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Wavelet-based Inclusion Detection in Cantilever Beams

Zheng Li1,2 Wei Zhang1 and Kezhuang Gong1

Abstract: In this paper, continuous wavelet transform has been applied to in-
clusion detection in cantilever beams. By means of FEM, a cantilever beam with
an inclusion is subjected to an impact on its free end, and its stress wave propa-
gation process is calculated. Here, two kinds of inclusions which are distinct in
material behavior have been discussed. And we change the inclusion’s sizes in the
beam and set it in three different positions to simulate some complicated situations.
For soft inclusion, the results show that the arrival times of incident and reflective
wave are distinguishable by performing Gabor wavelet transform and extracting
a proper frequency component from the strain data of two certain points on beam
edge. Consequently, the position of inclusion is identified and the size of it is inves-
tigated quantitatively by the reflection and transmission ratio. For hard inclusion,
an improved method is adopted to amplify the signal-to-noise ratio. The inclusion
is located by analysis of the difference between an intact beam and a beam with
inclusion. In addition, the corresponding dynamic experiments for both kinds of
inclusions are carried out to verify the detection method. The experimental results
show that Gabor wavelet transform precisely estimates the location and size of in-
clusions, and is proved to be an effective method to quantify the inhomogeneity in
a beam.

Keywords: Continuous wavelet transform, Gabor wavelet, inclusion detection,
cantilever beam.

1 Introduction

Inhomogeneous inclusion in engineering material always decreases the material
quality and induces stress concentrations along interfaces practically, leading to the
structural deterioration and safety reduction consequently. But, there will be many
chances to generate various impurities inevitably during the manufacture, process-
ing and utilizing of structural components, which cannot be estimated in advance.

1 LTCS & College of Engineering, Peking University, China.
2 Corresponding author. Fax: +86-10-62751812, E-mail: lizheng@pku.edu.cn



210 Copyright © 2009 Tech Science Press CMC, vol.9, no.3, pp.209-227, 2009

So, how to detect the material purity in a structure and how to identify the inclusion
property are all crucial issues in structural health monitoring. Nowadays, there are
many kinds of methods used to detect the damage or mechanical degradation in
structures, such as Fourier analysis based on vibration [Reddy K.V. and Ganguli
R. (2007)] and Lamb wave technique [Tian J., Gabbert U., Berger H. and Su X.
(2004)]. And an overview about the computational intelligence methods developed
for the structural integrity assessment of aging aircraft structures was summarized
by Pidaparti R.M. (2006). In contrast with the damage or crack, wave reflection
and transmission become more obscure when an inhomogeneous inclusion exists
in structures, because the conclusion is mostly distinct from the structure mate-
rial in mechanical behavior. Baganas K. and his co-workers (2005) contributed on
identification of a spherical inclusion inside a circular cylinder, and Vanaverbeke S.
(2003) studied a plate with a thin inclusion by the reflection of a two-dimensional
Gaussian ultrasonic beam. And there are some other current NDT methods utilized
to identify inclusions [Carreon H. (2007); Brovko A.V., Murphy E.K., Rother M.
and Yakovlev H.V.V. (2008)]. But most of these methods are either inconvenient
or unsuitable to apply in engineering structures. Therefore, some new methods
need urgently to be developed to detect in-situ the material purity and quality in
engineering structures.

Now, a new detective method based on the stress wave propagation is provided in
this paper. Because of its very good local and self-adaptive time-frequency ana-
lytical properties, continuous wavelet transform has been applied in stress wave
analysis [Hull A. J., Hurdis D.A. (2003)] and even in crack detection [Tabrez S.,
Mitra M. and Gopalakrishnan S. (2007); Tian J., Li Z. and Su X., (2003); Li Z.,
Xia S., Wang J. and Su X. (2006)]. So, here it will be employed to analyze the
stress wave signals in cantilever beams for inclusion detection. Firstly, numeri-
cal computation will be carried out for the cantilever beam to identify the location
of inhomogeneity, where the dynamical strain data will be extracted and analyzed
by Gabor wavelet transform. Then, the corresponding dynamic experiments will
be performed for PMMA cantilever beams with various inclusions to validate the
reliability of the stress wave method based on continuous wavelet transform for
inhomogeneous inclusion detection.

2 Continuous wavelet transform

For any square-integrable signal f (t), its continuous wavelet transform is defined
in time domain [Mallat S. (1998)]

Wf (a,τ) =
1√
a

∫ +∞

−∞

f (t)ψ(
t− τ

a
)dt (1)
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where a is the scale parameter and τ is the translation parameter; ψ is a mother
wavelet and the bar indicates its complex conjugate. The Fourier transform of
mother wavelet,ψ̂ (ω), needs to satisfy its admissibility condition, i.e.

∫ +∞

−∞

|ψ̂(ω)|2

|ω|
dω < ∞ (2)

There are many commonly used wavelet functions, such as Haar wavelet, Mexician
Hat wavelet, Morlet wavelet and compactly supported spline wavelet. However,
in this paper, Gabor wavelet is adopted to analyze the stress wave signals for its
excellent time-frequency analytical properties. Gabor wavelet can be expressed as

ψG(t) =
1

4
√

π

√
ω0

γ
exp

[
−(ω0/γ)2

2
t2
]

exp(iω0t) (3)

where γ and ω0 are positive real constant. Its Fourier transform is,

ψ̂G(ω) =
√

2π

4
√

π

√
γ

ω0
exp

[
−(γ/ω0)2

2
(ω−ω0)2

]
(4)

Although Gabor wavelet cannot strictly satisfy the admissibility condition of Eq.
(2), it exhibits best time-frequency characteristics according to Heisenberg uncer-
tainty relation [Heisenberg W. (1927)]. In this paper, we choose γ = π

√
2/ln2,ω0 =

2π , it is regarded to approximately meet the condition.

If a dispersive wave u(x, t) = 1√
2π

∫ +∞

−∞
A(ω)exp[i(ωt− kx)]dω is considered, its

continuous wavelet transform can be obtained from Eq. (1)

Wf (a,τ) =
√

a
∫ +∞

−∞

A(ω)exp(−ikx+ iωτ)ψ̂G(aω)dω (5)

where the function ψ̂G(aω) is localized around ω=ω0/a. Meanwhile,k = k0 +
1
cg

(ω − ω0
a ), when the first-order approximation of Cg = dω

dk is adopted around the

frequency ω0/a. So, Eq. (5) can be simplified as

|Wf (a,τ)|= 1
4
√

π
√

a

√
ω0

γ
|A(

ω0

a
)|exp

[
−(ω0/γ)2

2a2 (τ− x
cg

)2
]

(6)

It means that for any given scale parameter a, the amplitude of Wf (a,τ) will reach
its maximum value when τ = x/cg. Therefore, by changing the scale parameter
a, the arrival time and amplitude of the dispersive wave at each frequency can be
obtained.
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3 Cantilever beam with soft inclusion

In this paper, a cantilever beam, as a common structural component, is considered
to identify its inside inclusions. Firstly, a kind of soft inclusion is considered to
represent the inner infirm part or to express the local area with many tiny cracks or
damages. The inhomogeneous beams are made of PMMA with rubber inclusions,
where rubber is chosen as soft inclusion to imitate the local area with many tiny
damages, as well as other soft inclusions which elastic modulus is normally smaller
than matrix materials. The beam is set with 600mm in length, 5mm in thickness
and 32mm in width, and its material properties are listed in Table 1.

Table 1: Material properties for soft inclusion beam

Material PMMA Rubber
Ed (GPa) 5.03 0.008
ρ (kg/m3) 1170 912
ν 0.36 0.49

Basically, three kinds of beam models are designed with an inclusion at three dif-
ferent locations as illustrated in Fig. 1, namely, an inner inclusion, an inclusion
located on the upper edge and an inclusion on the lower edge. Moreover, the inclu-
sions are designed with different aspect ratios. With the width being fixed to 1mm,
the damage length is set to be 3, 6, 9, 12 and 15mm, separately. Two points A and
B on the upper edge of cantilever beam as shown in Fig. 1, are chosen to measure
the dynamic stain signals during an impact load on the free end of beam.

 

Figure 1: Sketch of cantilevel beam (mm)

3.1 Numerical calculation

Firstly, all models are calculated by ANSYS /LS-DYNA programme. The problem
is simplified as a 2D plane-stress state, and 2D PLANE 162 element type is selected
to divide finite element model into about 19200 elements. The element size is set
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1mm for less than 1/20 of minimum stress wave length to satisfy the calculated
precise and time steps are automatically calculated, about 5×10−8s, to achieve
convergence. An impact load acts on the free end of beam, and it is introduced
by corresponding experiment data in Fig. 2. When the soft inclusion exists on
the upper edge of cantilever beam, the longitudinal strain data at points A and
point B are calculated. Fig. 3 shows the strain results at points A and B with
different inclusion lengths from 0, 3mm to 15 mm, and specimens are nominated
as No_inclusion, R1_3 to R1_15 respectively.

 
Figure 2: Impact load

From Fig. 3, it can be seen that the strain signals of point A before the first peak
look same, and then it will be fluctuated when the inclusion length increases. But
the strain signals at point B seem no obvious change in these figures. Therefore,
from the data of point A, we can identify whether there are soft inclusions in the
beam, but it is difficult to determine the inclusion position directly from these com-
plicated figures due to the dispersive characters of flexural waves.

In order to obtain more information from the strain signals, Gabor continuous
wavelet transform (CWT) is employed to analyze these data, but how to choose
a proper wavelet parameter is very significant. By changing the analysis frequency
from 5 kHz to 30 kHz, the typical CWT results of strain data at points A and B are
calculated and shown in Fig. 4. It originally is a 3-D image of time-frequency anal-
ysis, where x axis is time, y axis is frequency and z axis is the amplitude of CWT.
Now, we look down upon the image from z axis and use different colors to express
the CWT amplitudes in brief. According to Timoshenko beam theory, the flexural
waves in beams are dispersive, and there are two sets of wave modes, slow wave
and fast wave. If the mechanical properties of materials are taken from Table 1, the
cut-off value of fast wave can be calculated about 17.3 kHz, and it is apparent in
all figures in Fig. 4, even in the No_inclusion beam. Therefore, an attempt is made
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Figure 3: Strain results for upper soft inclusion

  
 Figure 4: Multi-frequency analysis of CWT for upper soft inclusion

to avoid the influence of fast wave by choosing lower cut-off frequency signals.
However, it can be found that the additional ridge reflected by inclusion is difficult
to identify from very low frequency results of point A, which contributes to the
larger time window at low frequency in wavelet analysis. So, only the middle high
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frequency component below the cut-off can be used to detect the inclusion, and it
is obviously that the additional ridge can be identified near the frequency of 10.0
kHz. Therefore from the results of multi-frequency CWT analysis, the analysis
frequency of CWT can be selected.

 
Figure 5: CWT results for upper soft inclusion (10.0 kHz)

Fig. 5 shows the results of Gabor wavelet transform about point A and point B by
choosing the analytical frequency in 10.0 kHz. It can be noticed, for the beam with
soft inclusion, the first peaks of solid curves (point A) correspond to the arrivals of
incident waves, and the second ones represent the arrival of reflected waves. The
first peaks of dot curves (point B) correspond to the arrival of transmitted waves.
Then, by calculating the stress wave velocity at this frequency components from the
distance and arrival times of stress wave at points A and B, the location of inclusion
can be easily determined by the difference of the arrival times between incident and
reflected waves.

Similarly, the situations with an inner or lower inclusion in the beam can also be
calculated and typical results extracted by Gabor wavelet transform are displayed
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Figure 6: CWT results for inner soft inclusion (12.5 kHz)

in Fig. 6 and Fig. 7, respectively.

To demonstrate the accuracy of inclusion detection, all results about predicted lo-
cation of inclusion for the three beams are listed in Table 2. It can be noticed when
the inclusion depth ratio of the inclusion depth (d) to the beam width (h), is larger
than 10%, the detecting error in inclusion location is no more than 5%. When
the inclusion is very small (d/h<10%), its location can be also successfully identi-
fied, though the error will increase. This indicates that this method is accurate for
moderate soft inclusions and has high sensitivity for small ones. Furthermore, Fig.
8 shows the reflection and transmission ratios about different inclusion lengths to
compare the influence of inclusion extent. It can be seen that, all reflection ratio
curves rise when the inclusion length increases, but contrarily, the transmission ra-
tio curves tend to decline. So, from the results in Fig. 8, the size of soft inclusion
can be estimated.
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Figure 7: CWT results for lower soft inclusion (13.0 kHz)

3.2 Experiments

Experiments are carried out to directly measure the dynamic strain signals on the
edge of beams for the aforementioned beam, and the materials selected are the
same as computational models. Here, the PMMA beam with a rubber inclusion on
its upper edge is prepared. Two strain gauges at points A and B (see Fig. 1) are
glued to measure the strain data, which can be recorded by a two-channel digital
oscilloscope (Tektronic2211). The beam is impacted laterally on its free end by a
dropping steel ball with 1.2m height. The typical strain signals and CWT results
about the beam with an upper rubber inclusion, which is 2mm width and 10mm
length, are both illustrated in Fig. 9, where the analysis frequency of 10.0 kHz is
chosen. According to these results in Fig. 9, the inclusion location can be identified
precisely and the error is about 3.1%. For this case, the reflection and transmission
ratios can also be figured out and they are 23% and 73%, respectively. The exper-
imental results in Fig. 9 show great consistency with computational results basing
on finite element analysis, and demonstrate that this inclusion detection method is
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Figure 8: Reflection and transmission ratios

 

Figure 9: Strain and CWT results of experiment for soft inclusion
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remarkably effective and sensitive to soft inclusion in a cantilever beam.

4 Hard inclusion detection

Furthermore, by replacing rubber with steel in Fig. 1, the hard particles included in
pure materials are imitated. The mechanical properties of beam and inclusion are
shown in Table 3. Similarly, under an impact loading on its free end, the cantilever
beam with a steel inclusion is considered, and both numerical calculation and ex-
periments are performed to acquire the dynamic strain data for impurity detection.
The hard inclusions are set with 1mm in width but its length can be changed from
0, 3mm to 15mm, and specimens are nominated as No_inclusion, S1_3 to S1_15
respectively.

Table 3: Materials properties for hard inclusion beam

Material PMMA Steel
Ed (GPa) 5.03 210
ρ (kg/m3) 1170 7800
ν 0.36 0.28

4.1 Numerical calculation

Also, all models are calculated by ANSYS /LS-DYNA programme, and Fig. 10
shows the dynamic strain signals on points A and B of beam (see Fig. 1), where
solid curves are about point A and dashed curves are about point B. In Fig. 10, it
can be noticed that the fluctuation of signal point A is not very obvious when the
inclusion size increases, and all signals of point B seem similar. So, it is a little
hard to identify the hard inclusion inside directly from strain results. In addition,
it can be estimated that the reflected signals from hard inclusion will be very small
and the transmitted signals will be disturbed slightly by hard inclusion.

To obtain the analytical frequency of wavelet transform to detect the existence of
hard inclusion in beam, a multi-frequency analysis of CWT, from 5Hz to 30 Hz, is
performed for the strain results at points A and B, and shown in Fig. 11. But, it
can be found that the reflected signals as additional ridges for point A results are
much weaker, and only for big hard inclusions the additional ridges can be seen.
Therefore, an improved date processing has to be adopted.

In order to amplify the effect of hard inclusions, the difference of strain responses
between an inclusion beam and a non-inclusion beam is calculated by CWT and
shown in Fig. 12. Fig. 12 shows the multiple frequencies results of point A with
the different hard inclusion sizes from 3mm to 15mm, and it can be found that the
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Figure 10: Strain results for upper hard inclusion

  

 Figure 11: Multi-frequency analysis of CWT for upper hard inclusion
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additional ridges are obviously identified. During the components of CWT from 10
kHz to 15 kHz, the reflected signals are easily to be caught and the peaks mostly
focus around 450µs. So, the Gabor wavelet transform is employed to extract the
component around 11.0 kHz frequency components, and the results are plotted in
Fig. 13. In Fig. 13, the first peaks express the difference of incident waves and
the second ones are the difference of reflected waves from hard inclusion, so it is
apparent that the ratio about the two differences will increase with the increment
of inclusion size. Consequently, the inclusion extent can be predicted too by the
improved detection method.

 

Figure 12: Improved CWT processing

For a beam with inner or lower hard inclusion (see Fig. 1), the similar calculation is
performed, and the CWT results about difference data at point A for inner and lower
inclusion are calculated, respectively. All results about hard inclusion detection are
shown in Table 4. It is similar to the soft inclusion beam, the improved method has
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Figure 13: CWT results of point A (11.0 kHz)

a good accuracy for any hard inclusion and it can successfully predict the existence
of very small hard inclusion.

4.2 Experiments

Moreover, experiments are carried out to directly measure the dynamic strain sig-
nals on the edge of beam. Here, we design a PMMA beam with an upper steel
inclusion, where the mechanical properties of materials are the same as listed in
Table 3. Since the replicability of impact load is not very convenient to implement
experimentally, especially dropping a small ball at a certain height, a moderate in-
clusion is set 2mm in width, 10mm in length. The typical strain signals measured
by strain gauges on points A and B (see Fig. 1) and their CWT results about anal-
ysis frequency of 11.0 kHz are both illustrated in Fig. 16. It can be seen in Fig.
16 that the additional ridge reflected by hard inclusion is so evident to diagnose.
According to the CWT results in Fig. 16, the location of hard inclusion can be pre-
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dicted successfully but the error can reach to about 11%. In addition, the reflected
ratio and transmission ratio of stress wave are separately 38% and 70%. As a re-
sult, our detecting method demonstrated experimentally is effective and sensitive
to hard inclusion with moderate size in a cantilever beam. If the impact load can be
controlled with good replicability by some mechanical ways, the improved method
can also be used to detect small hard inclusions.

 

Figure 14: Strain and CWT results of experiment for hard inclusion

5 Conclusion

By Gabor wavelet transform, strain signals has been extracted and analyzed to de-
tect the inhomogeneous character in cantilever beams, and two kinds of inclusions,
which are distinct in material properties, have been discussed numerically and ex-
perimentally. We predicted the inclusion locations and effects considering three
kinds of position of the inclusions in the beams.

For soft inclusion, according to the analysis of FEM numerical computation, when
the inclusion depth ratio is larger than 10%, the detecting error in inclusion location
is not more than 5%. When the inclusion is very small (d/h<10%), its location can
be also successfully identified, though the error will increase. And in experiment,
for the soft inclusion depth ratio equal to 32%, the error of prediction is 3.1%,
and the same conclusion can be obtained. In addition, considering the reflection or
transmission ratios, the extent of soft inclusion can be estimated.

For hard inclusion, it is a little hard to diagnose its existence in beam by former
method, so an improved method is proposed to analyze the difference between im-
pure and pure beams by CWT. From calculated results by FEM, when the inclusion
depth ratio is larger than 10%, the detecting error in inclusion location is not more
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than 10%, and the inclusion size can be evaluated by the CWT results of the dif-
ferences. In experiment, the normal detection method is carried out for a moderate
hard inclusion in beam, and it is sensitive to the inclusion and the error of predicted
location is 11%.

All these numerical and experimental results precisely evaluate the location and
size of inclusions, especially for soft inclusions, which consequently indicates that
the stress wave method based on continuous wavelet transform is a valid and ef-
ficient non-destructive detecting method for inhomogeneous inclusion detection.
Thus, the method can be expected to expand to a powerful damage detection method
in a broad engineering application, especially in inhomogeneous materials and
complex structures.
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