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Young’s Modulus Measurement of Thin Films by Resonant
Frequency Method Using Magnetostrictive Resonator
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Abstract: At present, there are many methods about Young’s modulus measure-
ment of thin films, but so far there is no recognized simple, non-destructive and
cheaper standard measurement method. Considering thin films with various thick-
nesses were sputter deposited on the magnetostrictive resonator and monitoring
the resonator’s first-order longitudinal resonant frequency shift both before and af-
ter deposition induced by external magnetic field, an Young’s modulus assessing
method based on classical laminated plate theory is presented in this paper. Using
the measured natural frequencies of Au, Cu, Cr, Al and SiC materials with various
thicknesses in the literature, the Young’s modulus of the five materials with vari-
ous thicknesses are calculated by the method in this paper. In comparison with the
Young’s modulus calculated by the other methods, it is found that the calculated
Young’s modulus for various thicknesses are in good agreement with the Young’s
modulus values in the literature. Considering the simple and non-destructive char-
acteristics of this method, which can effectively describe the effect of the thickness
on the Young’s modulus, it has the potential to become a standard assessing method
of thin film Young’s modulus.

Keywords: Magnetostrictvie resonator, Resonant frequency method, Young’s mod-
ulus of thin film

1 Introduction

With the development of modern science and technology, the researches about me-
chanical behavior and characteristics of microelectromechanical systems (MEMS)
received increasing attention [De Wolf (2003), Spearing (2000), Van Spengen (2003)].
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In order to better improve the functionality and reliability of MEMS devices, first
of all it needs to be understood that the inherent mechanical properties are related
to the thin film as interconnect and packaging materials in MEMS, and that these
mechanical properties, especially Young’s modulus, are the key data in the numer-
ical simulation and design. In many cases, the Young’s modulus of thin films is not
the same with corresponding bulk material, so the accurate measurement method
has become an important problem and received many concern from engineering
field [Arzt (1998), Liang, Li and Jiang (2002)].

So far, there are many methods, including destructive and non-destructive meth-
ods, to evaluate the Young’s modulus of thin film. Destructive methods [Allen et
al (1987), Espinosa, Prorok and Fischer (2003), Espinosa, Prorok and Peng (2004),
Greek et al (1999), Haque and Saif (2002), Kiesewetter et al (1992), Prorok and Es-
pinosa (2002), Petersen and Guarnieri (1979), Sharpe, Yuan and Edwards (1997),
Stolken and Evans (1998), Tsuchiya et al (1998), Vlassak and Nix (1992), Ye et
al (1996), Yu, Hsu and Fang (2005)] usually finishing the test structure cause the
destruction of structure. Obviously, they require relatively long and complex fabri-
cation processes, as well as expensive equipment to measure [Chinmulgund, Inturi
and Barnard (1995), Huang and Spaepen (2000), Schneider and Tucker (1996),
Zhou, Zhou and Yang et al (2006)], and the thin film structure and material prop-
erties may be affected by production process. In contrast, non-destructive method
[Bellan and Dhers (2004), Cros, Gat and Saurel (1997), Dirras et al (2004), Per-
aud et al (1997), Schneider and Tucker (1996)] uses direct measurement, and does
not change the thin film properties in any way. In fact, although there are many
methods used to evaluate Young’s modulus of thin film, there is no recognized
standard method, which is simple, inexpensive, and non-destructive [Liang and
Prorok (2007)]. With the rapid development of materials and electric science, all
kinds of smart materials, such as piezoelectric materials [Arockiarajan and Men-
zel (2007); Chen, Kao and Chen (2009); Deepak and Ranjan (2009); Wu, Chiu
and Wang (2008); Wu and Liu (2007)], shape memory alloys [Erdogan and Mu-
rat (2009)], giant magnetostrictive materials [Ghosh and Gopalakrishnan (2004);
Zhou and Zhou (2007), Zhou, Zheng and Zhou (2006), Zhou, Zhou and Zheng
(2007, 2009)], have been widely studied and used. Giant magnetostrictive mate-
rial, especially, is highly attractive for sensor, actuator and resonator etc, not only
due to its small size and low prices, but also because of its passive and wireless na-
ture. So a new measurement technique that employs a magnetostrictive resonator is
presented by Schmidt and Grimes (2001), shown to be suitable for evaluating elas-
tic properties of thin film and of the potential to become the standard technique in
terms of assessing elastic properties. Liang and Prorok (2007) adopt this technique
to measure the elastic properties of various thin films and offer a discussion of the
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errors involved. However, the Young’s modulus calculated by Schmidt and Grimes
(2001) and Liang and Prorok (2007) using GMM resonator technique is the same
for various thicknesses of thin film. In fact, the Young’s modulus may not be the
same for different film thicknesses.

For the characteristics that Young’s modulus changes with the thickness of thin
film, and considering the thin film and the magnetostrictive resonator as a lami-
nated structure, a Young’s modulus evaluating method using magnetostrictive res-
onator driven by external magnetic field is proposed in this paper. Substituted the
Young’s modulus obtained by Liang and Prorok (2007) into this method, the calcu-
lated result about the relative frequency shift versus film thickness for various ma-
terials has significant deviation with experiment data, which obviously due to the
fact that the Young’s modulus in Liang’s paper does not change with the thin film
thicknesses. Then using the frequency data measured by experiment, the Young’s
modulus for various materials and thicknesses is calculated by this method. It is
found that the calculated Young’s modulus for various thicknesses in this paper
is in good agreement with the results determined by the other methods in litera-
ture. And this method has the potential to become a standard evaluating method
of thin film Young’s modulus considering its characteristics such as being simple,
non-destructive, and able to effectively describe the effect of the thickness on the
Young’s modulus,.

2 Basic Equations

The laminated structure including the magnetostrictive resonator is shown in Fig.
1, and thin film sputter deposition on the magnetostrictive resonator. A harmon-
ically alternating or transient magnetic field excitation generates mechanical os-
cillations in the magnetostrictive resonator. The oscillations are mainly along the
length direction of the resonator. The Young’s modulus of thin film can evaluate by
measuring the change of the first-order longitudinal natural frequency before and
after coating thin film. The length, width and thickness of laminated structure are
l, b and t respectively, where the thicknesses of the magnetostrictive resonator and
thin film are t1 and t2 respectively.

Considering the magnetostrictive resonator shown in Fig. 1 as a laminated struc-
ture, according to classical laminated plate theory, the strain of structure determined
by middle surface strain ε0 and curvature κ is as follows
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Figure 1: The Sketch of laminated structure including giant magnetostrictive res-
onator.

Where, the middle surface strain ε0 and curvature κ are as follows,
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In which, u and v are the displacement of middle surface in x and y direction re-
spectively, and w is the deflection.

For magnetostrictive materials, the relation for magnetic field, magnetization and
strain are nonlinear and coupling (Zheng and Liu (2005), Liu and Zheng (2005)).
Considering the magnetostrictive resonator working for given pre-stress and bias
magnetic field, the simplified linear constitutive relationships can be used as fol-
lows.

{σσσ}= [Q]{εεε}− [d]{H} (3)

Where, [Q] is stiffness matrix, [d] is magnetostrictive coupling coefficients and {H}
is external magnetic field.

Therefore, the constitutive relationships of all layers can be uniformly written as
the form,

{σσσ}= [Q] ({εεε}−{ΛΛΛ}) = [Q]{εεε}− [Q]{ΛΛΛ} (4)

Where, the stress vector {σσσ} and the magnetostrictive strain vector {ΛΛΛ} are respec-
tively shown as follows,

{σσσ}=
[
σx σy τxy

]T
, {ΛΛΛ}=

[
Λx Λy Λxy

]T (5)
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In Eq.4, the term [Q]{ΛΛΛ} is equivalent stress generated by the magnetostrictive
resonator driven by external magnetic field, and this term only exists for magne-
tostrictive layer.

In comparison of Eq. 4 and Eq. 5, for magnetostrictvie layer, we have

[Q]{ΛΛΛ}= [d]{H} (6)

Substituting Eq. 1 into Eq. 4 and integrating the resulting equation along the z
direction, we get the matrix form of the constitutive relations as follows,{

N
M

}
=
[
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C D

]{
ε0

κ

}
−
{

NΛ

MΛ

}
(7)

In which,
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The matrixes A, C and D are tensile stiffness, coupling stiffness and bending stiff-
ness of laminated plate respectively. From the view of physical meaning, we know
that N and M are internal force and moment respectively, while NΛ and MΛ are
parts contributed by the magnetostrictive layer only.

When an external magnetic field is applied, the total strain energy of laminated
structure can be expressed by the form
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Denote {r}=
[
u v w

]T , we have{
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κ
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= [L]{r} (12)
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Then the displacement vector at any point of laminated plate can be written as
X
Y
Z
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So, the total kinetic energy of laminated structure can be formulated as the matrix
forms
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Divide the plate into n×m elements of four nodes. To each node, five degrees of
freedom are employed, i.e. (u,v,w,α,β ), where α = ∂w/∂y and β = −∂w/∂x.
Denote δi =

[
ui vi wi αi βi

]
(i=1, 2, 3, 4), the node displacement column

in the element can be written as {δ e} =
[
δ1 δ2 δ3 δ4

]T . The middle surface
displacement in the element can be formulated by the interpolation polynomial of

the form u =
4
∑

i=1
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4
∑
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4
∑
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(
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)
. Where,

Nui, Nvi, Nwi,Nαi and Nβ i represent shape function. Then the matrix form of middle
surface displacement can be expressed as
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Where,
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Substituting Eq. 16 into Eq. 12, we have{
ε0

κ

}
= [L]{r}= [L] [N]{δ e}= [B]{δ e} (18)

In which [B] = [L] [N]. Denote the Lagrange function by Π = (T −U) when ignor-
ing the external force work. Then substituting Eqs. 16 and 18 into Eqs. 11 and 15,
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and the resulting equations into the definition formula, we get
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Appling the Hamiltonian principle of the form δ
∫ t2

t1 Πdt = 0 to the above equation,
we get a system of ordinary differential equations of the dynamic system in the
following matrix form

[M]{ä}+[K]{a}= {F} (20)

Where, {a} and {ä} are the columns consisting of node displacement and relevant
accelerations; [M] and [K] are the global mass and stiffness matrices respectively,
and {F} is the global load column generated by magnetic field. Their element
matrices or columns can be explicitly formulated by
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Se
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∫

t
(ΨN)T

ρΨNdz)dS (21)

[K]k =
∫∫
Se

BT
[

A C
C D

]
BdS (22)
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]
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If all of material constants are given, the natural frequencies of laminated structure
can be obtained by modal analysis according to Eq. 20. If the natural frequencies
measured by experiment and the Young’s modulus of thin film as the only unknown
quantity, it can be calculated by Eq. 20 too.

3 Results and Discussions

Here, we give a case study of a laminated structure with a size of 8.0× 1.6mm3,
and the thickness of the magnetostrictive layer is 28µm. The commercially mag-
netostrictive material, MetglasT M 2826MB, is selected as the magnetostrictive res-
onator and its material parameters are taken as: the Young’s modulus Em = 105GPa
and the density ρm = 7.9× 103kg / m3. The density of five thin films, i.e. Au, Cu,
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Cr, Al and SiC, are selected as ρAu = 19.34×103kg / m3, ρCu = 8.96×103kg / m3,
ρCr = 7.19× 103kg / m3, ρAl = 2.70× 103kg / m3, ρSiC = 3.20× 103kg / m3. The
results of the thickness of the five thin films and the corresponding measured fre-
quencies are selected from Liang’s paper (Liang and Prorok (2007)).

For the uncoated magnetostrictive resonator, the experiment measured frequency
of the first-order longitudinal vibration is 276.8kHz. According to the calculated
formula fm = 1

2l

√
Em

ρm(1−ν2) , the calculated frequency of the first-order longitudinal
vibration is 238.86kHz. But the calculated frequency of the first-order longitudinal
vibration using the method in this paper is 277.2kHz. Clearly, the calculated result
by the method in this paper is more accurate than the formula.

According to the change of frequency before and after deposition, an approximate
calculation formula for Young’s modulus of thin film is presented in Liang’s pa-
per. And the calculated Young’s modulus for five materials are EAu = 75.9GPa,
ECr = 130.8GPa, ECu = 139.2GPa, EAl = 55.4GPa and ESiC = 160.4GPa respectively.
Obviously, the Young’s modulus determined in Liang’s paper are the same for vari-
ous film thicknesses, and the calculated Young’s modulus is effective only when the
thickness of thin film is much smaller than the thickness of magnetostrictive layer.
In fact, the Young’s modulus should be changed along with the film thickness in-
creasing in the deposition process. Substituting these values of Young’s moduli into
the method in this paper, the calculated frequencies of the first-order longitudinal
vibration for various thicknesses and the experimental results in Liang’s paper are
compared and shown in Fig. 2. The solid point represents the calculated results
and the hollow point represents the experiment measurement results in this figure.
From the Fig. 2, we can see obviously that the calculated results and experimental
measurement results have a great deviation, which shows that the Young’s modulus
should not be constant under various thicknesses and the approximation Young’s
modulus given by Liang and Prorok (2007) is not reliable when the thickness of
thin film has larger changes.

Substituting the different film thicknesses and corresponding frequencies of experi-
mental measurement into the method in this paper, the calculated Young’s modulus
versus thickness of thin films is shown in Fig. 3. From this figure we can see that
the Young’s modulus for various thicknesses is not constant and has nonlinear re-
lationships with the thicknesses. The compared results with the Young’s modulus
calculated by the other methods and the calculated Young’s modulus for various
thicknesses determined by the method in this paper are compared and shown in Fig
4., where the solid lines are on behalf of the range of Young’s modulus in the liter-
ature (i.e Au: 53∼130GPa; Cr: 107∼275GPa; Cu: 90∼129GPa; Al: 47∼90GPa;
SiC: 100∼452GPa), the square on behalf of the calculated Young’s modulus by
Liang and Prorok (2007), and the circle on behalf of the calculated Young’s mod-
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Figure 2: The relative frequency shift versus film thickness percentage of the lami-
nated structure.

 

Figure 3: The Young’s modulus changes with the thickness of thin films for various
materials.
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Figure 4: The evaluated Young’s modulus for each material falls in the range found
in the literature.

ulus for various thicknesses determined by the method in this paper. As shown by
Fig. 4, the calculated results in this paper are coincident with the results in the
literature.

4 Conclusions

A Young’s modulus evaluating method for various thin film thicknesses by moni-
toring the magnetostrictive resonator’s first-order longitudinal resonant frequency
shift both before and after deposition induced by external magnetic field, is pre-
sented in this paper based on classical laminated plate theory. Substituting the ex-
perimental data of frequencies into this method, the Young’s modulus for various
thicknesses is calculated. From the results figures, it is found that the calculated
Young’s modulus for various thicknesses is in good agreement with the Young’s
modulus calculated by the other methods in the literature. This technique that em-
ploys a magnetostrictive resonator has shown to be adept at evaluating thin film
Young’s modulus and with the potential to become the standard measurement tech-
nique considering the characteristics of this method such as being simple, inexpen-
sive to perform, requiring no post-deposition fabrication, non-destructive, and able
to effectively describe the effect of the thickness on the Young’s modulus.
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