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Applications of the Phase-Coded Generalized Hough
Transform to Feature Detection, Analysis, and

Segmentation of Digital Microstructures

Stephen R. Niezgoda1 and Surya R. Kalidindi1,2

Abstract: The generalized Hough transform is a common technique for feature
detection in image processing. In this paper, we develop a size invariant Hough
framework for the detection of arbitrary shapes in three dimensional digital mi-
crostructure datasets. The Hough transform is efficiently implemented via kernel
convolution with complex Hough filters, where shape is captured in the magnitude
of the filter and scale in the complex phase. In this paper, we further generalize the
concept of a Hough filter by encoding other parameters of interest (e.g. orientation
of plate or fiber constituents) in the complex phase, broadening the applicability of
Hough transform techniques. We demonstrate the application of these techniques
to feature detection in micrographs (2-D) and three-dimensional (3-D) microstruc-
ture datasets, and explore their utility to the closely related applications of feature
based image segmentation and calculation of 3-D microstructure metrics.

Keywords: microstructure, Hough transform, image processing, segmentation,
feature detection

1 Introduction

The description of the internal structure (also referred to as the microstructure)
of the material is at the core of all descriptions in the field of materials science
and engineering. This internal structure is an exceptionally rich dataset that spans
multiple hierarchical length scales from the macroscopic to atomistic. Recent ad-
vances in characterization techniques, such as 3-D atom probe (Blavette, Bostel,
Sarrau, Deconihout and Menand 1993; Seidman 2007), x-ray micro-tomography
(Flannery, Deckman, Roberge and D’amico 1987; Maire, Buffière, Salvo, Blandin,
Ludwig and Létang 2001), 3-D x-ray diffraction microscopy (Schmidt, Nielsen,
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Gundlach, Margulies, Huang and Jensen 2004; Chapman, Barty, Marchesini, Noy,
Hau-Riege, Cui, Howells, Rosen, He, Spence, Weierstall, Beetz, Jacobsen and
Shapiro 2006), and automated serial sectioning, have made it possible to capture the
three-dimensional details of microstructures at multiple length scales. The datasets
generated from these techniques are often in the form of exceptionally large digital
3-D microstructure maps. For example, the high-resolution tomography capabili-
ties at the European Synchrotron Radiation Facility can capture a field of view of
2048 x 2048 pixels at a 0.28µm pixel size and exceeding 8GB in the size of the
dataset, with the reconstructed 3-D voxel dataset exceeding 8× 109 voxels (Betz,
Wegst, Weide, Heethoff, Helfen, Lee and Cloetens 2007). Visualization and anal-
ysis of such large datasets is a non-trivial problem. Depending on the scale of the
microstructural features of interest, a reconstructed 3-D volume may contain up-
wards of 100,000 examples. Manually scanning such a dataset for microstructural
features or defects (e.g. cracks, pores) is time consuming, and often impractical.
In order to rigorously study these datasets, an automated methodology to locate
features of interest is critically needed.

In this paper, we explore the application of a phase-coded generalized Hough trans-
form to the problem of automated microstructure feature detection. We also explore
the closely related applications of feature-based image segmentation and calcula-
tion of 3-D microstructure metrics. The generalized Hough transform is a name
given to a class of algorithms for the detection of imperfect instances of a target
object in an image or volume. The original Hough transform was conceived as a
method for extracting lines and simple curves from images (Hough 1962; Duda and
Hart 1972), and is probably best known to materials scientists in its application to
the automated indexing of electron backscatter diffraction (EBSD) for orientation
imaging microscopy (OIM) (Adams, Wright and Kunze 1993; Schwartz, Kumar
and Adams 2000). The basic Hough transform has been generalized for the de-
tection of arbitrary shapes (Ballard 1981) and has been efficiently implemented
via kernel convolution (Kierkegaard 1992). Atherton and Kerbyson developed a
complex Hough filter for size invariant circle detection (Kerbyson and Atherton
1995; Atherton and Kerbyson 1999). Here we further extend the general frame-
work of Atherton and Kerbyson to the detection of 3-D arbitrary shapes in mi-
crostructure datasets and extend the complex Hough filter to size invariant shape
detection and orientation invariant line detection. We will then demonstrate the
utility of this framework in three specific examples: 1) The detection of grains with
a specified morphology in a polycrystalline material, 2) The rapid calculation of
a common statistical microstructure metric referred to as the lineal path function
(Lu and Torquato 1992), and 3) The segmentation of an alpha/beta titanium colony
microstructure into individual colonies.
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2 Phase-Coded Generalized Hough Filters

The Hough transform was originally developed for the machine analysis of trajec-
tories of charged sub-atomic particles in a bubble chamber (Hough 1962). The
Hough transform is an elegant mapping of each pixel in a binary image to a si-
nusoidal curve in an accumulator or voting space, so that curves corresponding to
collinear pixels intersect in the voting space. We quickly review the basic Hough
transform since the key concepts are carried through to the more complex Hough
filters developed in this work.

Any line in a 2-D plane can be parameterized by the length of the perpendicu-
lar from the line to the origin, r, and by the angle of this perpendicular, θ , as
r = xcosθ + ysinθ . Thus every possible line in the plane can be uniquely mapped
to a point in the parameter space as the ordered pair (r,θ). Each pixel in an image
is mapped to a curve in the parameter space through the realization that all possi-
ble lines passing through the point (x0,y0) have the form r(θ) = x0 cosθ +y0 sinθ ,
which is a sinusoid through the parameter space. If the curves from two pixels in
the image are plotted in the parameter space, the intersecting point corresponds to
the line connecting those points in the image. Lines in the binary image can then
be easily found by mapping all of the pixels from the binary image into the pa-
rameter space and counting the number of intersections at each point. The points
where numerous curves intersect correspond to line segments in the image. Thus
the parameter space is referred to as the voting or accumulator space, as each inter-
section is considered a vote for a possible line in the image. Longer or more perfect
line segments will receive more votes as more curves in the accumulator space will
intersect.

The circle Hough transform can be used to detect circles in an image in a very
similar manner. The standard equation of a circle in a 2-D plane, (x− a)2 +(y−
b)2 = r2 parameterizes the circle by the ordered triplet (a,b,r). Each pixel in the
image can be mapped to a right circular cone in the parameter space (see Figure
1 and description below). The cones from all of the edge points on a circle will
intersect at a single point in the space (Duda and Hart 1972). In parallel with the
line case larger circles or more perfect circles will receive more votes. This simple
observation will motivate the introduction of a corrective normalization in later
examples. In general such a mapping can be constructed for any shape described
by a set of parametric equations, where the dimensionality of the accumulator space
is determined by the number of parameters.

The conventional Hough transforms described above can be formulated as a series
of convolutions with a series of appropriately defined Hough transform filters. For
example, consider a binary digital image where each pixel can either take the values
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Figure 1: (a) Hough filter for a circle of radius 10 as defined by Eq. (1). (b) The
contribution of selected pixels in the accumulator space of the convolution of a
circle (schematically shown by the dotted line) with the filter shown in (a). The
effect of the convolution operation is to “draw” in a circle of radius 10 at each
pixel. These circles intersect at the point (a = 0,b = 0) in the accumulator space.
High intensity pixels in the accumulator space indicate likely centers of circles in
the image space. (c) The (a,b,r) accumulator space resulting from the convolution
of a single pixel located at the origin with a successive series of filters from r∗ = 1
to r∗ = 13. The effect of the circle Hough transform is to map each pixel in the
image to a right circular cone in the full accumulator space.

0 or 1, in which we wish to detect a circle of radius r∗ pixels. The corresponding
Hough filter will be of size (2r∗+1,2r∗+1) where the rows of the filter are indexed
m = [−r∗,−r∗+ 1, . . . ,0, . . . ,r∗− 1,r∗], and the columns are similarly indexed by
n. The filter can then be defined as

Omn =

{
1

2πr∗ iff (r∗−0.5)2 < m2 +n2 < (r∗+0.5)2

0 otherwise
(1)

which is simply a circle of radius r∗ normalized so that its power is 1. Convolution
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with the filter maps a pixel located at position (a0,b0) in the image to a circle with
equation (x−a0)2 +(y−b0)2 = (r∗)2 in the accumulator space, with an intensity of

1
2πr∗ . If the image contains a perfect circle of radius r∗ centered at position (a0,b0),
the set of edge pixels will each be mapped to a circle of radius r∗ in the accumu-
lator space that all share the common point (a0,b0). Each circle contributes 1

2πr∗

to the intensity at the intersection point in the accumulator space (see Figure 1).
The purpose of normalizing the power of the filter by 1

2πr∗ is so that the cumulative
contribution of all the edge points of a perfect circle in the image is unity. Thus
the problem of detecting circles of radius r∗ in the image is reduced to identifying
pixels in the accumulator space with intensity close to 1. By “stacking” the results
of successive convolutions with filters ranging from r∗ = rmin to r∗ = rmax the de-
sired portion of the accumulator space, (a,b,r), can be explored. The mapping of
a single pixel to a right circular cone in the accumulator space is shown in Fig-
ure 1. Hough filters offer significant computational advantages as the convolution
operations can be efficiently computed via fast Fourier transform (FFT) methods
(Briggs and Henson 1995). The primary advantage of filter based techniques is the
elimination of the need for an analytic parametric description of the shape being
detected; with an appropriately defined filter the above approach is applicable to
the detection of arbitrary shapes (Ballard 1981; Samal and Edwards 1997).

The drawback of the above approach is that a different filter is needed for each r∗,
i.e. the technique is not scale invariant. Atherton and Kerbyson proposed a complex
Hough filter for size invariant circle detection in 2-D binary images (Kerbyson
and Atherton 1995; Atherton and Kerbyson 1999). Here, we present a framework
based on the Atherton and Kerbyson filters, with an added normalization to improve
accuracy when searching over a wide range of sizes and extended to the detection
of arbitrary shapes in 3-D microstructure datasets. The general principal behind
this approach is to reduce the dimensionality of the accumulator space by encoding
scale information in the complex phase of the filter. For circles, the filter is a
annulus where the phase varies linearly from rmin→ rmax, defined by

Omn =

{
1

2π
√

m2+n2 e2πiφmn iff (rmin)2 ≤ m2 +n2 ≤ (rmax)2

0 otherwise

φmn =

√
m2 +n2− rmin

rmax− rmin

(2)

An example filter is shown in Figure 2.

When convoluted with an image containing a circle of radius r∗, the contribution
from each edge pixel on the circle will interfere constructively for the phase cor-
responding to r∗ and destructively for all other phases. Thus the intensity of the
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Figure 2: Complex phase coded Hough filter defined by Eq. (2) with rmin = 5 and
rmax = 25. The complex magnitude as a function of radius is shown in (a) and the
phase angle is shown in (b).

accumulator space gives the likelihood of finding a circle centered at that location
in the image, and the phase gives the radius of the circle. The normalization by

1
2π
√

m2+n2 in Eq. (2) is designed so that all circles contribute equal intensity to the
accumulator space regardless of size. To the best knowledge of the authors, this is a
novel contribution from this work. Without such normalization, the peaks in accu-
mulator space from different sized circles are proportionate to their circumference.
For ideal images of perfect circles without any signal noise, this difference in peak
height is not of great consequence. However, for noisy images and images with
imperfect features (such as characterized micrographs), this normalization greatly
improves the ability to accurately detect small circles, especially when rmax� rmin.
Additionally, normalizing the contribution of a perfect circle to unity, allows the in-
tensity in the accumulator to be thought of as a probability on the likelihood of a
circle being centered at that point. For example, an accumulator point with intensity
0.9 indicates that 90% of the pixels are consistent with a perfect circle. With the
added normalization, this technique is quite robust, even for noisy images, when
detecting circles with a wide distribution of radii. The application of our normal-
ized phase coded filter to circle detection in a perfect and noisy image is detailed in
Figure 3.

The circular filters described above for 2-D images are an important theoretical
and intellectual exercise. However, these filters need to be extended to arbitrary
shapes in 3-D in order to be of significant practical use for microstructure analysis.
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Figure 3: (a) Ideal digital image containing circles of radius 20 and 50 pixels.
(b) Accumulator space plotted as surface resulting from convolution of image (a)
with filter defined by Eq. (2) where rmin = 10 and rmax = 60. Height of the peak
indicates complex magnitude and coloration gives complex phase. There are indeed
six main peaks in this plot, and their phase correctly reflected the corresponding
circle radii. (c) Digital image containing imperfect circles and added uniformly
distributed noise at a volume fraction of 0.15. (d) Accumulator space for image (c).
The noise adds additional peaks to the space and the peaks corresponding to circles
have been diminished relative to the ideal case. (e) Reconstructed image from the
accumulator space, by thresholding the accumulator space at 0.5 to separate the
desired peaks from the spurious ones due to the noise in the image.

Note that the extension of Eq. (2) from circles to spheres is trivial, the form
remains exactly the same and the appropriate normalization becomes surface area
rather than circumference. Consider an arbitrary 3-D solid shape (such as a grain
in a polycrystalline material) denoted ω and described by the indicator function
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(Torquato 2002):

Imnp =

{
1 if pixel m,n, p is interior to ω

0 if pixel m,n, p is exterior to ω
(3)

The surface of ω can then be expressed as (Torquato 2002)

Mmnp = |∇Imnp| (4)

which is nonzero only at the surface pixels. Additionally, let A = ∑m,n,p Mmnp

indicate the number of surface pixels. A simple Hough filter to find exact instances
of ω could be defined as

Omnp =
1
A

Mmnp (5)

To develop a complex filter for size invariant detection we introduce the notation
M s

mnp where the index indicates a scaling factor, i.e. M 2
mnp are the surface pixels

when the size of is scaled by 2. Similarly, let As = ∑m,n,p M s
mnp ≈ A1s2 represent

the appropriate scaling for surface area. A general size invariant Hough filter can
thus be defined as

Omnp =
∫ smax

smin

1
As

e2πiφ s
M s

mnpds

φ
s =

s− smin

smax− smin

(6)

An example of a filter modeled on a single grain from a polycrystalline dataset is
shown in Figure 4.

In effect, a complex filter allows us to reduce the dimensionality of the accumu-
lator space by encoding one parameter in the phase. In the examples described in
Eqs. (2) and (6), the phase angle represented scale. For other feature identification
applications, it might be more advantageous to encode a different microstructure
feature as the phase. As an example, consider the problem of rapidly identifying
the orientation of fibers in a 2-D micrograph from a fiber-reinforced composite. In
this case, a convolution with a simple filter of the form (in polar coordinates)

Orθ =

{
1
r∗ e

2πi θ

π if r ≤ r∗

0 otherwise
(7)

where is approximately equal to the average fiber length, will indentify the orien-
tation associated with each fiber. This example and related applications will be
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Figure 4: (a) A single grain extracted from a digital polycrystalline microstructure
that served as a template for the filter shown in (b) and (c). (b,c) Intersecting or-
thogonal slices through the center of the filter corresponding to the image in (a)
obtained by using Eq. (6). (b) shows the complex phase of the filter, and (c) shows
the magnitude. Only pixels that take non-zero values are visible.

explored in more detail in the Image Segmentation section below. In the image
processing literature, the term Hough filters is only used for feature extraction ap-
plications, and would not necessarily cover Eq. (7). However, for our purposes,
the implementation and interpretation are so similar that we will refer to them as
generalized Hough filters.

3 Feature Extraction in Digital Microstructures

In order to validate the framework presented earlier, we will apply the Hough filters
defined by Eq. (6) to extract grains of a prescribed morphology from a digitally cre-
ated polycrystalline microstructure (Brahme, Alvi, Saylor, Fridy and Rollett 2006).
The microstructure is 100x100x100 pixels in size and contains 997 unique grains
(see Figure 5). The Hough filter techniques described above rely on the mapping
of edge pixels into the accumulator space. Thus the first step in extracting grains
based on morphology is to convert the full dataset into a grain boundary network.
This was accomplished using a simple Canny edge detection algorithm on the indi-
vidual 2D slices (Canny 1986), and the results are shown in Figure 5. For complex
datasets, more robust edge segmentation algorithms would be required. The dataset
was then searched for grains of 2 specific morphologies: 1) spherical grains and 2)
grains similar in shape and scale to a specified target grain. The dataset shown in
Figure 5 is perfectly periodic, thus it was natural to include edge grains that inter-
sect the bounding box. For aperiodic digitally created or characterized datasets the
decision to include the edge grains would have to be informed by both the applica-
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tion and the shapes being detected.

Figure 5: (a) Digitally created polycrystalline dataset 100x100x100 pixels in size.
The dataset contains 997 unique grains. (b) Grain boundary network created from
edge detection on the entire dataset. The Hough filters act on the edge pixels and
accurate edge detection is critical to shape detection. (c) Equi-axed grains extracted
from the dataset in (a) at an accumulator threshold of 0.28 (97% of the maximum
intensity), the radius range of the filter was 5 to 20 pixels. (d) By lowering the
threshold to 0.26 (90% of the maximum intensity) more grains are detected, how-
ever while still equi-axed, the selected grains have a larger deviation from spheroc-
ity.
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The results of the spherical grain detection are shown in Figure 5. A spherical
filter was defined based on Eq. (6), where Mmnp was a spherical shell of radius 10,
smin = 0.5, and smax = 2. Thus, the working range of the filter was radii between
5 and 20 pixels. After convolution, the maximum magnitude of the accumulator
space was 0.29, indicating that for the most spherical grain, only about 30% of the
pixels coincided with a perfect sphere. In this case the relatively low intensities
in the accumulator space are not surprising; the fact that grains are space filling
structures precludes the existence of perfectly spherical grains. Here, the higher
intensity regions in the accumulator space after convolution with a spherical filter
correspond to the locations of the most equi-axed grains in the microstructure. The
results are shown for two threshold values in the accumulator space, 0.28 and 0.26
(97% and 90% of the max value respectively). At the 0.28 level, the grains that
are extracted appear to deviate substantially from spherical. On closer inspection it
is seen that these grains are largely equi-axed with local deviations; when viewed
from another angle they appear nearly spherical. At the 0.26 level, the deviation
from spherocity is more evident but the grains are clearly still equi-axed.

When applied to detecting near instances of natural shapes common in the dataset,
the generalized Hough filters are extremely robust. A Hough filter was created
based on an archetype grain from the dataset and was used to extract grains of
similar shape and scale. A pancaked archetype grain was selected to differentiate
the results from the spherical filter case, and a narrow scale range of smin = 0.8 to
smax = 1.2 was used. The archetype grain and the nearest other grains are shown in
Figure 6. Since the filter was constructed from an actual grain from the sample, the
intensity of the accumulator space ranges from 0 to 1, with accumulator intensity 1
indicating the center of mass from the archetype grain. After the grain that served
as a template, the next highest peak in the accumulator space has an intensity of
0.4. Thresholding the accumulator space at 0.30 left only the peaks corresponding
to the archetype grain and the 5 closest grains.

The low values of peaks in the accumulator space for both the spherical and natu-
rally shaped filter highlight the need for proper normalization of the phase coded
filter. In microstructural feature detection we are naturally seeking imperfect in-
stances of the object; no two grains are the same morphology.

4 Lineal Path Function and Related Functions

The lineal path function is an important statistical descriptor of the microstructure
which is often used in reconstructions of 3-D microstructures from 2-D sections
(Yeong and Torquato 1998; Manwart, Torquato and Hilfer 2000; Zeman and Se-
jnoha 2007). Additionally, the lineal path function contains linear free path infor-
mation and has been used to model Knudsen diffusion and radiative transport in
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Figure 6: Grains from the dataset shown in Figure 5 that come closest to matching
the circled archetype grain in shape and scale. The edge pixels of the circled grain
were used to construct a Hough filter using Eq. (6). Thresholding the accumulator
space at 30% returned the archetype grain and 5 most similar grains.

porous materials (Torquato 2002). The lineal path function, i, is defined as the
probability that a line segment of length z lies entirely in phase i when thrown ran-
domly into the microstructure. The lineal path function is commonly calculated by
sampling, and accurate measurement requires throwing a very large number of line
segments into the microstructure (Torquato 2002; Singh, Gokhale, Lieberman and
Tamirisakandala 2008). Most applications of the lineal path function are limited
to isotropic structures and the function is assumed to be independent of the orien-
tation of line segment. For broad applicability to anisotropic structures, the lineal
path function must be calculated as function of the length of line segment i and also
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its orientation, i.e. Li(z), where z is a 2-D or 3-D vector. This angularly resolved
lineal path function is rarely calculated, or is only calculated at a handful of angles,
due to the tedious nature of the required sampling over the space of length and
orientations (Singh, Gokhale, Lieberman and Tamirisakandala 2008).

Calculation of the angularly resolved lineal path function can be efficiently achieved
using generalized Hough filter approaches described earlier. For example, the filter
to calculate Li(z = z∗,θ = θ ∗) in a 2-D microstructure can be expressed as

Orθ =

{
1
r∗ if r ≤ r∗ and θ = θ ∗

0 otherwise
(8)

Convolution of a properly segmented microstructure image with the above filter
will map a value of 1 everywhere the vector z will fit in the image. Li(z = z∗,θ =
θ ∗) is simply calculated as the fraction of accumulator space pixels with value 1.
In a sense, the Hough filter can be thought of as sampling every possible place-
ment of vector z, defined by the ordered pair (z,θ), simultaneously. Thus the entire
lineal path function Li(z) can be calculated by convolution with a series of Hough
filters where the length and orientation of the vector z are systematically varied.
An example calculation of the lineal path function for a 2-phase microstructure is
shown in Figure 7. When calculating statistical measures in this way it is important
to consider bias due to boundary effects due to the convolution operation by ei-
ther padding the image or discounting the contribution of points near the boundary
(Briggs and Henson 1995)(Gokhale, Lieberman and Tamirisakandala 2008).

The use of Hough filters allows further generalization of the lineal path function.
Rather than simply calculating the probability of an oriented line segment falling
completely in a selected phase, we can calculate the probability associated with
other shapes. For example in 3-D percolating microstructures, the flux through a
region is strongly dependent on the cross-sectional area of the connected paths.
In this case, a better statistical measure might be the probability that sphere of
radius r or a cylinder of radius r, length z and a orientation (θ ,φ) falls within a
selected phase. As a simple example, determination of the radial path function
Ri(r) (probability of a sphere of radius r lies completely in phase i when thrown
randomly into the microstructure) for a porous solid is shown in Figure 7.

5 Application to Image Segmentation

Segmentation of an experimentally characterized microstructure, especially in 3-
D, based on microstructural features is a difficult task without a general solution.
The approach taken is highly subjective to both the characterization technique and
microstructure (for interesting examples, see (Chawla, Ganesh and Wunsch 2004;
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Figure 7: (a) Digital image of a two phase microstructure showing a clear
anisotropy in platelet orientation. Microstructure image is 2904x3864 pixels. (b)
Angularly resolved lineal path function Li(z) calculated by convolution of the mi-
crostructure shown in (a) with a series of filters defined by Eq. (8). Each meridian
represents the lineal path function for line segments of a given angular orientation.
Each radius represent a given line segment length. The radial range is from 0-240
pixels with a gridline every 56 pixels. Notice that anisotropy of the microstruc-
ture is clearly captured in the lineal path function. (c) Digitally created 3-D porous
solid. The white phase indicates pore and the solid is black. (d) Radial path func-
tion calculated from (c). The radial path function gives the probability that a sphere
of radius r lands completely in the pore space, when thrown randomly into the
microstructure.

Petushi, Katsinis, Coward, Garcia and Tozeren 2004; Stutzman 2004; Uchic, Groe-
ber, Dimiduk and Simmons 2006; Simmons, Bartha, De Graef and Comer 2008)).
Often, the problem of image segmentation can be simplified by the application of
a suitably defined phase-coded Hough filter. As a simple example, consider the
back-scattered electron (BSE) image of an alpha/beta titanium colony microstruc-
ture shown in Figure 9, obtained in a scanning electron microscope (SEM). In char-
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Figure 8: (a) Idealized lath or plate microstructure to serve as a demonstration for
orientation resolution by the generalized Hough filter. (b) Complex phase of an
orientation resolving Hough filter built using Eq. (7) with r∗ = 50; the polar angle
is encoded as the complex phase. The magnitude of the filter is 1 for r ≤ 50 and
zero otherwise. (c) Result of convolution of the image (a) and the filter (b). The
image shows the complex phase of pixels corresponding to the laths (white) in
(a). For clarity, the complex phase of the other pixels (black) are not shown. The
orientation of the lath can then be read directly from the phase information.

acterizing such a microstructure, one often desires to extract statistics from individ-
ual colonies such as the mean lath separation or the volume fraction of alpha (Tiley,
Searles, Lee, Kar, Banerjee, Russ and Fraser 2004; Collins, Welk, Searles, Tiley,
Russ and Fraser 2009). An automated method of segmenting the microstructure
into colonies would be extremely beneficial.

The problem of colony segmentation can be effectively addressed through the ap-
plication of a generalized Hough filter to resolve the lath orientation. For clarity
we will demonstrate the approach on an idealized plate or lath microstructure (see
Figure 8), and subsequently show the results for the experimentally acquired mi-
crograph shown in Figure 9. A line orientation encoding Hough filter was created
using Eq. (7) with r∗ = 50 pixels. The magnitude of the filter is 1 inside the circle
and zero outside, and the complex phase is shown in Figure 8. When convolved
with the microstructure image the phase corresponding to the orientation construc-
tively interferes in the accumulator space. The complex phase of each line can then
be mapped back to a physical orientation angle. The image can be segmented in
the accumulator space by simply isolating regions of similar complex phase. No-
tice that the areas near the end of the laths or where two laths are near each other
exhibit slight variance in phase relative to the center, which is largely due to the
edge effects from convolution. At points near the edge of features, the filter has
less complete destructive interference of the other phases. For the same reason,



94 Copyright © 2009 Tech Science Press CMC, vol.14, no.2, pp.79-97, 2009

Figure 9: (a) A BSE SEM image of an alpha/beta colony microstructure in titanium.
The microstructure is to be segmented into colonies based on the local lath orien-
tation. (b) Complex phase of the accumulator space resulting from the convolution
of the image with an orientation resolving Hough filter. (c) The micrograph is seg-
mented into colonies by grouping regions of similar orientation (similar complex
phase) in the accumulator space.

the intensity of the accumulator space will also be lower at these points relative to
the center of the laths. The intensity in the accumulator space can then serve as
a metric on the quality of the data at each pixel. If the phase information is to be
used for a quantitative analysis, such as on fiber orientation distribution, low quality
pixels can be eliminated and replaced by flood filling (or other suitable technique)
from high quality data points. Figure 9 shows results of the same procedure on an
experimentally obtained BSE SEM micrograph of alpha/beta titanium colony.

6 Summary

In this paper we developed and validated a framework based on generalized Hough
transform filters for successful automated extraction of microstructural features and
related applications. Specifically, we developed size invariant filters for feature de-
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tection in 3-D by encoding scale information in the complex phase of the Hough
filters. The filters were formulated for the detection of arbitrary shapes eliminating
the need for an analytical parameterization. The concept of a Hough filter was fur-
ther generalized by considering complex filters that encode other parameters such
as line orientation, thus broadening the utility of the generalized Hough transform
to a host of other microstructure analysis applications. Several examples were pre-
sented on feature extraction in polycrystalline 3-D digital microstructure datasets as
would be obtained from serial sectioning. The application of generalized Hough fil-
ters to the rapid calculation of the angularly resolved lineal path function and other
related statistical metrics was demonstrated in 2-D. Additionally, we demonstrated
the utility of orientation coded Hough filters to successfully address automated,
feature based, microstructure segmentation.
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