√
κ2− a2

1 = −
√

3,

Ω =
{

x ∈ R2
∣∣ rint < ρ(x) < rout

}
, ρ(x) =

√
x2

1 +x2
2 is the radial polar coordinate

of x, rint = 0.5 and rout = 1.0. Here Γ0 = Γout =
{

x ∈ ∂Ω
∣∣ ρ(x) = rout

}
and

Γ1 = Γint =
{

x ∈ ∂Ω
∣∣ ρ(x) = rint

}
.

Example 2. (Doubly connected, smooth geometry) We consider the same geometry
and analytical solutions for the temperature and normal heat flux on the boundary
∂Ω as those corresponding to Example 1, and take Γ0 = Γint =

{
x ∈ ∂Ω

∣∣ ρ(x) = rint
}

and Γ1 = Γout =
{

x ∈ ∂Ω
∣∣ ρ(x) = rout

}
.

Example 3. (Simply connected, smooth geometry) We consider the following an-
alytical solutions for the temperature and normal heat flux on the boundary ∂Ω:
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u(an)(x) = exp(a1x1 + a2x2) , x = (x1,x2) ∈Ω, (31.1)

and

q(an)(x) = exp(a1x1 + a2x2) [a1 n1(x)+ a2 n2(x)] , x = (x1,x2) ∈ ∂Ω, (31.2)

respectively, where κ = 1.0, a1 = 0.5, a2 =
√
κ2− a2

1 =
√

3
/

2,
Ω =

{
x ∈ R2

∣∣ ρ(x) < r
}

and r = 1.0. Here Γ0 =
{

x ∈ ∂Ω
∣∣ π/2 < θ(x) < 2π

}
and Γ1 =

{
x ∈ ∂Ω

∣∣ 0 < θ(x) < π/2
}

, with θ(x) the angular polar coordinate of x.

For the inverse problems analysed, the BEM system of linear algebraic equations
(25) or (26) has been solved for each of the well-posed, direct, mixed boundary
value problems that occur at each iteration, k, of the algorithms presented in Section
3 to provide simultaneously the unspecified boundary temperature and normal heat
flux on Γ1. In this study, the numbers of constant boundary elements used for
discretising the over- and under-specified boundaries Γ0 and Γ1, respectively, were
taken as follows:

(i) N0 = 40 and N1 = 80 elements for Example 1;

(ii) N0 = N1 = 80 elements in the case of Example 2;

(iii) N0 = 20 and N1 = 60 elements for Example 3.

It is also important to mention that for the inverse problems investigated in this
paper, as well as the alternating iterative algorithm II, the initial guess η(1) for the
temperature u

∣∣
Γ1

, was taken to be

η(1)(x) = 0, x ∈ Γ1. (32)

Moreover, all numerical computations have been performed in FORTRAN 90 in dou-
ble precision on a 3.00 GHz Intel Pentium 4 machine.

6.2 Results obtained with exact data: Convergence of the algorithm

In order to analyse the accuracy, convergence and stability of the proposed alter-
nating iterative algorithm with relaxation II, for k ≥ 1 we introduce the following
errors

eu(k) =
∥∥u(2k)−u(an)∥∥

L2(Γ1)d (33.1)
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and

eq(k) =
∥∥q(2k−1)−q(an)∥∥

L2(Γ1)d . (33.2)

Here u(2k) and q(2k−1) are the temperature and normal heat flux retrieved on the
under-specified boundary Γ1 after k iterations using the alternating iterative algo-
rithm with relaxation II, with the mention that each iteration consists of solving two
direct mixed well-posed problems, namely equations (7) and (9).

Figs. 1(a) and 1(b) show, on a logarithmic scale, the accuracy errors eu and eq,
as functions of the number of iterations, k, obtained using the alternating iterative
algorithm II, exact Cauchy data and various values of the relaxation parameter θ,
in the case of Example 1. It can be seen from these figures that, for all values of
the relaxation parameter used in this paper, both errors eu and eq keep decreas-
ing until a specific number of iterations, after which the convergence rate of the
aforementioned accuracy errors becomes very slow so that they reach a plateau. As
expected, for each value of the relaxation parameter employed, eu(k) < eq(k) for
all k ≥ 1, i.e. temperatures are more accurate than normal heat fluxes; also, the
larger the parameter θ, the lower the number of iterations and, consequently, CPU
time required for obtaining accurate numerical results for both the temperature and
normal heat flux on Γ1. Therefore, choosing θ ∈ (1,2) in the alternating iterative
algorithms I and II results in a significant reduction of the number of iterations as
compared with the corresponding original alternating iterative algorithms proposed
by Kozlov, Maz′ya and Fomin (1991), i.e. for θ= 1.

The same conclusions can be drawn from Fig. 2(a), which illustrates the analytical
and numerical temperature u

∣∣
Γ1

obtained with θ = 1.80 after k = 1000 iterations,
and Fig. 2(b), which presents graphically the corresponding analytical and numeri-
cal values for the numerical heat flux q

∣∣
Γ1

. From Figs. 1 and 2, it can be concluded
that the alternating iterative algorithm with relaxation II described in Section 3 pro-
vides excellent approximations for the unknown Dirichlet and Neumann data on
Γ1 and is convergent with respect to increasing the number of iterations, k, if ex-
act Cauchy data are prescribed on the over-specified boundary Γ0. Although not
presented, it is reported that similar results have been obtained for Examples 2 and
3, and all admissible values of the relaxation parameter, as well as the alternating
iterative algorithm with relaxation I applied to Examples 1−3.

6.3 Regularizing stopping criterion

Once the convergence of the numerical solution to the exact solution with respect to
number of iterations performed, k, has been established, we investigate the stability
of the numerical solution for the examples considered. To do so and also simulate
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Figure 1: The accuracy errors (a) eu and (b) eq, as functions of the num-
ber of iterations, k, obtained using the alternating iterative algorithm II, ex-
act Cauchy data and several values of the relaxation parameter θ, namely θ ∈{

0.20,0.50,1.00,1.50,1.80
}

, for the Cauchy problem given by Example 1.
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Figure 2: The analytical and numerical temperatures (a) u
∣∣
Γ1

, and fluxes (b) q
∣∣
Γ1

,
obtained using the alternating iterative algorithm II, the discrepancy principle, θ=
1.80 and exact Cauchy data, i.e. pu = pq = 0%, for the Cauchy problem given by
Example 1.
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the inherent inaccuracies in the measured data on Γ0, we assume that various levels
of Gaussian random noise, pu and pq, have been added into the exact temperature
u
∣∣
Γ0

= ϕ and normal heat flux q
∣∣
Γ0

= ψ data, respectively, so that the following
perturbed temperature and normal heat flux are available:

ϕδ ∈ L2(Γ0) :
∥∥u(an)∣∣

Γ0
−ϕδ

∥∥
L2(Γ0)

= δ, (34.1)

and

ψδ ∈ L2(Γ0) :
∥∥q(an)∣∣

Γ0
−ψδ

∥∥
L2(Γ0)

= δ. (34.2)

Figs. 3(a) and 3(b) present, on a logarithmic scale, the accuracy errors eu and
eq, respectively, as functions of the number of iterations, k, obtained using the
alternating iterative algorithm II, θ= 1.80 and pu ∈ {1%,2%,3%}, for the Cauchy
problem given by Example 1. From these figures it can be seen that, for each fixed
value of pu, the errors in predicting the temperature and normal heat flux on the
under-specified boundary Γ1 decrease up to a certain iteration number and after
that they start increasing. If the iterative process is continued beyond this point
then the numerical solutions lose their smoothness and become highly oscillatory
and unbounded, i.e. unstable. Therefore, a regularizing stopping criterion has to
be used in order to cease the iterative process at the point where the errors in the
numerical solutions start increasing.

To define the stopping criterion required for regularizing/stabilizing the iterative
methods analysed in this paper, for k ≥ 1, the following convergence error is intro-
duced:

E(k) =
∥∥AU(k)−BQ(k)∥∥, (35)

where A and B are the BEM matrices. Here the vectors U(k) and Q(k) are given as
follows:

(i) For the alternating iterative algorithm with relaxation I

U(k) =
(

Φ

U(2k−1)

)
, Φ

δ =
(
ϕ(δ;1), . . . ,ϕ(δ;N0)

)T
,

U(2k−1) =
(
u(2k−1;1), . . . ,u(2k−1;N0)

)T
,

(36.1)

Q(k) =
(

Ψ

Q(2k)

)
, Ψ

δ =
(
ψ(δ;1), . . . ,ψ(δ;N0)

)T
,

Q(2k) =
(
q(2k;N0+1), . . . ,q(2k;N0+N1)

)T
;

(36.2)
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Figure 3: The accuracy errors (a) eu and (b) eq, and the convergence error (c) E,
as functions of the number of iterations, k, obtained using the alternating iterative
algorithm II, θ= 1.80 and various amounts of noise added into q

∣∣
Γ0

, i.e. pu = 0%
and pq ∈ {1%,2%,3%}, for the Cauchy problem given by Example 1.

(ii) For the alternating iterative algorithm with relaxation II

U(k) =
(

Φ

U(2k)

)
, Φ

δ =
(
ϕ(δ;1), . . . ,ϕ(δ;N0)

)T
,

U(2k) =
(
u(2k;1), . . . ,u(2k;N0)

)T
,

(37.1)

T(k) =
(

Ψ

Q(2k−1)

)
, Ψ

δ =
(
ψ(δ;1), . . . ,ψ(δ;N0)

)T
,

Q(2k−1) =
(
q(2k−1;N0+1), . . . ,q(2k−1;N0+N1)

)T
.

(37.2)

The alternating iterative algorithms I and II described in Section 3 are ceased ac-
cording to the discrepancy principle of Morozov (1966), see also Marin, Elliott,
Heggs, Ingham, Lesnic and Wen (2003a) and Marin and Johansson (2010), namely
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at the optimal iteration number, kopt, which is the smallest integer with

E(k)≈ O(δ). (38)

Fig. 3(c) presents the evolution of the convergence error E with respect to the num-
ber of iterations performed, k, using the alternating iterative algorithm II, θ= 1.80
and pu ∈ {1%,2%,3%}, for the Cauchy problem given by Example 1. By com-
paring Figs. 3(a)−3(c), it can be seen that selecting the optimal iteration number,
kopt, according to the stopping rule (38) captures very well the minimum values for
the accuracy errors eu and eq. Therefore, Eqn. (38) represents a stabilizing stop-
ping criterion for the alternating iterative algorithm with relaxation II, at the same
time being consistent with the findings of Marin, Elliott, Heggs, Ingham, Lesnic
and Wen (2003a), who analysed a particular case of the aforementioned algorithm,
namely θ = 1. Although not illustrated, it is important to mention that similar re-
sults and conclusions have been obtained for the other examples considered and
θ ∈ (0,2). The same conclusions can be drawn if the alternating iterative algorithm
with relaxation I is applied to solving the Cauchy problem given by Example 1,
using θ= 1.80 and pq ∈ {1%,2%,3%}.
As mentioned in Section 6.2, for exact data the iterative process is convergent with
respect to increasing the number of iterations, k, since the accuracy errors eu and
eq keep decreasing even after a large number of iterations, see Fig. 3. It should be
noted that, in this case, a stopping criterion is not necessary since the numerical so-
lution is convergent with respect to increasing the number of iterations. However,
even for exact Cauchy data on Γ0 the errors E, eu and eq have a similar behaviour
and the error E may be used to stop the iterative process at the point where the rate
of convergence is very small and no substantial improvement in the numerical solu-
tion is obtained if the iterative process is continued. Hence it can be concluded that
the regularizing stopping criterion proposed for the alternating iterative algorithms
with relaxation I and II is very efficient in locating the point where the errors start
increasing and the iterative process should be ceased.

6.4 Results obtained with noisy data: Stability of the algorithms

Based on the stopping criterion (38) described in Section 6.3, the analytical and
numerical values retrieved for the temperature and normal heat flux on the under-
specified boundary Γ1, using the alternating iterative algorithm II, θ = 1.80 and
pu ∈ {1%,2%,3%}, in the case of Example 1, are presented in Figs. 4(a) and 4(b),
respectively. It can be seen from these figures that the numerical solution for both
the temperature and normal heat flux is a stable approximation to its corresponding
exact solution, free of unbounded and rapid oscillations, and it converges to its
exact counterpart as pu decreases.



174 Copyright © 2009 Tech Science Press CMC, vol.13, no.2, pp.153-189, 2009

θ pu pq eu(kopt) eq(kopt) kopt CPU time [sec]
0.20 1% 0% 0.16413×10−2 0.49761×10−1 134 16.97

2% 0% 0.48845×10−2 0.11603×100 102 15.77
3% 0% 0.94039×10−2 0.19476×100 87 15.06

0.50 1% 0% 0.16490×10−2 0.49610×10−1 54 13.72
2% 0% 0.49227×10−2 0.11594×100 41 13.14
3% 0% 0.94820×10−2 0.19517×100 35 12.86

1.00 1% 0% 0.16683×10−2 0.49446×10−1 27 12.47
2% 0% 0.49938×10−2 0.11611×100 21 12.27
3% 0% 0.96999×10−2 0.19738×100 18 12.23

1.50 1% 0% 0.16560×10−2 0.49066×10−1 19 12.25
2% 0% 0.50573×10−2 0.11797×100 15 11.98
3% 0% 0.10042×10−1 0.20484×100 13 11.94

1.80 1% 0% 0.16599×10−2 0.48958×10−1 16 12.06
2% 0% 0.50894×10−2 0.11593×100 12 12.00
3% 0% 0.10127×10−1 0.20579×100 11 12.00

Table 1: The values of the accuracy errors, eu(kopt) and eq(kopt), the optimal itera-
tion number, kopt, and the CPU time, obtained using the alternating iterative algo-
rithm II, the discrepancy principle, various amounts of noise added into u

∣∣
Γ0

, i.e.
pu ∈ {1%,2%,3%} and pq = 0%, and various values for the relaxation parameter,
θ, for the Cauchy problem given by Example 1.
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The values of the accuracy errors, eu(kopt) and eq(kopt), the corresponding opti-
mal iteration number, kopt, and the CPU time, obtained using the alternating itera-
tive algorithm II, the stopping criterion (38), various levels of noise added into the
Dirichlet data on Γ0 and various values of the relaxation parameter, θ ∈ (0,2), for
the Cauchy problem given by Example 1, are presented in Table 1. The following
major conclusions can be drawn from Table 1:

(i) For all fixed values of the relaxation parameter θ ∈ (0,2), both accuracy
errors eu(kopt) and eq(kopt) decrease as pu decreases (i.e. the algorithm II is
stable with respect to decreasing the level of noise added into the Dirichlet
data on Γ0), while the optimal number of iterations kopt and, consequently,
the CPU time required for the alternating iterative algorithm II to reach the
numerical solutions for the unknown temperature and normal heat flux on Γ1
increase as pu decreases;

(ii) For all fixed amounts of noise added into the temperature on the over-specified
boundary Γ0, the accuracy errors eu(kopt) and eq(kopt), the optimal number
of iterations, kopt and the CPU time required for the alternating iterative al-
gorithm II to reach the numerical solutions for the unknown temperature and
normal heat flux on Γ1 decrease as θ −→ 2, i.e. as more over-relaxation is
introduced in the algorithm II. However, it should be stressed out that the dif-
ferences, in terms of accuracy, between the numerical results for both u

∣∣
Γ1

and q
∣∣
Γ1

, obtained for various values of the relaxation parameter, θ, are not
very significant.

Next, we exemplify the performance of the alternating iterative algorithm II with
under-, no and over-relaxation by considering Example 1 with pu = 1%. In this
case, the CPU times needed for the alternating iterative algorithm I with θ = 0.20
(under-relaxation), θ= 1.00 (no relaxation) and θ= 1.80 (over-relaxation) to reach
the numerical solutions for the temperature and normal heat flux on Γ1 were found
to be 16.97, 12.47 and 12.06 s, respectively, while the corresponding values for
the optimal number of iterations required, kopt, were found to be 134, 27 and 16,
respectively. This means that, to attain the numerical solutions for the unknown
Dirichlet and Neumann data on Γ1, the alternating iterative algorithm II with over-
relaxation (θ = 1.80) requires a reduction in the number of iterations performed
by approximately 29% and 88% with respect to those corresponding to the stan-
dard iterative algorithm II as proposed by Kozlov, Maz′ya and Fomin (1991), i.e.
without relaxation (θ= 1.00), and the alternating iterative algorithm II with under-
relaxation (θ= 0.20), respectively.
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Figure 4: The analytical and numerical temperatures (a) and (c) u
∣∣
Γ1

, and fluxes (b)
and (d) q

∣∣
Γ1

, obtained using the alternating iterative algorithm II, the discrepancy
principle, θ = 1.80 and various amounts of noise added into the Cauchy data, for
Example 1.



178 Copyright © 2009 Tech Science Press CMC, vol.13, no.2, pp.153-189, 2009

Similar conclusions to those obtained from Figs. 4(a) and 4(b) can be drawn from
Figs. 4(c) and 4(d), which present the numerical values for the temperature and
normal heat flux on the under-specified boundary Γ1, in comparison with their an-
alytical counterparts, obtained using the alternating iterative algorithm II, the regu-
larizing stopping criterion (38), θ = 1.80 and pq ∈ {1%,2%,3%}, for Example 1.
From Figs. 4(a)− 4(d), it can be observed that the alternating iterative algorithm
II applied to Example 1 is more sensitive to noise added into the temperature u

∣∣
Γ0

than to perturbations of the normal heat flux u
∣∣
Γ0

.

θ pu pq eu(kopt) eq(kopt) kopt CPU time [sec]
0.20 0% 1% 0.97549×10−3 0.35063×10−1 154 18.16

0% 2% 0.34161×10−2 0.10249×10 0 113 16.31
0% 3% 0.72020×10−2 0.19710×10 0 94 15.34

0.50 0% 1% 0.97334×10−3 0.34608×10−1 62 14.12
0% 2% 0.33653×10−2 0.99853×10−1 46 13.41
0% 3% 0.71921×10−2 0.19350×10 0 38 13.02

1.00 0% 1% 0.98644×10−3 0.34254×10−1 31 12.80
0% 2% 0.34281×10−2 0.98518×10−1 23 12.45
0% 3% 0.73623×10−2 0.19095×10 0 19 12.19

1.50 0% 1% 0.97438×10−3 0.33350×10−1 21 12.48
0% 2% 0.32708×10−2 0.93299×10−1 16 12.08
0% 3% 0.72582×10−2 0.18368×10 0 13 12.00

1.80 0% 1% 0.93884×10−3 0.32267×10−1 18 12.33
0% 2% 0.30741×10−2 0.88923×10−1 14 13.32
0% 3% 0.71987×10−2 0.17959×10 0 11 11.89

Table 2: The values of the accuracy errors, eu(kopt) and eq(kopt), the optimal itera-
tion number, kopt, and the CPU time, obtained using the alternating iterative algo-
rithm II, the discrepancy principle, various amounts of noise added into q

∣∣
Γ0

, i.e.
pu = 0% and pq ∈ {1%,2%,3%}, and various values for the relaxation parameter,
θ, for the Cauchy problem given by Example 1.

Table 2 tabulates the values of the corresponding accuracy errors given by equations
(33.1) and (33.2), the optimal iteration number, kopt, and the CPU time, obtained
using the alternating iterative algorithm II, the discrepancy principle (38), various
levels of noise added into the Neumann data on Γ0 and various values of the re-
laxation parameter, θ ∈ (0,2), for the Cauchy problem given by Example 1. From
Tables 1 and 2 it can be noticed that the sensitivity of the alternating iterative algo-
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rithm II with respect to noisy Dirichlet and Neumann data on Γ0, for Example 1,
results in the following:

(i) More inaccurate numerical results for both u
∣∣
Γ1

and q
∣∣
Γ1

are obtained for
perturbed temperature on Γ0 than for noisy normal heat flux on Γ0;

(ii) The optimal number of iterations, kopt, required for the alternating iterative
algorithm II to reach the numerical solutions for the unknown temperature
and normal heat flux on Γ1 in the case of perturbed temperature on Γ0 is
larger than that corresponding to noisy normal heat flux on Γ0.

Although not presented herein, it is important to report that accurate, convergent
and stable numerical results for the unknown temperature and normal heat flux on
Γ1 have also been obtained, in the case of the Cauchy problem associated with
Example 1, when using the alternating iterative algorithm I, θ = 1.80 and various
amounts of noise added into the temperature u

∣∣
Γ0

. We point out that it has been
noticed that the alternating iterative algorithm II provides slightly more inaccurate
numerical results for u

∣∣
Γ1

and q
∣∣
Γ1

for noisy temperature on Γ0 than for perturbed
normal heat flux on Γ0.

Again, accurate, stable and convergent numerical solutions for u
∣∣
Γ1

and q
∣∣
Γ1

have
been obtained for the Cauchy problem given by Example 2. Fig. 5 presents the
analytical and numerical results for the unknown temperature and normal heat flux
on Γ1, obtained using θ = 1.80, various levels of noise added into the Dirichlet or
Neumann data on Γ0 and the alternating iterative algorithm II, for Example 2.

6.5 Limitations of the algorithms

The analytical and numerical values for the temperature u
∣∣
Γ1

and normal heat flux
q
∣∣
Γ1

, obtained using the alternating iterative algorithm II, the discrepancy principle,
θ = 1.50 and various amounts of noise added into the temperature or normal flux
data on Γ0, in the case of the Cauchy problem given by Example 3, are presented
in Fig. 6. Although the numerically retrieved temperatures on Γ1 are reasonable
approximations for their analytical values, see Figs. 6(a) and 6(c), and the errors
in the numerical results obtained for both the temperature and the normal heat flux
on the under-specified boundary Γ1 decrease with respect to decreasing the level of
noise added into the Cauchy data on Γ0, it can be seen from Figs. 6(b) and 6(d) that
the numerical normal heat fluxes on Γ1 still remain inaccurate approximations for
their corresponding analytical counterparts. In addition, the numerical normal heat
fluxes on Γ1 are very inaccurate approximations for their analytical counterparts,
as well as highly oscillatory, at the endpoints of Γ1. Figs. 6(a)− 6(d) clearly
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Figure 5: The analytical and numerical temperatures (a) and (c) u
∣∣
Γ1

, and fluxes (b)
and (d) q

∣∣
Γ1

, obtained using the alternating iterative algorithm II, the discrepancy
principle, θ = 1.80 and various amounts of noise added into the Cauchy data, for
Example 2.
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Figure 6: The analytical and numerical temperatures (a) and (c) u
∣∣
Γ1

, and fluxes (b)
and (d) q

∣∣
Γ1

, obtained using the alternating iterative algorithm II, the discrepancy
principle, θ = 1.50 and various amounts of noise added into the Cauchy data, for
Example 3.
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show the difficulty of the alternating iterative algorithm II in reconstructing the un-
known temperature and normal heat flux on the under-specified boundary Γ1 from
noisy Cauchy measurements on the remaining boundary Γ0 in the case of a simply
connected domain and hence the limitation of the proposed numerical procedure
for such geometries. For this type of problems, special treatment is required for
the temperature at the common endpoints of the over- and under-specified bound-
aries, i.e. points belonging to Γ0 ∩ Γ1. One may use weight functions at each
iteration of the algorithm in order to cancel the singularities, see e.g. Johansson
and Marin (2007), but this will be investigated in a future work. Although not
presented, it is reported that similar results have been obtained when solving the
Cauchy problem given by Example 3 using the alternating iterative algorithm I, as
well as Cauchy problems for the modified Helmholtz equation in piecewise smooth,
simply connected geometries, such as rectangular or square domains.

7 Conclusions

In this paper, we proposed two algorithms involving the relaxation of either the
given Dirichlet data (temperature) or the prescribed Neumann data (normal heat
flux) on the over-specified boundary in the case of the alternating iterative algo-
rithm of Kozlov, Maz′ya and Fomin (1991) applied to Cauchy problems for the
modified Helmholtz equation. A convergence proof of these relaxation methods
was given, as well as a regularizing stopping criterion. The aforementioned al-
ternating iterative algorithms with relaxation were implemented, for Cauchy prob-
lems governed by the two-dimensional modified Helmholtz equation, by employ-
ing constant boundary elements. The numerical results obtained using these pro-
cedures, in the case of doubly connected domains, i.e. domains whose over- and
under-specified boundaries have no common points, showed the numerical stabil-
ity, convergence, accuracy, consistency and computational efficiency of the pro-
posed method. More specifically, both alternating iterative algorithms with con-
stant over-relaxation of either the temperature or the prescribed normal heat flux
on the over-specified boundary significantly reduced the number of iterations per-
formed in order to achieve the numerical solutions for the temperature and normal
heat flux on the under-specified boundary, as well as the CPU time allocated for
this purpose.

The limitation of the proposed algorithm is related to Cauchy problems in two-
dimensional simply connected domains, i.e. geometries for which the over- and
under-specified boundaries have common endpoints. In such situations, the present
alternating iterative methods fail to produce accurate approximations for the tem-
perature and normal heat flux on the under-specified boundary from measured
Cauchy data available on the remaining boundary. Future work is related to adapt-
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ing the present procedures to Cauchy problems for the modified Helmholtz equa-
tion in domains with corners by employing weight functions.
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