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A Fictitious Time Integration Method for the Burgers
Equation

Chein-Shan Liu1

Abstract: When the given input data are corrupted by an intensive noise, most
numerical methods may fail to produce acceptable numerical solutions. Here, we
propose a new numerical scheme for solving the Burgers equation forward in time
and backward in time. A fictitious time τ is used to transform the dependent vari-
able u(x, t) into a new one by (1+τ)u(x, t) =: v(x, t,τ), such that the original Burg-
ers equation is written as a new parabolic type partial differential equation in the
space of (x, t,τ). A fictitious damping coefficient can be used to strengthen the sta-
bility in the numerical integration of a semi-discretized ordinary differential equa-
tions set on the spatial-temporal grid points. Even for a very large final time and
under a large noise, the present Fictitious Time Integration Method (FTIM) can
be used to retrieve the initial data very well. When the FTIM is used to solve the
direct problems of Burgers equation, with a large Reynolds number and the input
data being noised seriously, we can still reconstruct the solution rather accurately.
This result however cannot be achieved by other conventional numerical methods.
It is interesting that both the forward and backward problems of Burgers equation
can be unifiedly treated by the FTIM.

Keywords: Backward Burgers equation, Forward Burgers equation, Fictitious
Time Integration Method (FTIM), Seriously noised effect, Large Reynolds num-
ber

1 Introduction

In this paper we are concerned with the numerical solutions of a backward in time
and a forward in time Burgers equation:

ut +uux =
1
R

uxx +H(x, t), a < x < b, 0 < t < T, (1)

u(a, t) = ua(t), u(b, t) = ub(t), 0≤ t ≤ T, (2)
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u(x,T ) = f (x), a≤ x≤ b, (Backward Problem), (3)

u(x,0) = f (x), a≤ x≤ b, (Direct Problem), (4)

where R is the Reynolds number characterizing the viscosity of fluid. Given a ve-
locity function f (x) at a final time t = T , the backward problem is retrieving the
past history and the initial profile of fluid velocity. When the forward in time Burg-
ers equation is considered, we use the initial condition u(x,0) = f (x) in Eq. (4), and
the boundary conditions in Eq. (2) to obtain the numerical solution. In this paper
the data of f (x), ua(t) and ub(t) are allowed to be noised like as f̂ (x) = f (x)+ sR,
where R are random numbers in [−1,1], and s is a level of noise intensity.

Burgers equation is an ideally suited test problem for the numerical solution of
partial differential equation (PDE), because it is nonlinear and there is a parameter
R, which can be selected to change the equation from predominantly parabolic
with R finite to predominantly hyperbolic with R = ∞. Usually, the latter problem
is much more difficult to be numerically solved than the former one.

Burgers’ equation has been of considerable physical interest because it is an ap-
propriate simplification of the Navier-Stokes equations, and is also the governing
equation for a number of one-dimensional flow systems, including the convection
and diffusion of heat, weak shock propagation, compressible turbulence, and con-
tinuum traffic simulation.

The Burgers equation was first appeared in a paper by Bateman (1915) and was
named after Burgers (1948,1974). The behavior of Burgers equation exhibits a
delicate balance between advection and diffusion. Moreover, it is one of the few
nonlinear partial differential equations that exact and complete solutions are known
in terms of the initial values [Cole (1951); Hopf (1950)]. In the past several decades
there were much studies on the numerical solutions of Burgers’ equation, for exam-
ple, Fletcher (1983), Basdevant, Deville and Haldenwang (1986), Arina and Canuto
(1993), Özis and Özdes (1996), Hon and Mao (1998), Kutluay, Bahadir and Özdes
(1999), Lin and Zhou (2001), Wei and Gu (2002), Özis, Aksan and Özdes (2003),
Young (2005), Young, Hu, Fan and Chen (2006), and Liu (2006a).

For the direct problems, the conventional numerical methods have some drawbacks.
First, the time stepsize is constrained by some inequalities for the reason of numer-
ical stability. Second, when the initial data are corrupted by noise, the error will
propagate to pollute the whole solutions because these numerical methods are in-
tegrated in the direction of time. Examples 1 and 2 in Section 3 will demonstrate
those phenomena. In this paper, one of our purposes is developing a new numer-
ical method of fictitious time integration method (FTIM), which not only allows
much larger time stepsize, but also can avoid the numerical solutions polluted by
the noisy disturbance on the input data. It would be very interesting that the present
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approach is performed much better than other numerical methods from the aspects
of stability and accuracy, when the input data are corrupted by noise.

It is known that the backward problems are essentially unstable, if one attempts to
integrate the Burgers equation in a reversal time direction. The present approach of
FTIM however will lead to a new integration method in a fictitious time direction.
Therefore, we can not only avoid the above-mentioned instability, but also provide
a high performance technique to tackle of the severely ill-posed backward in time
Burgers equation. It would be seen that the new FTIM is highly stable, insensi-
tive to the disturbance on final time data, and highly accurate. Indeed, the FTIM
would render a more laconic numerical process than other methods to resolve the
backward problems.

While most papers are concerned with the numerical integrations of the forward
problems of Burgers equation, there are only a few papers which are devoted to the
backward problems of Burgers equation, for example, Carasso (1977), and Marbán
and Palencia (2002). Liu (2006b) has developed a one-step backward group pre-
serving scheme to calculate the backward in time Burgers equation. However, the
final time is not allowed too large. Here we will propose a new numerical scheme
for solving the Burgers equation backward in time, allowing a large final time and
a large noise imposing on the input data.

Numerical schemes adopted for backward problems are usually implicit. The ex-
plicit schemes that have been applied to solving the backward problems are appar-
ently not very effective. As mentioned by Ames and Epperson (1997), because the
backward problems are ill-posed, they are necessarily ill-conditioned from a numer-
ical point of view, and the problem must be regularized before any approximation
can be constructed. Although, most people assert that the backward problems are
impossible to solve using the classical numerical methods and require a special reg-
ularization technique, we shall show that the new FTIM can resolve this ill-posed
problem without resorting on regularization technique.

The idea by introducing a fictitious time was first proposed by Liu (2008a) to
treat an inverse Sturm-Liouville problem by transforming an ODE into a PDE.
Then, Liu and his coworkers [Liu (2008b, 2008c, 2008d); Liu, Chang, Chang and
Chen (2008)] extended this idea to develop new methods for estimating param-
eters in the inverse vibration problems. Liu and Atluri (2008a) have employed
the technique of FTIM to solve a large system of nonlinear algebraic equations,
and showed that high performance can be achieved by using the FTIM. More re-
cently, Liu (2008e) has used the FTIM technique to solve the nonlinear comple-
mentarity problems, whose numerical results are very well. Then, Liu (2008f) used
the FTIM to solve the boundary value problems of elliptic type partial differential
equations. Liu and Atluri (2008b) also employed this technique of FTIM to solve
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mixed-complementarity problems and optimization problems. Then, Liu and Atluri
(2008c) using the technique of FTIM solved the inverse Sturm-Liouville problem,
for specified eigenvalues.

This paper is organized as follows. In Section 2 we introduce the concept of ficti-
tious time integration method. Section 2.1 devotes to a spatial transformation of the
Burgers equation when the Reynolds number is large. In Section 2.2 we transform
the original Burgers equation into another parabolic PDE by using the fictitious
time. In Section 2.3 we transform these PDEs into the ODEs in terms of the ficti-
tious time-like variable by discretizing the quantity on the spatial-temporal points.
The group-preserving scheme (GPS) is introduced in Section 2.4, and the numerical
procedures are described in Section 2.5. Numerical examples for direct problems
and backward problems are set in Section 3. Then, we give the conclusions in
Section 4.

2 A fictitious time integration method

2.1 Spatial Transformation

It is known that the Burgers equation is hard to be numerically solved when the
Reynolds number is very large. We can consider a scalar transformation of x-
coordinate by

y =
1

2A
ln

b−a+(x−a) tanhA
b−a− (x−a) tanhA

. (5)

When A = 0, we can derive x = a+(b−a)y by a limiting process.

From Eqs. (1) and (5) it follows that

ut +
tanhA

(b−a)A[1− tanh2(Ay)]
uuy =

tanh2 A

(b−a)2RA2[1− tanh2(Ay)]2
uyy

+
2tanh2 A tanh(Ay)

(b−a)2RA[1− tanh2(Ay)]2
uy +H(y, t), (6)

where H(y, t) is defined in the interval of 0≤ y≤ 1. At the same time, the boundary
conditions are defined by u(0, t) = ua(t) and u(1, t) = ub(t). When we discretize the
above equation by a finite difference with a uniform spacing length of y-coordinate,
the transformation in Eq. (5) can accumulate much grid points in the region where
the solution appears large variation viewed in the x-coordinate, and place a small
number of grid points in the region where the solution does not change rapidly.
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2.2 Transformation into a new PDE

2.2.1 Transformation into a new PDE for direct problem

We propose the following transformation:

v(y, t,τ) = (1+ τ)u(y, t), (7)

and introduce a fictitious viscosity damping coefficient ν > 0 in Eq. (6):

ν

[
tanh2 A

(b−a)2RA2[1− tanh2(Ay)]2
uyy +

2tanh2 A tanh(Ay)
(b−a)2RA[1− tanh2(Ay)]2

uy +H(y, t)

−ut −
tanhA

(b−a)A[1− tanh2(Ay)]
uuy

]
= 0. (8)

Multiplying the above equation by 1+ τ and using Eq. (7) we have

ν

[
tanh2 A

(b−a)2RA2[1− tanh2(Ay)]2
vyy +

2tanh2 A tanh(Ay)
(b−a)2RA[1− tanh2(Ay)]2

vy +(1+ τ)H(y, t)

−vt −
tanhA

(b−a)A[1− tanh2(Ay)](1+ τ)
vvy

]
= 0. (9)

Recalling that ∂v/∂τ = u(y, t) by Eq. (7), adding it on both sides of the above
equation, and replacing u by v/(1 + τ), we can change Eq. (6) into a new type
parabolic PDE for v:

∂v
∂τ

= ν

[
tanh2 A

(b−a)2RA2[1− tanh2(Ay)]2
vyy +

2tanh2 A tanh(Ay)
(b−a)2RA[1− tanh2(Ay)]2

vy

+(1+ τ)H(y, t)− vt −
vvy tanhA

(b−a)A[1− tanh2(Ay)](1+ τ)

]
+

v
1+ τ

. (10)

This equation is subjected to the following conditions:

v(0, t,τ) = (1+ τ)ua(t), v(1, t,τ) = (1+ τ)ub(t), 0≤ t ≤ T, (11)

v(y,0,τ) = (1+ τ) f (y), 0≤ y≤ 1. (12)

2.2.2 Transformation into a new PDE for backward problem

Similarly, we propose the following transformation for the backward problem:

v(x, t,τ) = (1+ τ)u(x, t), (13)

and introduce a fictitious damping coefficient ν > 0 in Eq. (1):

ν

[
1
R

uxx +H(x, t)−ut −uux

]
= 0. (14)
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By using Eq. (13) we have

ν

1+ τ

[
1
R

vxx +(1+ τ)H(x, t)− vt −
vvx

1+ τ

]
= 0. (15)

Recalling that ∂v/∂τ = u(x, t) by Eq. (13), and adding it on both sides of the above
equation we obtain

∂v
∂τ

=
ν

1+ τ

[
1
R

vxx +(1+ τ)H(x, t)− vt −
vvx

1+ τ

]
+u. (16)

Then, by using u = v/(1+τ) we can change Eq. (1) into a new type parabolic PDE
for v:

∂v
∂τ

=
ν

1+ τ

[
1
R

vxx +(1+ τ)H(x, t)− vt −
vvx

1+ τ

]
+

v
1+ τ

. (17)

Upon using

∂

∂τ

(
v

1+ τ

)
=

vτ

1+ τ
− v

(1+ τ)2 ,

Eq. (17), after multiplying the integrating factor 1/(1 + τ) on both sides, can be
further reduced to

∂

∂τ

(
v

1+ τ

)
=

ν

1+ τ

[
1

R(1+ τ)
vxx +H(x, t)− vt

1+ τ
− vvx

(1+ τ)2

]
. (18)

Now, by using v/(1+τ) = u again, we can change Eq. (1) into a new type parabolic
PDE for u:

uτ =
ν

1+ τ

[
1
R

uxx +H(x, t)−ut −uux

]
. (19)

Here, we must stress that u is an unknown function with u = u(x, t,τ), subjecting to
the constraints in Eqs. (2) and (3) for all τ ≥ 0, and u(x, t,τ = 0) is given initially
by a guess.

2.3 Semi-discretizations

2.3.1 Semi-discretization for the direct problem

Let v j
i (τ) := v(yi, t j,τ) be a numerical value of v at the grid point (yi, t j) and at a

fictitous time τ . Applying a semi-discretization to the PDE in Eq. (10) yields a
coupled system of ordinary differential equations (ODEs):

d
dτ

v j
i = ν

[
tanh2 A

(b−a)2RA2[1− tanh2(Ayi)]2(∆y)2
(v j

i+1−2v j
i + v j

i−1)
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+
2tanh2 A tanh(Ayi)

2(b−a)2RA[1− tanh2(Ayi)]2∆y
(v j

i+1− v j
i−1)+(1+ τ)Hi j−

1
∆t

(v j
i − v j−1

i )

− tanhA

2(b−a)A[1− tanh2(Ayi)](1+ τ)∆y
v j

i (v
j
i+1− v j

i−1)
]
+

v j
i

1+ τ
, (20)

where ∆y = 1/(m1 + 1) and ∆t = T/m2 are uniform grid lengths in the y and t
directions, and m1 and m2 are respectively the numbers of subintervals in each
direction. For a short notation, we also use Hi j = H(yi, t j).

2.3.2 Semi-discretization for the backward problem

Let u j
i (τ) := u(xi, t j,τ) be a numerical value of u at the grid point (xi, t j) and at a

fictitous time τ . Applying a semi-discretization to the above PDE in Eq. (19) yields

d
dτ

u j
i =

ν

1+ τ

(
1

R(∆x)2 [u j
i+1−2u j

i +u j
i−1]−

1
∆t

[u j+1
i −u j

i ]

− 1
2∆x

u j
i [u

j
i+1−u j

i−1]+Hi j

)
, (21)

where ∆x = (b−a)/(m1 +1) and Hi j = H(xi, t j).

2.4 The GPS for differential equations system

Upon letting u = (u1,1,u1,2, . . . ,um1,m2)
T and f denoting a vector with the i j-th com-

ponent being the right-hand side of Eq. (21) we can write it as a vector form:

u′ = f(u,τ), u ∈ Rn, τ ∈ R, (22)

where u′ denotes the differential of u with respect to τ , and n = m1m2 is the number
of total grid points inside the domain Ω = (a,b)× [0,T ).
Group-preserving scheme (GPS) can preserve the internal symmetry group of the
considered ODE system. Although we do not know previously the symmetry group
of differential equations system, Liu (2001) has embedded it into an augmented
differential system, which concerns with not only the evolution of state variables
themselves but also the evolution of the magnitude of the state variables vector. Let
us note that

‖u‖=
√

uTu =
√

u ·u, (23)

where the superscript T signifies the transpose, and the dot between two n-dimensional
vectors denotes their inner product. Taking the derivatives of both the sides of
Eq. (23) with respect to τ , we have

d‖u‖
dτ

=
(u′)Tu√

uTu
. (24)
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Then, by using Eqs. (22) and (23) we can derive

d‖u‖
dτ

=
fTu
‖u‖

. (25)

It is interesting that Eqs. (22) and (25) can be combined together into a simple
matrix equation:

d
dτ

[
u
‖u‖

]
=

 0n×n
f(u,τ)
‖u‖

fT(u,τ)
‖u‖ 0

[ u
‖u‖

]
. (26)

It is obvious that the first row in Eq. (26) is the same as the original equation (22),
but the inclusion of the second row in Eq. (26) gives us a Minkowskian structure
of the augmented state variables of X := (uT,‖u‖)T, which satisfies the cone con-
dition:

XTgX = 0, (27)

where

g =
[

In 0n×1

01×n −1

]
(28)

is a Minkowski metric, and In is the identity matrix of order n. In terms of (u,‖u‖),
Eq. (27) becomes

XTgX = u ·u−‖u‖2 = ‖u‖2−‖u‖2 = 0. (29)

It follows from the definition given in Eq. (23), and thus Eq. (27) is a natural result.

Consequently, we have an n+1-dimensional augmented system:

X′ = AX (30)

with a constraint (27), where

A :=

 0n×n
f(u,τ)
‖u‖

fT(u,τ)
‖u‖ 0

 , (31)

satisfying

ATg+gA = 0, (32)
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is a Lie algebra so(n,1) of the proper orthochronous Lorentz group SOo(n,1). This
fact prompts us to devise the group-preserving scheme (GPS), whose discretized
mapping G must exactly preserve the following properties:

GTgG = g, (33)

det G = 1, (34)

G0
0 > 0, (35)

where G0
0 is the 00-th component of G.

Although the dimension of the new system is raised one more, it has been shown
that the new system permits a GPS given as follows [Liu (2001)]:

X`+1 = G(`)X`, (36)

where X` denotes the numerical value of X at τ`, and G(`) ∈ SOo(n,1) is the group
value of G at τ`. If G(`) satisfies the properties in Eqs. (33)-(35), then X` satisfies
the cone condition in Eq. (27).

The Lie group can be generated from A ∈ so(n,1) by an exponential mapping,

G(`) = exp[∆τA(`)] =

 In + (a`−1)
‖f`‖2 f`fT

`
b`f`
‖f`‖

b`fT`
‖f`‖ a`

 , (37)

where

a` := cosh

(
∆τ‖f`‖
‖u`‖

)
, (38)

b` := sinh

(
∆τ‖f`‖
‖u`‖

)
. (39)

Substituting Eq. (37) for G(`) into Eq. (36), we obtain

u`+1 = u` +η`f`, (40)

‖u`+1‖= a`‖u`‖+
b`

‖f`‖
f` ·u`, (41)

where

η` :=
b`‖u`‖‖f`‖+(a`−1)f` ·u`

‖f`‖2 (42)
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is an adaptive factor. From f` ·u` ≥−‖f`‖‖u`‖ we can prove that

η` ≥
[

1− exp

(
−∆τ‖f`‖
‖u`‖

)]
‖u`‖
‖f`‖

> 0, ∀∆τ > 0. (43)

This scheme is group properties preserved for all ∆τ > 0, and is called the group-
preserving scheme (GPS).

2.5 Numerical procedures

Starting from an initial value of u j
i (0), we can employ the GPS to integrate Eq. (21)

from τ = 0 to a selected final time τ f . In the numerical integration process we can
check the convergence of u j

i at the `- and `+1-steps by√√√√m1,m2

∑
i, j=1

[u j
i (`+1)−u j

i (`)]2 ≤ ε, (44)

where ε is a selected convergent criterion. If at a time τ0 ≤ τ f the above criterion
is satisfied, then the solution of u is obtained.

In practice, if a suitable τ f is selected we find that the numerical solution is also
approached very well to the true solution, even the above convergent criterion is
not satisfied. The viscosity coefficient ν introduced in Eq. (21) can strengthen the
stability of numerical integration. We should emphasize that the present method is
a new fictitious time integration method (FTIM). Because it does not need to face
the nonlinearity in the spatial domain, this new FTIM can calculate the backward in
time Burgers equation very stably and effectively without needing of any iteration
and regularization technique. Below we give numerical examples to display some
advantages of the present FTIM.

When the initial data u(xi,0) are recovered by the above method, we can obtain the
whole solution u(x, t) in the problem domain by applying the GPS to integrate the
following discretized equations:

u̇i =
1

R(∆x)2 (ui+1−2ui +ui−1)−
1

2∆x
ui(ui+1−ui−1)+H(xi, t), (45)

where ui = u(xi, t) is a function of time t.

For the direct problem calculated by the FTIM, the convergence criterion is given
similarly by Eq. (44). When v j

i are obtained at a fictitious time τ0, the solutions of
u j

i are given by

u j
i =

v j
i

1+ τ0
. (46)



A Fictitious Time Integration Method 239

3 Numerical examples

When the input data are contaminated by random noise, we are concerned with the
stability of the FTIM, which is investigated by adding the different levels of random
noise on the data by f (xi)+sR(i), where we use the function RANDOM−NUMBER
given in Fortran to generate the noisy data R(i), and R(i) are random numbers in
[−1,1].

3.1 Direct Problem: Example 1

Let us first consider the Burgers equation (1) with H = 0 and under the following
boundary conditions and initial condition:

u(0, t) =
1

1+ exp[−Rt/4]
,

u(1, t) =
1

1+ exp[R/2−Rt/4]
,

u(x,0) =
1

1+ exp[Rx/2]
, 0≤ x≤ 1. (47)

The exact solution [Byrne and Hindmarsh (1987)] is given by

u(x, t) =
1

1+ exp[Rx/2−Rt/4]
. (48)

In the case with R = 1 and T = 1 we consider the effect of noise on the numer-
ical solutions by adding a noise with s = 0.05 both on initial condition and two
boundary conditions. We first apply the GPS to Eq. (45) to calculate the numerical
solution by using ∆x = 1/20 and ∆t = 1/800. The numerical errors being the dif-
ferences of numerical solutions and exact solutions are plotted in the top of Fig. 1.
It can be seen that due to the noise effect the disturbance is propagated to the whole
solutions with random errors distributed in the whole space of problem domain.

Then, we apply the FTIM to this direct problem by letting m1 = 19, m2 = 50,
∆τ = 0.01, and ν = 0.1, where a noise with s = 0.05 is adding both on the initial
condition and two boundary conditions. The numerical errors are plotted in the
bottom of Fig. 1. It can be seen that the numerical errors are smaller than 0.04 even
under a large noise. Moreover, it does not like the above solution given by the GPS;
here, no random errors are distributed in the whole space of problem domain.

The conventional numerical methods, such as the above GPS, will propagate the
error appeared in the initial data to pollute the all solutions of u(x, t), t > 0, because
they are integrated in the t-direction. However, for the FTIM the above problem
can be overcome, because the FTIM is integrated in the τ-direction, and the given
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Figure 1: The numerical errors of Example 1 for direct problem by the GPS (top) and 
by the FTIM (bottom). 
 
 
 

Figure 1: The numerical errors of Example 1 for direct problem by the GPS (top)
and by the FTIM (bottom).
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data influence just a few of the many differential equations. The FTIM is very
robust against disturbance, and the accuracy is much better than that calculated by
the GPS.

3.2 Direct Problem: Example 2

For the Burgers equation with H = 0 and under the following boundary conditions
and initial condition:

u(0, t) = u(1, t) = 0,

u(x,0) = sinπx, (49)

the exact solution can be obtained by transforming them through the Hopf-Cole
transformation [Cole (1951); Hopf (1950)]. However, when R is large over 100,
the computation by means of exact solution is not practical due to the slow con-
vergence of the Fourier series. In this sense, a numerical method that can treat the
computations of Burgers equation with large R and under noise becomes signifi-
cant.

We apply the FTIM to this example by comparing the numerical solutions without
considering noise and a noise with s = 0.1 in Fig. 2. In this case we use R = 10000,
m1 = 149, m2 = 30, T = 1, and ν = 0.01. It can be seen that the numerical solutions
are kept very well even under a very large noise.

In order to appreciate that the present approach of FTIM is insensitive to the noise,
we compute this example by applying the GPS as reported by Liu (2006a) to Eq. (6)
under the following parameters: R = 10000, ∆y = 0.01, ∆t = 10−4, T = 1, and s =
0.1. From Fig. 3 it can be seen that the numerical solutions are seriously distorted
by the random noise.

3.3 Backward Problem: Example 3

We consider a Burgers equation with a spatial-temporal-dependent source:

ut +uux = uxx−
1
2

e−2t sin(2x), 0 < x < 1, 0 < t < T,

u(0, t) = e−t , u(1, t) = e−t cos1, 0≤ t ≤ T,

u(x,T ) = e−T cosx, 0≤ x≤ 1. (50)

The source term is chosen such that u(x, t) = e−t cosx is a solution of the above
equations.

In the calculations we fix the initial guess of u j
i by u j

i (0) = 1, and the other pa-
rameters used are m1 = 49, ∆τ = 0.001, ν = 0.1 and ε = 10−3. Three final data
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Figure 2: Comparing the numerical solution without noise (top) and the numerical 
solution under a noise with s=0.1 (bottom) for Example 2 of direct problem. 

Figure 2: Comparing the numerical solution without noise (top) and the numerical
solution under a noise with s = 0.1 (bottom) for Example 2 of direct problem.
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Figure 3: For Example 2 directly applying the GPS under a noised initial condition, 
given a seriously distorted numerical solution with random errors. 
 
 
 
 
 
 
 
 
 

Figure 3: For Example 2 directly applying the GPS under a noised initial condition,
given a seriously distorted numerical solution with random errors.

f (x) = e−2 cosx, e−5 cosx, e−10 cosx are considered, which are under the noises of
s = 0.01, 0.1, 0.5. m2 = 10, 10, 20 are used for these three cases. In Fig. 4 we
compare the recovered initial data with the exact one. Even under very large noise,
the recovered results are very well. Especially, for the last case when the noise to
signal ratio is large up to about 104, we can still recover the initial data with an
accuracy about in the order of 10−3. In Fig. 5 we show the numerical errors in
the domain of Ω for the above three cases. The maximum errors are smaller than
0.006.

The computational examples supported that we may use a FTIM to compute the
backward in time Burgers problem. On the other hand, there are two reasons for a
FTIM: (a) the FTIM is insensitive to the noise disturbance on the final time data,
because for the FTIM the final time data influence just a few of the many differential
equations; (b) there has no error propagation in the FTIM, because the FTIM is
integrated in the τ-direction, not in the t-direction.
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Figure 4: Comparing the recovered initial data with the exact one under different 
terminal times and noises for Example 3 of the backward problem. 
 
 
 
 
 
 
 
 
 

Figure 4: Comparing the recovered initial data with the exact one under different
terminal times and noises for Example 3 of the backward problem.

3.4 Backward Problem: Example 4

For the Burgers equation (1) with H = 0 and under the following boundary condi-
tions and initial condition:

u(0, t) = u(1, t) = e−t − e−2t ,

u(x,0) = sinπx, (51)

we first apply the GPS to integrate the discretized equation (45) to obtain the needed
final data.

We consider two cases of (T,s) = (1,0.01) and (T,s) = (5,0.1). The parameters
used in the FTIM are m1 = 19, m2 = 10 for the first case, m1 = 19 and m2 = 20
for the second case, ∆τ = 10−5, ε = 10−5, and ν = 0.01. For the first case the
exact solution of u(x, t), which is obtained by using the GPS, is compared with
the recovered solution in Fig. 6. In Fig. 7 we compare the exact solution and the
recovered solution for the second case. It can be seen that the data are recovered
very well.
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Figure 5: Errors of recovered data for Example 3 under three different conditions. 
 

Figure 5: Errors of recovered data for Example 3 under three different conditions.
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Figure 6: Comparing the exact solution (top) and the recovered solution (bottom) for 
the first case of Example 4. 
 
 
 
 

Figure 6: Comparing the exact solution (top) and the recovered solution (bottom)
for the first case of Example 4.



A Fictitious Time Integration Method 247
 

 

 
 
Figure 7: Comparing the exact solution (top) and the recovered solution (bottom) for 
the second case of Example 4. 

Figure 7: Comparing the exact solution (top) and the recovered solution (bottom)
for the second case of Example 4.
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3.5 Backward Problem: Example 5

For the Burgers equation (1) with H = 0 and under the following boundary condi-
tions and initial condition:

u(0, t) = u(1, t) = e−t − e−2t ,

u(x,0) = 2x, if 0≤ x≤ 0.5, u(x,0) = 2−2x, if 0.5 < x≤ 1, (52)

we apply the GPS to integrate the discretized equation (45) to obtain the needed
final data.

We consider one case of (T,s) = (10,0.1). The parameters used in the FTIM are
m1 = 19, m2 = 40, ∆τ = 10−5, ε = 10−5, and ν = 0.01. In Fig. 8 we compare the
exact solution and the recovered solution. It can be seen that the data are recovered
very well.

4 Conclusions

In this paper, we have transformed the original Burgers equation into another parabolic
type PDE in a one dimension higher space by introducing a fictitious time-like vari-
able, and adding a fictitious viscous damping coefficient to enhance the stability of
numerical integration of the discretized equations by employing the GPS. For the
direct problems, the FTIM is little influenced by the noise, which adding even on
all initial and boundary data. By using the FTIM, we can calculate the backward
problems and retrieve the initial data very well with a high order accuracy. Several
numerical examples of the backward problems were worked out, which show that
our proposed approach is applicable to the seriously ill-posed backward in time
Burgers problems. Under a noised final data the FTIM was also robust enough
to retrieve the initial data. More significantly, we can unifiedly approach both the
direct and backward problems very well, without resorting on any regularization
technique to get rid of the ill-posed behavior.
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Kutluay, S.; Bahadir, A. R.; Özdes, A. (1999): Numerical solution of one-
dimensional Burgers equation: explicit and exact-explicit finite difference methods.
J. Comp. Appl. Math., vol. 103, pp. 251-261.

Lin, E. B.; Zhou, X. (2001): Connection coefficients on an interval and wavelet
solutions of Burgers equation. J. Comp. Appl. Math., vol. 135, pp. 63-78.

Liu, C.-S. (2001): Cone of non-linear dynamical system and group preserving
schemes. Int. J. Non-Linear Mech., vol. 36, pp. 1047-1068.

Liu, C.-S. (2006a): A group preserving scheme for Burgers equation with very
large Reynolds number. CMES: Computer Modeling in Engineering & Sciences,
vol. 12, pp. 197-211.

Liu, C.-S. (2006b): An efficient backward group preserving scheme for the back-
ward in time Burgers equation. CMES: Computer Modeling in Engineering &
Sciences, vol. 12, pp. 55-65.

Liu, C.-S. (2008a): Solving an inverse Sturm-Liouville problem by a Lie-group
method. Boundary Value Problems, vol. 2008, Article ID 749865.

Liu, C.-S. (2008b): Identifying time-dependent damping and stiffness functions by
a simple and yet accurate method. J. Sound Vib., vol. 318, pp. 148-165.

Liu, C.-S. (2008c): A Lie-group shooting method for simultaneously estimating
the time-dependent damping and stiffness coefficients. CMES: Computer Modeling



A Fictitious Time Integration Method 251

in Engineering & Sciences, vol. 27, pp. 137-149.

Liu, C.-S. (2008d): A Lie-group shooting method estimating nonlinear restoring
forces in mechanical systems. CMES: Computer Modeling in Engineering & Sci-
ences, vol. 35, pp. 157-180.

Liu, C.-S. (2008e): A time-marching algorithm for solving non-linear obstacle
problems with the aid of an NCP-function. CMC: Computers, Materials & Con-
tinua, vol. 8, pp. 53-65.

Liu, C.-S. (2008f): A fictitious time integration method for two-dimensional quasi-
linear elliptic boundary value problems. CMES: Computer Modeling in Engineer-
ing & Sciences, vol. 33, pp. 179-198.

Liu, C.-S.; Atluri, S. N. (2008a): A novel time integration method for solving
a large system of non-linear algebraic equations. CMES: Computer Modeling in
Engineering & Sciences, vol. 31, pp. 71-83.

Liu, C.-S.; Atluri, S. N. (2008b): A fictitious time integration method (FTIM)
for solving mixed complementarity problems with applications to non-linear op-
timization. CMES: Computer Modeling in Engineering & Sciences, vol. 34, pp.
155-178.

Liu, C.-S.; Atluri, S. N. (2008c): A novel fictitious time integration method for
solving the discretized inverse Sturm-Liouville problems, for specified eigenvalues.
CMES: Computer Modeling in Engineering & Sciences, vol. 36, pp. 261-285.

Liu, C.-S.; Chang, C.-W.; Chang, J.-R. (2006): Past cone dynamics and back-
ward group preserving schemes for backward heat conduction problems. CMES:
Computer Modeling in Engineering & Sciences, vol. 12, pp. 67-81.

Liu, C.-S.; Chang, J. R.; Chang, K. H.; Chen, Y. W. (2008): Simultaneously
estimating the time-dependent damping and stiffness coefficients with the aid of
vibrational data. CMC: Computers, Materials & Continua, vol. 7, pp. 97-107.

Marbán, J. M.; Palencia, C. (2002): A new numerical method for backward
parabolic problems in the maximum-norm setting. SIAM J. Numer. Anal., vol.
40, pp. 1405-1420.
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