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Convergence Properties of Genetic Algorithms
in a Wide Variety of Noisy Environments

Takehiko Nakama1

Abstract: Random noise perturbs objective functions in practical optimization
problems, and genetic algorithms (GAs) have been proposed as an effective opti-
mization tool for dealing with noisy objective functions. In this paper, we investi-
gate GAs in a variety of noisy environments where fitness perturbation can occur
in any form—for example, fitness evaluations can be concurrently disturbed by ad-
ditive and multiplicative noise. We reveal the convergence properties of GAs by
constructing and analyzing a Markov chain that explicitly models the evolution of
the algorithms in noisy environments. We compute the one-step transition proba-
bilities of the Markov chain and show that the chain has only one positive recurrent
communication class, which is also aperiodic. Based on this property, we estab-
lish a condition that is both necessary and sufficient for GAs to eventually (i.e.,
as the number of iterations goes to infinity) find a globally optimal solution with
probability 1. We also identify a condition that is both necessary and sufficient
for GAs to eventually with probability 1 fail to find any globally optimal solu-
tion. Furthermore, in all the noisy environments, our analysis shows that the chain
has a stationary distribution that is also its steady-state distribution. Based on this
property and the transition probabilities of the chain, we examine the number of
iterations sufficient to ensure with at least a specified probability that GAs select a
globally optimal solution upon termination.

Keywords: Evolutionary computation, genetic algorithms, Markov chain anal-
ysis, noisy (uncertain) environments, perturbed fitness functions, additive noise,
multiplicative noise, convergence.

1 Introduction and Summary

Objective functions are perturbed by random noise in many practical problems,
and genetic algorithms (GAs) have been proposed as an effective optimization
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tool for dealing with noisy objective functions [e.g., Beyer (2000), Arnold (2002),
Amaziane, Naji, Ouazar and Cheng (2005), Devroy and Krzyzak (2005), Chen,
Subprasom and Ji (2006), Sinha and Ch (2008), Galán Moreno, Sánchez Medina,
Álvarez Álvarez and Rubio Royo (2009)]. However, we have yet to fully establish
the theoretical foundation of the algorithms in noisy environments. Quite a few
studies [e.g., Goldberg and Rudnick (1991), Miller and Goldberg (1996), Nissen
and Propach (1998), Beyer (2000), Arnold (2002), Di Pietro, White and Barone
(2004)] have examined GAs and more general evolutionary algorithms in noisy en-
vironments using either numerical or other theoretical methods, but Markov chain
analysis has not been applied to such GAs. [For a survey of the literature, we refer
the reader to Beyer (2000) and Jin and Branke (2005).] This is quite contrastive to
the noiseless case; Markov chain theory has been effectively used to reveal impor-
tant properties of GAs applied to noiseless fitness functions [e.g., Vose and Liepins
(1991), Nix and Vose (1992), Davis and Principe (1993), Rudolph (1994), Suzuki
(1995), Vose (1999)]. In this study, we take a first step towards theoretically ana-
lyzing GAs in noisy environments using Markov chain theory.

We will address a wide variety of noisy environments where fitness perturbation
can occur in any form. For instance, fitness functions can be concurrently dis-
turbed by additive and multiplicative noise—see various examples in Section 3,
which clearly illustrate the generality of the noisy environments considered in this
study. To our knowledge, this study is the first to address GAs with such a wide
variety of fitness perturbation. Except for Nakama (2008), previous studies that
examined evolutionary computation schemes applied to perturbed fitness functions
all assumed that a single source of additive noise disturbs fitness functions [e.g.,
Goldberg and Rudnick (1991), Miller and Goldberg (1996), Nissen and Propach
(1998), Beyer (2000), Arnold (2002), Di Pietro, White and Barone (2004), Devroy
and Krzyzak (2005)]. Although Nakama’s study is the first to theoretically examine
the convergence properties of GAs in a multiplicatively noisy environment, multi-
plicative noise has been considered in a variety of optimization problems, such as
control optimization [e.g., Hopkins (1987)], image restoration [e.g., Rudin and Os-
her (2004)], and portfolio optimization [e.g., Primbs (2007)]. In many optimization
problems, objective functions may be perturbed by more than one noise source.
For instance, if objective function values are measured by a device that consists
of multiple components, then each of the components may disturb objective func-
tion evaluations. Similarly, if objective function evaluations are conducted through
several stages, then they may be perturbed differently at different stages. Clearly,
disturbance by multiple sources of noise is in general stochastically quite different
from that by a single source of noise. We will demonstrate that our Markov chain
framework allows us to uncover several fundamental properties of GAs in noisy
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environments with multiple noise sources.

For analytical simplicity, we assume that each noise source takes on finitely many
values. However, this may not be an unrealistic assumption since one can rea-
sonably argue that, due to limited accuracy and range of measuring devices, ob-
served noise in practice cannot be continuous and can take on only finitely many
values. We do not make any assumptions about the expected values or variances
of the noise sources. Thus our analysis is valid even if their expected values are
nonzero. In previous studies [e.g., Goldberg and Rudnick (1991), Miller and Gold-
berg (1996), Nissen and Propach (1998), Beyer (2000), Arnold (2002), Di Pietro,
White and Barone (2004)], noise was typically assumed to have mean zero [how-
ever, see Devroy and Krzyzak (2005) and Nakama (2008)]. In Section 3, we math-
ematically characterize the various noisy environments considered in this study.

GAs in our study are assumed to implement the elitist strategy, which is in gen-
eral necessary for guaranteeing that the algorithms eventually (i.e., as the number
of iterations goes to infinity) find a globally optimal solution with probability 1 in
noiseless environments [Rudolph (1994)]. It will become clear that the elitist strat-
egy is necessary for maintaining this convergence property of GAs in certain noisy
environments. Another important strategy is that GAs reevaluate the fitness of each
population member except for that of the chromosome preserved by the elitist strat-
egy every time a new population is formed. This strategy can be described as one
of “forgetting techniques” often employed in noisy environments [e.g., Di Pietro,
White and Barone (2004)], and it is also essential for guaranteeing that GAs even-
tually find a globally optimal solution with probability 1 in certain noisy cases. The
reassessment of the fitness value also significantly reduces memory requirements
compared to the strategy of storing a fitness value for every chromosome that has
been included in some population formed since the beginning of the execution.
Sections 2 and 3 fully describe the implementation of GAs considered in this study.

In Section 4, we explicitly construct a Markov chain that models GAs in the wide
range of noisy environments described in Section 3. Mathematically, this Markov
chain is completely determined by its transition kernel, which we compute exactly;
see Theorem 4.3. It turns out that these probabilities can be used to examine the
number of iterations sufficient to ensure with at least a specified probability that
a GA selects a globally optimal solution upon termination. In Section 5, we de-
scribe two essential properties of the chain: indecomposability and convergence to
stationarity. (Note that indecomposability is not the same as irreducibility, and the
chain is not irreducible in general.) In Section 6, we demonstrate how the indecom-
posability of the chain can be used to uncover the convergence properties of GAs in
various noisy environments. First we establish a condition (Condition 6.1) that is
necessary and sufficient for GAs to eventually find a globally optimal solution with
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probability 1. This is Theorem 6.2. We also identify a condition (Condition 6.8)
that is necessary and sufficient for GAs to eventually fail to find any globally opti-
mal solution. See Theorem 6.9.

Based on the chain’s one-step transition probabilities and convergence to station-
arity, we analyze how many iterations are sufficient to guarantee with at least a
specified probability that GAs in noisy environments select a globally optimal so-
lution upon completion of each iteration. This analysis is described in Section 7.

2 Preliminaries

Let S denote the search space, and let f : S → R denote the (noiseless) fitness
function. Then the objective of GAs is to find an i belonging to S∗ := {i ∈ S | f (i) =
max j∈S f ( j)}, which is the set of globally optimal solutions. We assume that, as
in traditional GAs, S consists of 2L binary strings of length L. These 2L candidate
solutions are also referred to as chromosomes. Since the search space is finite, these
chromosomes will be labeled by integers 1, . . . ,2L.

For concreteness, we consider the following simple implementation of GAs:

1. An initial population of M chromosomes is formed, and the fitness of each
of the chromosomes is evaluated.

2. A chromosome with the best observed fitness value is selected, and the elitist
strategy includes this chromosome in the next population.

3. Selection is performed to form M−1
2 pairs of chromosomes (M is assumed to

be odd and greater than 1).

4. Crossover is performed on each of the M−1
2 pairs formed by selection to

generate M−1 offspring.

5. Mutation is performed on each of the M − 1 chromosomes generated by
crossover. This completes the formation of the next population.

6. The fitness of each new chromosome is determined. If the new population
satisfies a stopping criterion, then the algorithm terminates. Otherwise, steps
2-6 are repeated.

GAs are assumed to implement the elitist strategy. This strategy guarantees that
the best candidate solution in the current population, which is a chromosome with
the best observed fitness, is preserved in the next population. In order to mono-
tonically improve the best observed fitness over time, the preserved chromosome
retains its observed fitness (see Example 3.9). It is important to note that in noisy
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environments, this evolutionary strategy may fail to monotonically improve (noise-
less) fitness, which cannot be observed directly in noisy environments.

Another important strategy is that in step 6, GAs (re)evaluate the fitness of each
population member except for that of the chromosome preserved by the elitist strat-
egy every time a new population is formed. It will become clear that this reevalu-
ation of fitness is also essential for ensuring that GAs eventually find at least one
globally optimal solution with probability 1 in certain noisy environments.

When GAs terminate, note that they select a chromosome with the best observed
fitness among the chromosomes in the last population as a (candidate for a) globally
optimal solution. Since the observed fitness may not be the same as the (noiseless)
fitness of the chromosome due to noise, GAs may not choose a globally optimal
solution even if it is included in the last population; in order for GAs to correctly
identify a globally optimal solution contained in the last population, the chromo-
some must have the best observed fitness. This observation is important for prop-
erly characterizing GAs in noisy environments.

In Section 3, we specify the details of the genetic operations mentioned above and
mathematically describe the various noisy environments considered in this study.
We construct a Markov chain that models these GAs and derive the one-step tran-
sition probabilities of the chain in Section 4.

3 Mathematical Descriptions of Noisy Environments and Genetic Operations

We will closely follow and extend the notation firmly established by the previous
studies that conducted Markov chain analysis of GAs in noiseless environments
[e.g., Vose and Liepins (1991), Nix and Vose (1992), Davis and Principe (1993),
Rudolph (1994), Suzuki (1995), Vose (1999)]. Our notation inevitably becomes
complicated due to the generality of the noisy environments considered in this study
(see Examples 3.2–3.6). We will use simple examples to explain our notation.

First, we select M chromosomes from S with replacement to form an initial popu-
lation P0. The population generated during the k-th iteration (the k-th population)
will be denoted by Pk. Note that Pk is a multiset of chromosomes for each k.
Let m(i,Pk) denote the number of instances of chromosome i included in the k-th
population Pk. Let i( j,Pk) represent the j-th instance of chromosome i in Pk
[thus 1 ≤ j ≤ m(i,Pk)]. We need this notation because we must distinguish all
the elements in the multiset Pk in order to mathematically characterize the noisy
environments considered in this study and to define the states of the Markov chain
constructed in Section 4.

Example 3.1. Consider a search space S = {1,2,3,4,5,6,7,8} (thus L = 3 for this
search space). Suppose that the k-th population Pk consists of two instances of
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chromosome 1, one instance of chromosome 6, and two instances of chromosome
8 (hence M = |Pk| = 5). Then Pk = {1,1,6,8,8}. When the two instances of
chromosome 1 in Pk must be distinguished, the first instance of 1 will be denoted
by 1(1,Pk), and the second instance of 1 will be denoted by 1(2,Pk). When it is
necessary to distinguish all the elements in Pk, we write

Pk = {1(1,Pk),1(2,Pk),6(1,Pk),8(1,Pk),8(2,Pk)}.

We have m(1,Pk) = 2 since there are two instances of chromosome 1 in this popu-
lation. We also have m(6,Pk) = 1, m(8,Pk) = 2, and m(i,Pk) = 0 for i = 2, 3, 4,
5, and 7. We will refer to this simple example several times to explain our notation.

As mentioned in Section 1, our investigation addresses GAs with any form of fitness
perturbation. Let F(i( j,Pk)) denote the (noisy) observed fitness of chromosome
i( j,Pk) (the j-th instance of chromosome i in Pk).

Example 3.2 (additive noise). Suppose that random noise is added upon each fit-
ness evaluation. Then the observed fitness F(i( j,Pk)) of chromosome i( j,Pk)
can be written as

F(i( j,Pk)) = f (i)+Xi( j,Pk), (1)

where Xi( j,Pk) represents the random noise that additively perturbs the fitness f (i)
of i( j,Pk). Note that f (i( j,Pk)) = f (i) because, as described earlier, i( j,Pk)
denotes the j-th instance of chromosome i in Pk. Except for Nakama (2008),
previous theoretical or numerical studies that examined evolutionary computation
schemes with perturbed fitness functions assumed that fitness disturbance is caused
by a single source of additive noise as in this example [e.g., Goldberg and Rudnick
(1991), Miller and Goldberg (1996), Nissen and Propach (1998), Beyer (2000),
Arnold (2002), Di Pietro, White and Barone (2004), Devroy and Krzyzak (2005);
however, see Nakama (2008)]. Example 6.3 and Corollary 6.4 specifically address
the convergence properties of GAs in this additively noisy environment.

Example 3.3 (multiplicative noise). Suppose that random noise multiplicatively
disturbs each fitness evaluation. Then the observed fitness F(i( j,Pk)) of chromo-
some i( j,Pk) can be written as

F(i( j,Pk)) = Xi( j,Pk) f (i), (2)

where Xi( j,Pk) represents the random multiplicative noise that perturbs the fitness
f (i) of i( j,Pk). Here if we do not assume that the multiplicative noise Xi( j,Pk) is



Genetic Algorithms in Noisy Environments 41

positive with probability 1 or that each fitness value f (i) is positive, then we cannot
simply take the logarithm of (2). As described in Section 1, multiplicative noise has
been considered in a variety of practical optimization problems. Examples 6.5 and
6.10 specifically address the convergence properties of GAs in this multiplicatively
noisy environment.

Example 3.4 (concurrent perturbation by additive and multiplicative noise). Sup-
pose that each fitness evaluation is disturbed concurrently by additive and multi-
plicative noise. Then the observed fitness F(i( j,Pk)) of chromosome i( j,Pk) can
be written as

F(i( j,Pk)) = Xi( j,Pk) f (i)+Yi( j,Pk), (3)

where the random variables Xi( j,Pk) and Yi( j,Pk) represent multiplicative noise and
additive noise, respectively, that perturb the fitness f (i) of i( j,Pk). As mentioned
in Section 1, objective functions may be perturbed by more than one noise source
in many optimization problems, and disturbance by multiple sources of noise is in
general stochastically quite different from that by a single source of noise. Exam-
ples 6.6 and 6.11 specifically address the convergence properties of GAs in this
noisy environment.

Example 3.5 (another form of concurrent perturbation by additive and multiplica-
tive noise). The following is another form of concurrent perturbation by additive
and multiplicative noise:

F(i( j,Pk)) = Xi( j,Pk)[ f (i)+Yi( j,Pk)], (4)

where the random variables Xi( j,Pk) and Yi( j,Pk) again represent multiplicative noise
and additive noise that disturb the fitness f (i) of i( j,Pk). In general, this fitness
perturbation is stochastically quite different from that shown in Example 3.4. See
Example 6.6 for the convergence properties of GAs in this noisy environment.

Example 3.6 (exponential noise). Our analysis is valid even if noise is neither
additive nor multiplicative, and fitness perturbation can be of the following form:

F(i( j,Pk)) = [ f (i)]Xi( j,Pk) . (5)

Here the random noise Xi( j,Pk) “exponentially” disturbs the fitness evaluation. The-
orems 6.2 and 6.9, which provide essential characterizations of GAs in noisy envi-
ronments, even apply to this rather unusual exponentially noisy environment.
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In this study, we will construct a Markov chain that explicitly captures the evolution
of GAs with any form of fitness disturbance, including the various cases shown in
Examples 3.2–3.6. We let D random variables X (1)

i( j,Pk)
, X (2)

i( j,Pk)
, . . . , X (D)

i( j,Pk)
repre-

sent D noise sources that perturb the fitness f (i) of chromosome i( j,Pk). Thus,
as shown in Examples 3.2–3.6, the observed fitness F(i( j,Pk)) of chromosome
i( j,Pk) is a function not only of f (i) but also of the D random variables.

For analytical simplicity, we assume that each of the D noise sources X (1)
i( j,Pk)

,

X (2)
i( j,Pk)

, . . . , X (D)
i( j,Pk)

takes on finitely many values. Thus for each d and i( j,Pk),

we define the distribution of X (d)
i( j,Pk)

by

X (d)
i( j,Pk)

= x(d)
n with probability p(d)

n , 1≤ n≤ Nd , (6)

where Nd represents the number of distinct possible values of the d-th noise source
X (d)

i( j,Pk)
(Nd < ∞ for each d). Here we do not assume that these noise sources are

identically distributed. Thus they can have different numbers of possible values.
For each d, we let X(d) denote the set of possible values of the d-th noise source:

X(d) = {x(d)
1 ,x(d)

2 , . . . ,x(d)
Nd
}. (7)

For analytical simplicity, we assume that these D noise sources are independent.
We further assume that for each d, the random variables X (d)

i( j,Pk)
are independent

and identically distributed for all i, j, and Pk: The d-th noise source is identically
distributed for each fitness evaluation and is independent of the d-th noise source
(and all the other noise sources) in any other instance of fitness evaluation.

Example 3.7. Consider the following two sources of noise: For each i, j, and Pk,

X (1)
i( j,Pk)

=

{
x(1)

1 with probability p(1)
1

x(1)
2 with probability p(1)

2 = 1− p(1)
1 ,

and

X (2)
i( j,Pk)

=


x(2)

1 with probability p(2)
1

x(2)
2 with probability p(2)

2

x(2)
3 with probability p(2)

3 = 1− p(2)
1 − p(2)

2 .

We have N1 = 2 and N2 = 3 because X (1)
i( j,Pk)

and X (2)
i( j,Pk)

take on two and three

values, respectively. For each i, j, and Pk, we assume that X (1)
i( j,Pk)

and X (2)
i( j,Pk)
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are independent. Also, we assume that X (1)
i( j,Pk)

are independent and identically

distributed for all i, j, and Pk, as are X (2)
i( j,Pk)

.

Let F∗Pk
denote the highest observed fitness achieved by the k-th population Pk,

and let i∗( j∗,Pk) represent an instance of a chromosome in Pk whose observed
fitness equals F∗Pk

(it is the j∗-th instance of chromosome i∗ in Pk). Then we have

F(i∗( j∗,Pk)) = F∗Pk
≥ F(i( j,Pk)) ∀ i( j,Pk) ∈Pk. (8)

The elitist strategy guarantees the inclusion of i∗( j∗,Pk) in the next population
Pk+1. [If F∗Pk

is achieved by more than one chromosome of Pk, then break a tie
by selecting one of them uniformly at random to determine i∗( j∗,Pk).]

Example 3.8. Consider the k-th population Pk described in Example 3.1. Suppose
that the observed fitness values of the five chromosomes in Pk are as follows:

F(1(1,Pk)) = 8.9, F(1(2,Pk)) = 2.5, F(6(1,Pk)) = 4.8,

F(8(1,Pk)) = 6.6, F(8(2,Pk)) = 7.8.

Then we have F∗Pk
= 8.9 and i∗( j∗,Pk) = 1(1,Pk). Thus the elitist strategy guar-

antees the inclusion of 1(1,Pk) in the next population Pk+1.

In order to generate a new population, pairs of chromosomes are formed by se-
lection. In this study, we consider forming M−1

2 pairs for concreteness (thus M
is assumed to be odd and greater than 1). Selection is affected by fitness pertur-
bation, since it operates on noisy observed fitness values, which affect selection
probabilities. Our Markov chain analysis of GAs in noisy environments is valid for
any selection scheme—for example, proportional selection, ranking selection, and
tournament selection [e.g., Miller and Goldberg (1996), Vose (1999), Leung, Duan,
Xu and Wong (2001)].

Crossover and mutation in noisy environments do not differ from those in the noise-
less case. Crossover is performed on each of the M−1

2 pairs formed by selection in
order to generate M− 1 offspring. Our analysis holds for any crossover scheme.
Finally, mutation is performed on each of the M− 1 offspring. For concreteness,
we assume that mutation inverts each bit of an individual chromosome with some
probability µ that satisfies 0 < µ < 1. The elitist strategy does not allow mutation
to alter i∗( j∗,Pk), which is the chromosome preserved by the elitist strategy.

A new population Pk+1 emerges upon completion of selection, crossover, and mu-
tation on Pk, and GAs must determine the fitness of each chromosome in Pk+1.
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Another important detail for guaranteeing that GAs eventually find a globally op-
timal solution with probability 1 in certain noisy environments is that in order to
monotonically improve the highest observed fitness over time, we let the elitist
strategy preserve not only a chromosome with the highest observed fitness but also
its observed fitness. This is illustrated by the following example:

Example 3.9. Consider the k-th population Pk in Example 3.1 and the additively
noisy environment in Example 3.2. Suppose that the observed fitness value of
1(1,Pk), the first instance of chromosome 1, is greater than the other four ob-
served fitness values. Then the elitist strategy guarantees the inclusion of 1(1,Pk)
(i.e., chromosome 1) in the next population, Pk+1. Suppose that after selection,
crossover, and mutation are performed, the other four chromosomes of Pk+1 turn
out to be three instances of chromosome 3 and one instance of chromosome 6:
Pk+1 = {1,3,3,3,6}. Again, in order to mathematically describe the evolution
of GAs in noisy environments, we distinguish all the chromosomes in Pk+1 by
expressing the population as

{1(1,Pk+1),3(1,Pk+1),3(2,Pk+1),3(3,Pk+1),6(1,Pk+1)}.

In order to monotonically improve the highest observed fitness over time, we let the
elitist strategy preserve the observed fitness of chromosome 1. Thus F(1(1,Pk+1))
will be set to F(1(1,Pk)). On the other hand, GAs reevaluate the fitness of each
of the other four chromosomes in Pk+1. Hence the observed fitness values of the
five chromosomes in Pk+1 are:

F(1(1,Pk+1)) = F(1(1,Pk)), F(3(1,Pk+1)) = f (3)+X3(1,Pk+1),

F(3(2,Pk+1)) = f (3)+X3(2,Pk+1), F(3(3,Pk+1)) = f (3)+X3(3,Pk+1),

F(6(1,Pk+1)) = f (6)+X6(1,Pk+1),

Note that although chromosome 6 [i.e., 6(1,Pk)] was in Pk, its observed fitness
F(6(1,Pk)) is not necessarily preserved in Pk+1.

The reevaluation of fitness illustrated in Example 3.9 can be described as a for-
getting technique [e.g., Di Pietro, White and Barone (2004)], and it also reduces
memory requirements compared to the strategy of storing a fitness value for every
chromosome that has been included in some population formed since the beginning
of the execution. It will become clear that these strategies are important for guar-
anteeing that GAs eventually find a globally optimal solution with probability 1 in
certain noisy environments.
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4 Construction of a Markov Chain that Models Genetic Algorithms in Noisy
Environments

A Markov chain we construct to model GAs in noisy environments is fundamen-
tally different from that considered for the noiseless environment in one essential
aspect. In the noiseless case, each state of the Markov chain that models GAs is
a population, and the k-th population is the state of the chain at time k [for exam-
ple, see Davis and Principe (1993), Suzuki (1995), Vose (1999)]. However, this
Markov chain does not explicitly capture the evolution of GAs in noisy environ-
ments. Instead, we consider a Markov chain, call it (Zk), whose state space consists
of multisets not of chromosomes but of the ordered (D+1)-tuples defined below.

The state of the chain (Zk) that corresponds to the k-th population Pk can be de-
rived as follows. As described in Section 3, the observed fitness F(i( j,Pk)) of
chromosome i( j,Pk) is determined by its noiseless fitness f (i) and by the D noise
sources X (1)

i( j,P), X (2)
i( j,P), . . ., X (D)

i( j,P) that are observed when the fitness of i( j,P)
is evaluated. In order to explicitly express this dependence of the observed fitness
on the D noise sources, we pair the chromosome i( j,Pk) with the observed noise
sources to form the following ordered (D+1)-tuple:[
i,X (1)

i( j,Pk)
,X (2)

i( j,Pk)
, . . . ,X (D)

i( j,Pk)

]
. (9)

Here j and Pk are suppressed in the first entry because they are unnecessary. In
this manner, we form M ordered (D + 1)-tuples from the M chromosomes in Pk,
and the resulting set of M ordered (D + 1)-tuples is the state of the chain (Zk)
that corresponds to population Pk [thus each state of this chain is a multiset of the
ordered (D + 1)-tuples]. In order to explicitly capture the evolution of GAs in the
various noisy environments described in Section 3 using any Markov chain, we
need the last D entries of each ordered (D + 1)-tuple in (9) because the selection
process in noisy environments is based on a function not only of chromosomes but
also of the D noise sources.

Example 4.1. Consider the search space S and the population Pk described in
Example 3.1; we have Pk = {1,1,6,8,8}. This population leads to the following
state T of the Markov chain (Zk) for noisy environments:

T =
{[

1,X (1)
1(1,Pk)

,X (2)
1(1,Pk)

, . . . ,X (D)
1(1,Pk)

]
,
[
1,X (1)

1(2,Pk)
,X (2)

1(2,Pk)
, . . . ,X (D)

1(2,Pk)

]
,[

6,X (1)
6(1,Pk)

,X (2)
6(1,Pk)

, . . . ,X (D)
6(1,Pk)

]
,
[
8,X (1)

8(1,Pk)
,X (2)

8(1,Pk)
, . . . ,X (D)

8(1,Pk)

]
,[

8,X (1)
8(2,Pk)

,X (2)
8(2,Pk)

, . . . ,X (D)
8(2,Pk)

]}
.
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Each state of this particular Markov chain is a set consisting of five ordered (D+1)-
tuples.

Mathematically, this chain is completely determined by its transition kernel. Hence
we first derive the one-step transition probabilities of the chain exactly. We de-
note by T the state space of (Zk). Let m(i,T ) denote the number of instances of
chromosome i included in the ordered (D + 1)-tuples of T ∈ T [thus m(i,T ) is
analogous to m(i,Pk) defined at the beginning of Section 3]. Similarly, we denote
by m(x(d)

n ,T ) the number of instances of the value x(d)
n of the d-th noise source

contained in the ordered (D+1)-tuples of T ∈ T. Note that

2L

∑
i=1

m(i,T ) =
Nd

∑
n=1

m(x(d)
n ,T ) = M (10)

for each T ∈ T and d.

Example 4.2. Consider the population Pk described in Example 3.1 and the two
sources of noise described in Example 3.7. We have Pk = {1,1,6,8,8} and D = 2.
The following is a possible state T ∈ T of the Markov chain (Zk) that models GAs
in this noisy case:

T = {[1,x(1)
2 ,x(2)

1 ], [1,x(1)
1 ,x(2)

3 ], [6,x(1)
1 ,x(2)

3 ], [8,x(1)
2 ,x(2)

2 ], [8,x(1)
2 ,x(2)

3 ]}.

As described earlier, the first entry of each ordered triple is a chromosome. The
second entry is the value of the first noise source observed when the fitness of
the chromosome is evaluated, and the third entry is the value of the second noise
source. Regarding the chromosomes included in this state, we have m(1,T ) = 2
since two instances of chromosome 1 are contained in the ordered triples of T .
Similarly, we have m(6,T ) = 1 and m(8,T ) = 2. Regarding the first noise source,
we have m(x(1)

1 ,T ) = 2 and m(x(1)
2 ,T ) = 3. For the second noise source, we have

m(x(2)
1 ,T ) = 1, m(x(2)

2 ,T ) = 1, and m(x(2)
3 ,T ) = 3. Note that (10) is satisfied with

M = 5.

In order to simplify expressions for the one-step transition probabilities of the chain
(Zk), we let C (T ) denote the set of chromosomes contained in the ordered pairs
of T ∈ T. Thus C (T ) represents the population component of T . [In Example
4.1, we have C (T ) = Pk.]

We are now ready to precisely characterize the transitions of the Markov chain (Zk).
The following theorem shows the exact one-step transition probabilities of (Zk). It
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turns out that these probabilities can be used to analyze how many iterations are
sufficient to ensure with at least a specified probability that a GA selects a globally
optimal solution upon termination.

Theorem 4.3. Let (Zk) denote the Markov chain with state space T that models
GAs in noisy environments where fitness functions are perturbed by the D sources
of noise described in Section 3. Let T and T ′ denote states in T, and let i∗(T )
denote a chromosome in an ordered (D + 1)-tuple of T that has the highest ob-
served fitness value. If the observed fitness of i∗(T ′) is greater than or equal to
that of i∗(T ), then for each k,

P{Zk+1 = T ′|Zk = T }= P{C (Zk+1) = C (T ′)|Zk = T }

×
D

∏
d=1

(M−1)!
Nd

∏
n=1

1

m̃(x(d)
n ,T ′)!

(p(d)
n )m̃(x(d)

n ,T ′),
(11)

where for each d,

m̃(x(d)
n ,T ′) =

{
m(x(d)

n ,T ′)−1 if i∗(T ) is paired with x(d)
n in T (and in T ′)

m(x(d)
n ,T ′) otherwise.

On the other hand, if the observed fitness of i∗(T ′) is less than that of i∗(T ), then

P{Zk+1 = T ′|Zk = T }= 0. (12)

Proof of Theorem 4.3. Clearly, the elitist strategy guarantees (12). Suppose that
the observed fitness of i∗(T ′) is greater than or equal to that of i∗(T ). Then for
each k, we have

P{Zk+1 = T ′|Zk = T }= P{Zk+1 = T ′,C (Zk+1) = C (T ′)|Zk = T }
= P{C (Zk+1) = C (T ′)|Zk = T }P{Zk+1 = T ′|C (Zk+1) = C (T ′),Zk = T }
= P{C (Zk+1) = C (T ′)|Zk = T }P{Zk+1 = T ′|C (Zk+1) = C (T ′)}. (13)

Here

P{Zk+1 = T ′|C (Zk+1) = C (T ′)}
= P{each noise value x(d)

n appears m̃(x(d)
n ,T ′) times in T ′}

=
D

∏
d=1

(M−1)!
Nd

∏
n=1

1

m̃(x(d)
n ,T ′)!

(p(d)
n )m̃(x(d)

n ,T ′), (14)

because for each d, the random variables m̃(x(d)
n ,T ′) are distributed multinomially

with parameters M− 1 and p(d)
n (n = 1, . . . ,Nd). Note that m̃ is used instead of m

due to the elitist strategy. Combining (13)–(14), we obtain (11).
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The conditional probability P{C (Zk+1) = C (T ′)|Zk = T } in (11) depends on the
selection, crossover, and mutation schemes employed by GAs. For example, sup-
pose that proportional selection is used and that crossover is not performed. As
described in Section 3, we assume that mutation inverts each bit of an individ-
ual chromosome with some probability µ (0 < µ < 1) independently of other bits.
Then we have

P{C (Zk+1) = C (T ′)|Zk = T }= (M−1)!
2L

∏
i=1

1
m̃(i,T ′)!

φ(i,T )m̃(i,T ′),

where

m̃(i,T ′) =
{

m(i,T ′)−1 if i = i∗(T )
m(i,T ′) otherwise,

and

φ(i,T ) = ∑
j1∈C (T )

µ
H(i, j1)(1−µ)L−H(i, j1)

∑
m( j1,T )
j2=1 F( j1( j2,C (T )))

∑ j3∈C (T ) ∑
m( j3,T )
j2=1 F( j3( j2,C (T )))

,

where H(i, j1) denotes the Hamming distance between chromosomes i and j1. Note
that Theorem 4.3 and the convergence analysis described in the next section hold
for any selection scheme and any crossover scheme.

5 Two Essential Properties of the Markov Chain for Noisy Cases

In this section, we present two fundamental properties of the Markov chain (Zk)
constructed in Section 4. In Sections 6–7, these properties of the chain will be
effectively used to uncover convergence properties of GAs in the various noisy
environments described in Section 3.

First we establish more notation. Since each ordered (D+1)-tuple[
i,X (1)

i( j,Pk)
,X (2)

i( j,Pk)
, . . . ,X (D)

i( j,Pk)

]
defined at (9) is uniquely associated with an observed fitness value, namely F(i( j,Pk)),
we will slightly abuse our notation and let

F
(

i,X (1)
i( j,Pk)

,X (2)
i( j,Pk)

, . . . ,X (D)
i( j,Pk)

)
(15)

denote the observed (perturbed) fitness of the ordered (D+1)-tuple. It will become
clear that this notation facilitates the exposition of our Markov chain analysis.
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The following subset A of the state space T of the chain (Zk) plays an important role
for the two properties of the chain described in this section and for the convergence
properties described in Section 6.

Definition 5.1. We define A to be the set of all states in T that each contain at least
one ordered (D+1)-tuple

[i∗, x̃(1), . . . , x̃(D)] (16)

such that

F(i∗, x̃(1), . . . , x̃(D)) = max{F(i,x(1), . . . ,x(D)) | i ∈ S, x(d) ∈ X(d), 1≤ d ≤ D}.

In other words, A is the set of all states that each contain at least one ordered
(D+1)-tuple whose observed fitness achieves the maximum perturbed fitness.

Example 5.2. Consider the additively noisy environment described in Example 3.2:
Each fitness evaluation is perturbed by a single source of additive noise. For this
noisy case, A is the set of all states that each contain at least one ordered pair [i∗, x̃]
where i∗ is a globally optimal solution and x̃ denotes the maximum of the possible
values of the additive noise.

Example 5.3. Consider the multiplicatively noisy environment described in Ex-
ample 3.3: Each fitness evaluation is perturbed by a single source of multiplicative
noise. Suppose that the fitness value of every chromosome is positive and that the
multiplicative noise is positive with probability 1. In this case, A is the set of all
states that each contain at least one ordered pair [i∗, x̃] where i∗ is a globally opti-
mal solution and x̃ denotes the maximum of the possible values of the multiplicative
noise. On the other hand, if we suppose that the fitness value of every chromosome
is positive and that the multiplicative noise is negative with probability 1, then A

is the set of all states that each contain at least one ordered pair [i∗, x̃] where i∗ is a
chromosome that minimizes the fitness function, i.e.,

i∗ ∈ {i ∈ S | f (i)≤ f ( j) ∀ j ∈ S},

and x̃ denotes the minimum of the possible values of the multiplicative noise.

Theorem 4.3 clearly shows that, starting from any state, the Markov chain (Zk)
reaches any state in A with probability 1, and once the chain hits A, it stays there.
Thus the chain has the following property:
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Property 5.4 (indecomposability). The Markov chain (Zk) is indecomposable; the
set A in Definition 5.1 is the only positive recurrent communication class of the
chain.

Note that indecomposability is not the same as ergodicity, and the chain is not
ergodic in general. In fact, those states which do not contain any ordered (D + 1)
tuple of the form (16) are transient, so the chain is not irreducible in general.

Notice that each state A in A is aperiodic because, by Theorem 4.3, the chain
currently in state A with positive probability stays in A after one transition. Thus
the chain also has the following property:

Property 5.5 (convergence to stationarity). The Markov chain (Zk) converges to
stationarity: It has a unique stationary distribution that is also its steady-state dis-
tribution.

See Chapter 3 in Karlin and Taylor (1975) and Chapter 10 in Karlin and Taylor
(1981) for details.

In Sections 6–7, these fundamental properties of the chain will be used to uncover
the convergence properties of GAs in various noisy environments.

6 Convergence Analysis

In this section, we demonstrate how Property 5.4 can be used to uncover the conver-
gence properties of GAs in the various noisy environments described in Section 3.
Based on the property, we derive two fundamental conditions for characterizing
GAs in the noisy environments—one of them is necessary and sufficient for GAs
to eventually (i.e., as the number of iterations goes to infinity) find a globally op-
timal solution with probability 1, and the other is necessary and sufficient for GAs
to eventually fail with probability 1.

First, we establish a condition that is necessary and sufficient for GAs in the noisy
environments to eventually find a globally optimal solution with probability 1. By
Property 5.4, GAs eventually find a globally optimal solution with probability 1 if
and only if each state in A contains at least one ordered (D+1)-tuple that includes
a globally optimal solution and achieves the maximum perturbed fitness that is
greater than the maximum perturbed fitness of any suboptimal solution. Therefore,
it follows that GAs in the noisy environments eventually find a globally optimal
solution with probability 1 if and only if the following condition holds:

Condition 6.1. The maximum perturbed fitness of globally optimal solutions is
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greater than that of any suboptimal solution:

sup{F(i,x(1), . . . ,x(D)) | i ∈ S∗,x(d) ∈ X(d), 1≤ d ≤ D}
> sup{F(i,x(1), . . . ,x(D)) | i ∈ S\S∗,x(d) ∈ X(d), 1≤ d ≤ D}. (17)

Therefore, we have just proved the following theorem:

Theorem 6.2. Suppose that GAs are executed in the noisy environments described
in Section 3. Then Condition 6.1 is necessary and sufficient for GAs to eventually
(i.e., as the number of iterations goes to infinity) find at least one globally optimal
solution with probability 1.

Theorem 6.2 shows that we can verify Condition 6.1 in order to determine whether
GAs in the noisy environments eventually find a globally optimal solution with
probability 1.

Example 6.3. Consider the additively noisy environment described in Example 3.2:
Each fitness evaluation is perturbed by a single source of additive noise that takes
on finitely many values. Let x̃ denote the maximum of the possible values of the
additive noise. Then for any i ∈ S∗ and j ∈ S\S∗,

F(i, x̃) = f (i)+ x̃ > F( j,x) = f ( j)+ x,

where x denotes any possible value of the additive noise. Thus Condition 6.1 is sat-
isfied in this noisy case. Similarly, Condition 6.1 is satisfied when fitness functions
are disturbed by multiple sources of additive noise. Hence we obtain the following
corollary:

Corollary 6.4. In noisy environments where fitness functions are purturbed by ad-
ditive noise sources that each take on finitely many values, GAs eventually find a
globally optimal solution with probability 1.

Example 6.5. Consider the multiplicatively noisy environment described in Ex-
ample 3.3: Each fitness evaluation is perturbed by a single source of multiplicative
noise that takes on finitely many values. Suppose that the (noiseless) fitness value
of each chromosome is positive: f (i) > 0 for all i ∈ S. Then, excluding the trivial
case that S∗ = S, Condition 6.1 is satisfied if and only if the multiplicative noise is
greater than zero with positive probability.
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Example 6.6. Consider the noisy environment described in Example 3.4: A single
source of multiplicative noise and a single source of additive noise concurrently
perturb each fitness evaluation. In this case, one can show that Condition 6.1 is
equivalent to

sup{x f (i) | i ∈ S∗, x ∈ X}> sup{x f (i) | i ∈ S\S∗,x ∈ X}, (18)

where X denotes the set of possible values of the single multiplicative noise source.
Notice that (18) involves only the fitness function and multiplicative noise; it does
not involve the additive noise. Thus for this noisy environment, the fitness func-
tion and multiplicative noise completely determine whether GAs eventually find a
globally optimal solution with probability 1; the convergence is unaffected by the
additive noise. However, note that for the other form of concurrent perturbation
by additive and multiplicative noise described in Example 3.5, Condition 6.1 is in
general affected by additive noise.

Next, we identify a condition that is both necessary and sufficient for GAs in the
noisy environments to eventually fail with probability 1. First we define the even-
tual failure mathematically.

Definition 6.7 (eventual failure). GAs are said to eventually fail if, after some
(random) finite number of iterations, they include in each subsequent population
at least one suboptimal solution whose observed fitness value is greater than that of
any globally optimal solution.

In other words, GAs are said to eventually fail if, after sufficiently many iterations,
they are guaranteed to never find any globally optimal solution.

By Property 5.4, GAs eventually fail with probability 1 if and only if each state in
A contains at least one ordered (D + 1)-tuple that includes a suboptimal solution
and achieves the maximum perturbed fitness that is greater than the maximum per-
turbed fitness of globally optimal solutions. Therefore, it follows that GAs in the
noisy environments eventually fail with probability 1 if and only if the following
condition holds:

Condition 6.8. There exists a suboptimal solution whose maximum perturbed fit-
ness is greater than the maximum perturbed fitness of globally optimal solutions:

sup{F([i,x(1), . . . ,x(D)]) | i ∈ S\S∗, x(d) ∈ X(d), 1≤ d ≤ D}
> sup{F([i,x(1), . . . ,x(D)]) | i ∈ S∗, x(d) ∈ X(d), 1≤ d ≤ D}. (19)

Thus we have just proved the following theorem:
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Theorem 6.9. Suppose that GAs are executed in the noisy environments described
in Section 3. Then Condition 6.7 is necessary and sufficient for GAs to eventually
fail with probability 1.

Example 6.10. Consider the multiplicatively noisy environment in Example 6.5:
A single source of multiplicative noise perturbs each fitness evaluation. Suppose
that every fitness value is positive and that S∗ 6= S. Then Condition 6.7 is satisfied
if and only if the multiplicative noise is negative with probability 1. Thus it follows
by Theorem 6.9 that GAs eventually fail with probability 1 in this case.

Example 6.11. Consider the noisy environment described in Example 3.4: A single
source of multiplicative noise and a single source of additive noise concurrently
perturb each fitness evaluation. In this case, Condition 6.7 can be expressed as

sup{x f (i) | i ∈ S\S∗, x ∈ X}> sup{x f (i) | i ∈ S∗,x ∈ X}, (20)

where X denotes the set of possible values of the single multiplicative noise source.
Note that (20) depends only on the fitness function and multiplicative noise; it is
independent of the additive noise. Hence it follows by Theorem 6.9 that the fit-
ness function and multiplicative noise completely determine whether GAs fail with
probability 1 in this noisy environment; the failure is unaffected by the additive
noise. For example, GAs in this noisy environment fail with probability 1 if (i) ev-
ery fitness value is positive, (ii) S 6= S∗, and (iii) the multiplicative noise is negative
with probability 1 (cf. Example 6.10).

Thus we can determine whether GAs in noisy environments eventually find a glob-
ally optimal solution or fail with probability 1 by simply identifying the positive
recurrent communication class A of the chain (Zk) that models the algorithms. No-
tice that if GAs do not implement the elitist strategy, then in general A may include
those states which do not contain any globally optimal solution whose observed
fitness is greater than that of any suboptimal solution. Thus the Markov chain anal-
ysis clearly shows that without the elitist strategy, Condition 6.1 is not sufficient for
GAs in the noisy environments to find a globally optimal solution with probability
1. Another important point is that if GAs do not reevaluate the fitness of each popu-
lation member (except for that of the chromosome preserved by the elitist strategy)
every time a new population is formed, then A may not be positive recurrent; in fact,
the chain may with positive probability never hit A. As a result, Condition 6.1 is
not sufficient for GAs to find a globally optimal solution with probability 1 without
the fitness reevaluation.
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Note that Corollary 6.4 and Example 6.10 reveal a fundamental difference between
the additive and multiplicative cases; although GAs eventually find a globally op-
timal solution with probability 1 in the additive case, they may eventually fail with
probability 1 in the multiplicative case.

7 Convergence Rate Analysis

In this section, we demonstrate how Property 5.5, which ensures the convergence of
the Markov chain (Zk) to stationarity, and Theorem 4.3, which reveals the one-step
transition probabilities of the chain, can be used to analyze how many iterations are
sufficient to ensure with at least a specified probability that GAs in noisy environ-
ments select a globally optimal solution upon termination.

Let K denote the transition kernel of the chain. The stationary distribution of the
chain will be denoted π . Property 5.4 states that the chain has only one positive
recurrent communication class, which is A in Definition 5.1. Thus

π(T ) > 0 ∀ T ∈ A, (21)

and

π(T ) = 0 ∀ T ∈ T\A. (22)

Let π(k) denote the distribution of the chain (Zk) at time k. Then by Property 5.5
and (21)–(22),

lim
k→∞

∑
T ∈A

π
(k)(T ) = 1. (23)

Now if Condition 6.1 holds, then the sum ∑T ∈A π(k)(T ) represents the probabil-
ity that the k-th population contains at least one globally optimal solution whose
observed fitness equals its maximum perturbed fitness, which is greater than the
maximum perturbed fitness of any suboptimal solution. Hence if Condition 6.1
holds, then we can analyze the convergence rate of (23) in order to determine how
many iterations are sufficient to guarantee with certain probability that a GA selects
a globally optimal solution when it is terminated.

In the noiseless case, Suzuki (1995) conducted the spectral analysis of the transition
kernel to examine the convergence rate, and the same analysis can be conducted for
noisy cases. By properly arranging rows and columns of K, we can show that K is a
block lower triangular matrix whose first |A| rows and first |A| columns correspond
to the states in A. Let K̃ denote the submatrix of K by eliminating these |A| rows
and columns. Then each entry of K̃k approaches zero as k goes to infinity (the



Genetic Algorithms in Noisy Environments 55

modulus of each eigenvalue of K̃ is strictly less than 1), and the convergence rate
of (23) is determined by how fast each entry of K̃k goes to zero. Let σ(K̃) denote
the spectral of K̃. We have the following result:

Theorem 7.1. There exists a constant C < ∞ such that for all k,

∑
T ∈A

π
(k)(T )≥ 1−Cλ

∗k, (24)

where λ ∗ := max{|λ | : λ ∈ σ(K̃)}< 1.

Notice that this theorem is an improvement over Theorem 2 in Suzuki (1995). It is
based on basic facts in matrix theory [for example, see Horn and Johnson (1985)]
and can be proved analogously to Theorem 2 in Suzuki (1995). Thus the proof will
be omitted.

Theorem 7.1 can be used to determine how many iterations are sufficient to ensure
with at least a specified probability, say p, that a GA selects a globally optimal
solution upon termination. Once we identify the constants C and λ ∗, we find k
such that 1−Cλ ∗k ≥ p, from which we obtain k ≥ ln(1−p)−lnC

lnλ ∗ .

We also provide numerical examples that illustrate how the one-step transition
probabilities shown in Theorem 4.3 can be used to analyze the exact probability
that a GA is guaranteed to select a globally optimal solution upon termination.
Consider the noisy environment in Example 3.2: A single source of additive noise
perturbs each fitness evaluation. By Corollary 6.4, GAs eventually find a glob-
ally optimal solution with probability 1 in this noisy environment. For each k, we
exactly compute

∑
T ∈A

π
(k)(T ), (25)

which represents the probability that the k-th population contains at least one glob-
ally optimal solution whose observed fitness equals its maximum perturbed fitness.
Hence the probability that GAs select a globally optimal solution upon complet-
ing the kth iteration is at least the sum (25). For each i( j,Pk), the distribution of
additive noise Xi( j,Pk) is defined by

Xi( j,Pk) =
{

0 with probability p
x with probability 1− p.

We examine the exact degrees to which p and x affect the probability (25) for each
k. We consider S = {1,2,3,4} and set the population size M to 3. For each i ∈ S,
its noiseless fitness f (i) will be defined by f (i) = i. Thus chromosome 4 is the
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globally optimal solution. We will execute a GA with proportional selection and
without crossover. The fixed mutation rate µ will be set to .1. The initial state of
the chain will be set to {(1,0),(1,0),(1,0)}. Thus the initial population P0 of the
GA is set to {1,1,1}, and the probability (25) is 0 for k = 0.

First we set p to .5. Figure 1 plots the exact probability (25) against the number of
iterations [k in (25)] for six different values of x: .5, 5.5, 10.5,...,25.5. Darker grays
are used for larger values of x. The figure shows that at each iteration, the proba-
bility (25) decreases monotonically with the noise value x and that for each value
of x, the probability increases monotonically with the number of iterations. (Corol-
lary 6.4 guarantees that the probability approaches 1 as the number of iterations
goes to infinity.)

Figure 1: Probability (25) upon completion of each iteration. Additive noise equals
0 with probability .5 and x with probability .5. Darker grays are used for larger
values of x.

Figure 2 plots the exact probability (25) against the number of iterations for p =
.999. Again, darker grays are used for larger values of x, but the six curves appear
to overlap since the effect of x is small in this case. Comparing Figures 1 and 2,
we can see that the probability converges to 1 much more slowly when p = .999
compared to when p = .5. Thus, using the entries of the kernel of the chain, we
can quantify the exact degrees to which various factors such as the distribution
of noise and its possible values, the population size, the mutation rate, and the
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noiseless fitness value of each chromosome affect the exact probability that GAs
are guaranteed to select a globally optimal solution at each iteration.

Figure 2: Probability (25) upon completion of each iteration. Additive noise equals
0 with probability .999 and x with probability .001.

8 Discussion

Our study clearly shows that Markov chain theory can be effectively used to math-
ematically describe GAs in various noisy environments and to reveal their funda-
mental convergence properties. As described in Section 3, the noisy environments
considered in this study are quite general (see, in particular, Examples 3.2–3.6), and
we did not make any assumptions about the expectation or variance of each noise
source—our analysis is valid even if the noise sources have nonzero means, for in-
stance. Mathematically, the Markov chain constructed in Section 4 completely cap-
tures the evolution of GAs in all the noisy environments considered in this study,
and by analyzing the chain, we can easily prove the necessity and sufficiency of
two conditions, Conditions 6.1 and 6.8, which are essential for characterizing GAs
applied to noisy fitness functions.

Our theoretical results probably have significant implications in practice. As men-
tioned in Section 1, multiplicative noise disturbs objective functions in a variety
of optimization problems, and objective functions can often be perturbed by more
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than one noise source. On the one hand, it is reassuring that GAs are guaranteed to
eventually find a globally optimal solution in noisy environments provided Condi-
tion 6.1 is satisfied. On the other hand, one must be cautious about using GAs to
find a globally optimal solution if it is suspected that this condition is not satisfied.
Indeed, one is advised not to simply apply GAs if Condition 6.8 holds.

Mathematically, the Markov chain (Zk) constructed and analyzed in this study is
completely determined by its transition kernel, and we thoroughly described the
kernel in Section 4. Our analysis described in Section 7 shows that knowledge
about the kernel can be used to investigate the convergence rate of the probability
in (23); using the one-step transition probabilities of the chain, we can compute
the exact probability that GAs are guaranteed to select a globally optimal solution
upon completion of each iteration. Thus, at least for simple cases, we can quantify
the exact degrees to which various factors such as the distribution of noise and
its possible values, the selection, crossover, and mutation schemes, the population
size, and the noiseless fitness value of each chromosome affect the probability.
This quantification can be useful for investigating optimal selection, crossover, and
mutation schemes in various noisy environments.

Currently, we are applying results on simulated annealing in Markov chain theory
to examine how to adaptively optimize the mutation rate in various noisy environ-
ments. We also intend to extend our Markov chain analysis to noisy environments
with continuous noise. We believe that our Markov-chain-theoretic approach to
analyzing GAs in noisy environments will further elucidate essential properties of
the algorithms.

Acknowledgement: The author thanks James Allen Fill for helpful comments
and discussions.
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