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A 3-D Coarser-Grained Computational Model for
Simulating Large Protein Dynamics
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Abstract: Protein dynamics is essential for gaining insight into biological func-
tions of proteins. Although protein dynamics is well delineated by molecular
model, the molecular model is computationally prohibited for simulating large pro-
tein structures. In this work, we provide the three-dimensional coarser-grained
anisotropic model (CGAM), which is based on model reduction applicable to large
protein structures. It is shown that CGAM achieves the fast computation on low-
frequency modes, quantitatively comparable to original structural model such as
elastic network model (ENM). This indicates that the CGAM by model reduction
method enable us to understand the functional motion of large proteins with re-
markable computational efficiency.
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1 Introduction

Protein dynamics, related to biological function, has been well understood by atom-
istic model based on molecular dynamics (MD) simulations and/or normal mode
analysis (NMA) [Brooks et al (1988); Karplus & Petsko (1990); Cui & Bahar
(2005)].
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However, atomistic model has the restrictions for gaining insight into large pro-
tein dynamics in the current computing capabilities since the current computa-
tional state-of-art enables the analysis of protein dynamics in the time-scale of
nano-second regime much less than the time-scale relevant to protein’s biologi-
cal function [Cui & Bahar (2005); Philips et al (2002)]. As a consequence, the
coarse-grained model has drawn the attention for analyzing the dynamics of large
biological and/or chemical structures [Philips et al (2002)]. Especially, for simulat-
ing the protein dynamics, elastic network model (ENM) has taken much attention
because of its simplicity as well as its capability to capture the dynamic behavior of
proteins qualitatively and/or quantitatively comparable to original atomistic model
and/or experiments [Tirion (1996); Atilgan et al (2001)]. The ENM describes the
protein structure as harmonic spring network system such that the residues rep-
resented only by alpha carbons within the neighborhood (cut-off radius) are con-
nected by elastic harmonic springs with identical spring constants [Atilgan et al
(2001)]. Such a simple model (ENM) has allowed for depicting the collective dy-
namics [Van & Cui (2006)], the fluctuation dynamics [Van & Cui (2006)], and the
motion along the low-frequency normal modes related to conformational change
for various proteins [Tama & Sanejouand (2001); Xu et al (2003); Tobi & Bahar
(2005)], which shed light on the energy landscape for conformational transitions
[Miyashita et al (2003); Maragakis & Karplus (2005)].

Although the protein structures are represented simply by harmonic spring network
in ENM, it is quite remarkable in its capability to capture the dynamic behavior of
proteins qualitatively comparable to atomistic model. The success of ENM to cap-
ture the protein dynamics may be ascribed to the fact that the collective dynamics
of proteins is well described by harmonic and/or quasi-harmonic dynamics. In this
connection, Brooks and Karplus showed that the harmonic dynamics is held for
describing the collective dynamics of proteins [Brooks & Karplus (1983)]. In a
study by Amadei et al., it is shown that the collective dynamics of proteins can
be well represented by essential dynamics (quasi-harmonic dynamics) based on the
MD trajectories [Amadei et al (1993)]. Moreover, Case and Teeter reported that the
details of the potential field prescribed to atomistic structure of protein do not play
any role in the collective dynamics of proteins at all [Teeter & Case (1990)]. Re-
cently, Ma suggested that the perturbations of stiffness matrix for protein structure
does not induce the change of protein dynamics behavior as long as the topology of
protein structure is maintained, implying that protein native topology is responsible
for protein dynamics [Lu & Ma (2005)].

Even though ENM has been capable of analysis on protein dynamics such as fluctu-
ation dynamics (collective dynamics) and/or conformational transitions, the large
protein dynamics may not be computationally effectively approached by ENM,
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simply because of large degree of freedom for large protein structure. Recently,
Drouker et al. reported that conformational fluctuation of large protein structures
can be delineated by coarser-grained structural model [Doruker et al (2002); Kurkcuoglu
et al (2004); Kurkcuoglu et al (2005)]. Further, Chennubholta and Bahar pro-
vided the coarser-grained Gaussian network model based on the Markov statisti-
cal method [Chennubhotla et al (2006); Chennubhotla & Bahar (2006)]. More-
over, we previously reported the model condensation method, which establishes
the coarser-grained Gaussian (one-dimensional) network model for large protein
structure [Eom et al (2007)]. It was shown that collective and fluctuation dynam-
ics of large proteins is well described by coarser-grained isotropic Gaussian (one-
dimensional) network model. The success of coarser-grained model in predicting
the protein’s conformational fluctuation is attributed to the fact that the collective
dynamic behavior of a domain can be represented by small degrees of freedom. In
this sense, such coarser-grained models may be employed for developing the novel
multi-scale model for protein structure in such a way that the regions relevant to bi-
ological functions (e.g. ligand-binding site) can be described by the refined molec-
ular model, while the rest of regions are represented by coarser-grained models
[Ahmed & Gohlke (2006)]. We also presented that the component mode synthesis
widely used in engineering was well applied to understand protein dynamics [Kim
et al (2008)]. With the proposed scheme, the domain of protein can be considered
as a component and the number of component is increased as necessary, and the
size of each component may be decreased for fast calculation.

In this article, we developed the coarser-grained three-dimensional network model,
which allows us to gain insight into protein dynamics based on the dynamic model
condensation in such a way that the slave residues to be eliminated during model
condensation are assumed to be in equilibrium state. It is shown that our coarser-
grained three-dimensional model describes anisotropic motion of a residue and pos-
sesses the low-frequency modes, quantitatively similar to original molecular model
and/or experimental data. This indicates that the proposed model may enable the
study of large protein dynamics related to protein conformational change based on
the low-frequency normal modes. It implies that the insight into protein conforma-
tional change can be gained with coarser-grained model for large proteins.

2 Model proteins

We studied the validation of coarser-grained three-dimensional network model to
capture the collective (fluctuation) motion based on the following model proteins:
citrate synthase, hemoglobin and kinesin. These model proteins are appropriate
for studying in a later stage whether the insight into conformational change can be
gained by present model, because of their given two equilibrium states (open and
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close forms) provided in protein data bank ( http://www.pdb.org). Fig. 1 presents
the original structure for model proteins.

 
(a)         Citrate synthase                   (b) Hemoglobin              c)  Kinesin 
 

Figure 1: Model proteins

2.1 Elastic Network Model (ENM)

The success of harmonic dynamics for capturing the protein dynamics enabled
Tirion to develop the ENM for protein structures [Tirion (1996)]. The ENM re-
gards the protein structure as the harmonic spring network system, in which the
neighborhood residues are connected by harmonic springs with identical spring
constant [Atilgan et al (2001)]. The potential energy E for ENM is given by

E =
1
2 ∑

i, j

(ui−u j)∗Ki j(ui−u j)≡
1
2

u∗Ku (1)

Here ui is the displacement field for residue i, i.e., ui = ri − r0
i with a position

vector ri for residue i and superscript 0 means the equilibrium state, u is the 3N×1
column vector representing the displacement field for all residues, asterisk indicates
the transpose of a vector, Ki j is the 3×3 local stiffness matrix for a harmonic spring
connecting residues i and j, and K is the 3N×3N stiffness matrix for ENM, whose
off-diagonal block matrix is given by −Ki j and the diagonal block matrix is equal
to summation of off-diagonal block matrices.

The protein dynamics can be described by the eigenvalue problem: Kq = ω2q,
where ω is the natural frequency and q is its corresponding normal mode. Statistical
mechanics theory enables one to compute the fluctuation matrix C based on the
normal modes.

C ≡ 〈u⊗u〉=
3N

∑
J=1

kBT

ω2
j

q j⊗q j (2)

where angle bracket < > indicates the ensemble average (time average), kB is the
Boltzmann’s constant, T is the absolute temperature, and the subscript j represents
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the mode index j. It should be noted that the summation in Eq. (2) excludes the six
zero-modes corresponding to rigid body motions. The mean-square fluctuation for
residue i is in the form of〈
|ui|2

〉
=

3

∑
k=1

C3(i−1)+k,3(i−1)+k (3)

Consequently, the Debye-Waller factor (B-factor) for residue i is

Bi =
8π2

3

〈
|ui|2

〉
=

8π2

3

3

∑
k=1

C3(i−1)+k,3(i−1)+k (4)

The correlated motion between residues i and j is well delineated by cross-correlation
Li j given by

Li j =

〈
ui ·u j

〉√〈
|ui|2

〉〈∣∣u j
∣∣2〉 =

3
∑

k=1
C3(i−1)+k,3( j−1)+k√√√√( 3

∑
p=1

C3(i−1)+p,3(i−1)+p

)(
3
∑

r=1
C3( j−1)+r,3( j−1)+r

)
(5)

2.2 Coarser-Grained Elastic Network Model

As stated earlier, the dynamic behavior of large proteins has been approached by
the coarser-grained models, in which several residues are represented by a single
nodal point. We denote the nodal points for coarser-grained model as the master
residues which are taken in coarser-grained structure, while the rest of residues
which should be removed during the model condensation (coarse-graining) are de-
noted as the slave residues. The coarser-graining scheme to select master and slave
residues is well described in Doruker et al (2002) and Eom et al (2007). For the
coarse-graining of protein structure, the potential energy E given by Eq. (1) can be
represented in the form of

E =
1
2

u∗Ku =
1
2

[u∗m u∗s ]
[

Kmm Kms

Ksm Kss

][
um

us

]
(6)

where the subscript m and s indicate the indices of master residues and slave
residues, respectively, and um and us are the displacement fields for master residues
and slave residues, respectively. During model condensation, the slave residues
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are assumed to be equilibrium. That is, the slave residues are assumed to have
negligible contribution to protein conformational fluctuation.

∂E
∂us

= Ksmum +Kssus = 0 (7)

From Eqs. (6) and (7), the potential energy E for a coarser-grained network model
for protein structure is given by E = (1/2)u∗mK̃um where K̃ is the stiffness matrix
in the form of

K̃ = Kmm−KmsK
−1
ss Ksm (8)

Here, the dimension of K̃ is 3Nm× 3Nm, where Nm is the total number of mas-
ter residues. For a coarser-grained network model of Nm nodal points, where
Nm = (N/n) with n >> 1, the computational cost to compute the stiffness matrix
K̃ for a coarser-grained network model is proportional to computational expense
to estimate the inverse of Kss in order of 9N3(1− 1/n)3 ∼ 9N3 for n >> 1. This
indicates that direct model condensation to compute stiffness matrix for a coarser-
graining model consisting of very small number of nodal points is computationally
unfavorable because of expensive computation on K−1

ss . For computational effi-
ciency, we consider the hierarchical model condensation described as following
procedures.

Select the (N/`) master residues and the N(1− 1/`) slave residues, where 1 <
` << n.

Partition the stiffness matrix K in the form of (6).

Compute the stiffness matrix K̃for a coarser-grained model consisting of (N/`)
nodal points according to Eq. (8).

Set the coarser-grained structure as the initial structure for the further model con-
densation, i.e. N← N/`and K← K̃.

Repeat the steps (i)-(iv) until one obtains the coarser-grained structure composed
of (N/n)nodal points and its corresponding stiffness matrixK̃.

Once the stiffness matrix K̃ is computed for a coarser-grained model, then the fluc-
tuation and/or collective dynamics are can be easily understood from Eqs. (2)-(4).

3 Results

3.1 Fluctuation Dynamics

We consider the thermal fluctuation dynamics of model proteins based on elas-
tic network model (ENM), referred to as original structural model, and coarser-
grained anisotropic model (CGAM). As shown in Fig. 2 proteins are modeled as
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harmonic spring networks referred to as elastic network model for original structure
and coarser-grained network model for coarser-grained structure.

 
 

 Citrate synthase (N, N/8) 
 

 
 
                         Hemoglobin (N, N/8) 
 

 
                          Kinesin (N, N/8) 
 

Figure 2: Protein Structures: Original model (left) and coarser-grained model
(right)

The coarser-grained structure, shown in Fig. 2, for model protein allows the re-
duction of computational cost, by order of 9n2, for calculating the thermal fluc-
tuation such as Debye-Waller factor, where n is the level of coarse-graining such
that a coarser-graining model consists of (N/n)nodal points with N denoted as
original number of residues. Fig. 3 represents the Debye-Waller factor, denoted

as Bi = (8π2/3)〈ui〉2 = (8π2/3)
[〈

u2
i,x

〉
+
〈

u2
i,y

〉
+
〈

u2
i,z

〉]
where ui,x ,ui,y and ui,zis
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the displacement driven by thermal fluctuation for residue i along the x-axis, y-
axis, and z-axis, respectively, for model proteins based on ENM and CGAM, where
CGAM consists of N/8 nodal points. Here N is the total number of residues in orig-
inal protein structures. It is quite remarkable that anisotropic fluctuation behavior
of model proteins is well delineated by CGAM, quantitatively comparable to fluc-
tuation behavior obtained by original structural model (i.e. ENM). The capability
of CGAM to capture the anisotropic thermal fluctuation behavior of model pro-
teins may be attributed to the rigidity of protein domains. Specifically, a number
of proteins consist of several rigid domains, which can be described by small num-
ber of nodal points. This allows several research groups to introduce the various
coarser-grained model [Doruker et al (2002); Eom et al (2007)] for gaining insight
into thermal fluctuation of proteins. Our CGAM is constructed in the similar spirit
to our previous one-dimensional coarser-grained model [Eom et al (2007)], which
was extended to 3-dimensional coarser-grained model to capture anisotropic fluc-
tuation motion. As stated earlier, since our coarser-graining scheme is based on
the elimination of entropic springs connected to slave residues, which leads to in-
crease in the overall flexibility of protein domains, the rescaling of spring constant
is mandatory for maintaining the overall flexibility of protein structure (in Fig. 3,
the spring constant is rescaled).

The correlated motion for model proteins is taken into account with both ENM and
CGAM. The correlated motion of proteins is generally ascribed to rigid domain,
implying that the correlated motion may be described by the coarser-grained struc-
tural model (CGAM). Fig. 4 displays the cross-correlation map Li j, representing
the correlation of motions between two residues (nodal points) i and j, for model
proteins with use of both ENM and CGAM. It is remarkably shown that coarse-
graining structure is able to reproduce the correlated motion between sub-domains,
quantitatively comparable to that obtained from original structure. This indicates
that our CGAM may is the robust model for gaining insight into protein dynamics.
The robustness of CGAM may depend on the level of coarse-graining, n. Since
the correlated motion of proteins cannot be represented by a couple of dominant
low-frequency normal modes[8], the CGAM may be robust for understanding the
correlated motion as long as the CGAM is able to provide the sufficient number
of low-frequency normal modes, qualitatively similar to those of original structural
model (e.g. ENM). In our case, we chose the coarse-graining level n as n=8 for
CGAM. As shown in Fig. 4, the quantitative similarity of Li j between ENM and
CGAM suggests that our CGAM is very robust enough to provide the meaningful
information of correlated motions of model proteins.
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Figure 3: Debye-Waller factors (B-factors) for model proteins such as (a) citrate
synthase, (b) hemoglobin, and (c) kinesin.
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a) Citrate synthase 

 

 
b) Hemoglobin 

 

 
c) Kinesin 

 

Figure 4: Cross-correlation for (i) original structure (left) and (ii) coarse-graining
structure (right)

3.2 Low-Frequency modes

Since the low-frequency modes are associated with not only the collective dynam-
ics but also the structural deformation related to biological functions of proteins,
the low frequency modes for coarse-grained models for three model proteins are
taken into account for validity of our coarse-grained model. Lowest-frequency
modes, obtained from original structure as well as coarse-grained structure, in each
direction for model proteins are shown in Fig. 5.

It is remarkable that, the low-frequency modes for the original structure can be also
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(a) X-component of 1st low frequency eigenvector of citrate synthase 
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(b) Y-component of 1st low frequency eigenvector of citrate synthase 
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(c) Z-component of 1st low frequency eigenvector of citrate synthase 
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(d) X-component of 1st low frequency eigenvector of hemoglobin 
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(e) Y-component of 1st low frequency eigenvector of hemoglobin 
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(f) Z-component of 1st low frequency eigenvector of hemoglobin  
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(g) X-component of 1st low frequency eigenvector of kinesin 
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(h) Y-component of 1st low frequency eigenvector of kinesin 
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(i) Z-component of 1st low frequency eigenvector of kinesin 

 

Figure 5: Lowest-frequency normal modes, obtained from original structure as well
as coarser-grained structure, in each direction for model proteins such as (a) citrate
synthase, (b) hemoglobin, and (c) kinesin.

captured by the coarse-graining structure. This indicates that our proposed model
does not affect the characteristics of low-frequency modes for proteins. That is, our
coarse-grained model may allow for the fast computation on low-frequency modes
related to structural changes of proteins. The results also imply that our CGAM
is robust model reduction scheme, which allows for gaining insight into functional
low-frequency modes to make a contribution to thermal fluctuation for proteins.

4 Conclusions

Elastic network model has allowed for gaining insight into protein dynamics re-
lated to biological functions of proteins. However, such a model exhibits the com-
putational limitations in computing the low-frequency modes, and thermal fluctu-
ations associated with protein structural changes for large protein structures. In
present work, we provided the coarser-graining anisotropic model applicable to
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large protein structures. It was shown that coarse-grained models by model reduc-
tion scheme enable us to understand protein dynamics with remarkable computa-
tional efficiency.
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