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Regularized meshless method for antiplane piezoelectricity
problems with multiple inclusions

K.H. Chen1,2, J.H. Kao3 and J.T. Chen4

Abstract: In this paper, solving antiplane piezoelectricity problems with multiple
inclusions are attended by using the regularized meshless method (RMM). This is
made possible that the troublesome singularity in the MFS disappears by employing
the subtracting and adding-back techniques. The governing equations for linearly
electro-elastic medium are reduced to two uncoupled Laplace’s equations. The rep-
resentations of two solutions of the two uncoupled system are obtained by using the
RMM. By matching interface conditions, the linear algebraic system is obtained.
Finally, typical numerical examples are presented and discussed to demonstrate the
accuracy of the solutions.

Keywords: antiplane shear, piezoelectricity, regularized meshless method, method
of fundamental solutions, subtracting and adding-back techniques, electric field,
displacement field, inclusion.

1 Introduction

In recent years, the significant progress in the development of piezoelectric ma-
terials or structures has been made by the research community [Bleustein (1968),
Chung and Ting (1996), Honein; Honein and Herrmann (1992), Honein and Honein
(1995), Pak (1992), Sladek; Sladek and Zhang (2007), Sladek; Sladek; Zhang;
Garcia-Sanche and Wünsche (2006), Sze; Jin; Sheng and Li (2003), Wu and Syu
(2006)]. It is well known that piezoelectric materials undergo deformation be-
cause of the electro-mechanical coupling phenomenon. Bleustein (1968) investi-
gated the antiplane piezoelectric dynamics problem and discovered the existence
of Bleustein wave. Pak (1992) has considered a more general case by introducing
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a piezoelectric inclusion, which in the limiting case of vanishing elastic and piezo-
electric constants, become a permeable hole containing free space with electric
fields. He obtained an analytical solution by using the alternative method. Later,
Honein and Honein (1995) have visited the problem of two circular piezoelectric
fibers subjected to out-of-plane displacement and in-plane electric fields. On the
other hand, Chung and Ting (1996) have used basic solution [Stroh (1962)] ap-
proach for solving the problem of an elliptic hole in a solid of anisotropic mate-
rial. Zhong and Meguid (1997) employ the complex variable method to treat the
partially-debonded circular inhomogeneity problems in materials under antiplane
shear and inplane electric field. In 1997, Chen and Chiang solved for 2D problems
of an infinite piezoelectric medium containing a solitary cavity or rigid inclusion
of arbitrary shape, subjected to a coupled antiplane mechanical and inplane elec-
tric load at the matrix by using the conformal mapping technique. In recent years,
Chao and Chang (1999) studied the stress concentration and tangential stress dis-
tribution on double piezoelectric inclusions by using the complex variable theory
and the method of successive approximations. Wu; Chen and Meng (2000) employ
conformal mapping and the theorem of analytic continuation to solve the prob-
lem of two piezoelectric circular cylindrical inclusions in the infinite piezoelectric
medium. Based on the method of fundamental solutions (MFS) [Alves and An-
tunes (2005), Godinho; Tadeu and Amado (2007), Chen; Golberg and Hon (1998),
Fairweather and Karageorghis (1998), Kupradze and Aleksidze (1964), Poullikkas;
Karageorghis and Georgiou (1998), Reutskiy (2005), Tsangaris; Smyrlis and Kara-
georghis (2004) Young; Tsai; Lin and Chen (2006)], we will develop a novel mesh-
less method to solve antiplane piezoelectricity problems with multiple inclusions
without the troublesome singularity which is embedded in the linear algebraic sys-
tem.

The MFS is one important method of the meshless methods [Atluri; Liu and Han
(2006), Han and Atluri (2004), Li and Atluri (2008), Liu; Han; Rajendran and
Atluri (2008), Sladek; Sladek and Atluri (2004), Sladek; Sladek; Solek and Wen
(2008), Sladek; Sladek; Solek; Wen and Atluri (2008), Sze; Jin; Sheng and Li
(2003)] and belongs to a boundary method of boundary value problems, which can
be viewed as a discrete type of indirect boundary element method. The method is
relatively easy to implement. It is adaptive in the sense that it can take into account
sharp changes in the solution and in the geometry of the domain [Chen; Kuo; Chen
and Cheng (2000), Chen; Chen; Chen; Lee and Yeh (2004)] and can easily treat
with complex boundary conditions [Karageorghis and Georgiou (1998)]. A survey
of the MFS and related methods over the last thirty years has been found [Kupradze
and Aleksidze (1964)]. However, the MFS is still not a popular method because of
the debatable artificial boundary distance of source location in numerical imple-
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mentation especially for a complicated geometry. The diagonal coefficients of in-
fluence matrices are divergent in the conventional case when the fictitious boundary
is far away from the physical boundary. It results in an ill-posed problem when the
fictitious boundary approaches the physical boundary since the condition number
for the influence matrix becomes very large.

We have developed a modified MFS, namely regularized meshless method (RMM),
to overcome the drawback of MFS [Chen; Kao; Chen; Young and Lu (2006), Young
Chen and Lee (2006)]. The method eliminates the well-known drawback of equiv-
ocal artificial boundary. The subtracting and adding-back techniques [Chen; Kao;
Chen; Young and Lu (2006), Young; Chen and Lee (2005), Young; Chen and Lee
(2006)] can regularize the singularity and hypersingularity of the kernel functions.
This method can simultaneously distribute the observation and source points on the
physical boundary even using the singular kernels instead of non-singular kernels
[Chen; Chang; Chen and Lin (2002), Chen; Chang; Chen and Chen (2002)]. The
diagonal terms of the influence matrices can be extracted out by using the proposed
technique. Recently, a simple approach to derive the analytical formula of the di-
agonal elements of the interpolation matrix of the regularized meshless method
(RMM) for regular and irregular domain problems have been studied [Chen and
Song (2009), Song and Chen (2009)].

This paper is an extension work of the paper [Chen; Chen and Kao (2008)] for solv-
ing the antiplane elasticity problem. The RMM is extended to solve the antiplane
piezoelectricity problem and multiple inclusions with arbitrary shape embedded in
an infinite matrix in this paper. A general-purpose program was developed to solve
antiplane piezoelectricity problems with arbitrary number of inclusions. The re-
sults are compared with analytical solutions and those of the method of successive
approximations [Chao and Chang (1999)]. Furthermore, the tangential electric field
distribution and stress concentration for different ratios of piezoelectric module will
be studied through several examples to show the validity of our method.

2 Governing equation and boundary conditions

Consider piezoelectric inclusions embedded in an infinite domain as shown in Fig.
1. The inclusions and matrix have different material properties. The matrix is sub-
jected to a remote antiplane shear, σzy = τ∞, and a remote inplane electric field,
Ey = E∞. A uniform electric field can be induced in piezoelectric material by ap-
plying a potential field E = E∞.

For this problem, the out-of-plane elastic displacement w and the electric potential
φ are only functions of x and y, such that

w = w(x,y), φ = φ(x,y). (1)
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Figure 1: Problem sketch

The equilibrium equations [Chao and Chang (1999)] for the stresses and the electric
displacements are

∂σzx/∂x+∂σzy/∂y = 0, ∂Dx/∂x+∂Dy/∂y = 0, (2)

where σzx and σzy are the shear stresses, while Dx and Dy are the electric dis-
placements. For linear piezoelectric materials, the constitutive relations [Chao and
Chang (1999)] are written as

σzx = c44γzx− e15Ex, σzy = c44γzy− e15Ey,

Dx = e15γzx + ε11Ex, Dy = e15γzy + ε11Ey,
(3)

in which γzx and γzy are the shear strains, Ex and Ey are the electric fields, c44 is
the elastic modulus, e15 denotes the piezoelectric modulus and ε11 represents the
dielectric modulus. The shear strains γzx and γzy and the electric fields Ex and Ey

are obtained by taking gradient of the displacement potential w and the electric
potential φ by the following relations:

γzx = ∂w/∂x, γzy = ∂w/∂y,

Ex =−∂φ/∂x, Ey =−∂φ/∂y.
(4)
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Substituting Eqs. (3) and (4) into (2), we can obtain the following governing equa-
tions:{

c44∇2w+ e15∇2φ = 0

e15∇2w− ε11∇2φ = 0
(5)

From Eq. (5), we can obtain the equations as

∇2w = 0, ∇2
φ = 0, (6)

where ∇2 is the Laplacian operator. The continuity conditions across the matrix-
inclusion interface are written as

wi = wm, σ
i
zr = σ

m
zr , (7)

φ
i = φ

m, Di
r = Dm

r , (8)

where the superscripts i and m denote the inclusion and material, respectively. The
loading is remote shear.

3 Review of conventional method of fundamental solutions

By employing the RBF technique [Chen and Tanaka (2002), Cheng (2000)], the
representation of the solution in Eq. (6) for multiple inclusions problem as shown
in Fig. 1, can be approximated in terms of the strengths α j of the singularities at s j

as

u(xi) =
N

∑
j=1

T (s j,xi)α j =
N1

∑
j=1

T (s j,xi)α j +
N1+N2

∑
j=N1+1

T (s j,xi)α j + · · ·

+
N

∑
j=N1+N2+···+Nm−1+1

T (s j,xi)α j, (9)

and

t(xi) =
N

∑
j=1

M(s j,xi)α j =
N1

∑
j=1

M(s j,xi)α j +
N1+N2

∑
j=N1+1

M(s j,xi)α j + · · ·

+
N

∑
j=N1+N2+···+Nm−1+1

M(s j,xi)α j, (10)

where u(xi) can be denoted as w(xi) or φ(xi), t(xi) = ∂u(xi)/∂nx, T (s j,xi) is RBF,
xi and s j represent the ith observation point and the jth source point, respectively,
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α j are the jth unknown coefficients (strength of the singularity), N1,N2, · · · ,Nm are
the numbers of source points on m numbers of boundaries of inclusions, respec-
tively, while N is the total numbers of source points (N = N1 +N2 + · · ·+Nm) and
M(s j,xi) = ∂T (s j,xi)/∂nxi . After BCs are satisfied at the boundary points, the co-

efficients
{

α j
}N

j=1 are determined. The chosen bases are the double layer potentials
[Chen; Kao; Chen; Young and Lu (2006), Young; Chen and Lee (2005)] as

T (s j,xi) =
−< (xi− s j),n j >

r2
i j

, (11)

M(s j,xi) =
2 < (xi− s j),n j >< (xi− s j),ni >

r4
i j

−
< n j,ni >

r2
i j

, (12)

where < , > is the inner product of two vectors, ri j is
∣∣s j− xi

∣∣, n j is the normal
vector at s j, and ni is the normal vector at xi.

It is noted that the double layer potentials have both singularity and hypersingu-
larity when source and field points coincide, which lead to difficulty in the con-
ventional MFS. The fictitious distance between the fictitious (auxiliary) boundary
and the physical boundary, d, needs to be chosen deliberately. To overcome the
abovementioned shortcoming, s j is distributed on the physical boundary, by using
the proposed regularized technique as written in Section 4.

4 Regularized meshless method

The antiplane piezoelectricity problem with multiple inclusions is decomposed into
two parts as shown in Fig. 2.

One is the exterior problem for the matrix with holes subjected to the far-displacement
field and far-electric field, the other is the interior problem for each inclusion. The
two boundary data of matrix and inclusion satisfy the interface conditions in Eqs.
(7) and (8). Furthermore, the exterior problem for the matrix with holes subjected
to a far-displacement field and far-electric field can be superimposed by two sys-
tems as shown in Fig. 3.

One is an infinite domain with no hole subjected to a far-displacement field and
far-electric field, the other is the matrix with holes. The representations of the two
solutions for the interior problem (w(xI

i
) and φ(xI

i
)) and exterior problem (w(xO

i
)

and φ(xO
i
)) are formulated by using the RMM as follows:

4.1 Interior problem

When the collocation point xi approaches the source point s j, the kernels in Eqs.
(9) and (10) become singular. Eqs. (9) and (10) for the multiple-inclusions problem
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Figure 2:  Decomposition of the problem 
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Figure 2: Decomposition of the problem

need to be regularized by using the regularization of subtracting and adding-back
techniques [Chen; Kao; Chen; Young and Lu (2006), Young; Chen and Lee (2005)]
as follows:

u(xI
i ) =

N1

∑
j=1

T (sI
j,x

I
i )α j + · · ·+

N1+···+Np

∑
j=N1+···+NP−1+1

T (sI
j,x

I
i )α j + · · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

T (sI
j,x

I
i )α j +

N

∑
j=N1+···+Nm−1+1

T (sI
j,x

I
i )α j

−
N1+···+Np

∑
j=N1+···+NP−1+1

T (sI
j,x

I
i )αi, xI

i ∈ Bp, p = 1,2,3, · · · ,m (13)

where u(xI
i ) can be denoted as w(xI

i
) and φ(xI

i
) in which the superscript I denotes

the interior domain, xI
i is located on the boundaries Bp (p = 1,2,3, · · · ,m), and

N1+···+Np

∑
j=N1+···+Np−1+1

T (sI
j,x

I
i ) = 0, xI

i ∈ Bp, p = 1,2,3, · · · ,m. (14)
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Figure 3: Decomposition of the problem of Fig. 2 (a)

The detailed derivations of Eq. (14) are given in the reference [Young; Chen and
Lee (2005)]. Therefore, we can obtain

u(xI
i )=

N1

∑
j=1

T (sI
j,x

I
i )α j +· · ·+

i−1

∑
j=N1+···+Np−1+1

T (sI
j,x

I
i )α j +

N1+···+Np

∑
j=i+1

T (sI
j,x

I
i )α j +· · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

T (sI
j,x

I
i )α j +

N

∑
j=N1+···+Nm−1+1

T (sI
j,x

I
i )α j

−

[
N1+···+Np

∑
j=N1+···+NP−1+1

T (sI
j,x

I
i )−T (sI

i ,x
I
i )

]
αi, xI

i ∈ Bp, p = 1,2,3, · · · ,m. (15)
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Similarly, the boundary flux is obtained as

t(xI
i ) =

N1

∑
j=1

M(sI
j,x

I
i )α j + · · ·+

N1+···+Np

∑
j=N1+···+Np−1+1

M(sI
j,x

I
i )α j + · · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

M(sI
j,x

I
i )α j +

N

∑
j=N1+···+Nm−1+1

M(sI
j,x

I
i )α j

−
N1+···+Np

∑
j=N1+···+NP−1+1

M(sI
j,x

I
i )αi, xI

i ∈ Bp, p = 1,2,3, · · · ,m. (16)

where t(xI
i ) = ∂u(xI

i )/∂nxi and

N1+···+Np

∑
j=N1+···+Np−1+1

M(sI
j,x

I
i ) = 0, xI

i ∈ Bp, p = 1,2,3, · · · ,m. (17)

The detailed derivations of Eq. (14) are also given in the reference [Young; Chen
and Lee (2005)]. Therefore, we obtain

t(xI
i ) =

N1

∑
j=1

M(sI
j,x

I
i )α j + · · ·+

i−1

∑
j=N1+···+Np−1+1

M(sI
j,x

I
i )α j

+
N1+···+Np

∑
j=i+1

M(sI
j,x

I
i )α j + · · ·+

N1+···+Nm−1

∑
j=N1+···+Nm−2+1

M(sI
j,x

I
i )α j

+
N

∑
j=N1+···+Nm−1+1

M(sI
j,x

I
i )α j−

[
N1+···+Np

∑
j=N1+···+NP−1+1

M(sI
j,x

I
i )−M(sI

i ,x
I
i )

]
αi,

xI
i ∈ Bp, p = 1,2,3, · · · ,m. (18)

4.2 Exterior problem

When the observation point xO
i locates on the boundaries Bp (p = 1,2,3, · · · ,m),

Eq. (13) becomes

u(xO
i ) =

N1

∑
j=1

T (sO
j ,xO

i )α j + · · ·+
N1+···+Np

∑
j=N1+···+NP−1+1

T (sO
j ,xO

i )α j + · · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

T (sO
j ,xO

i )α j +
N

∑
j=N1+···+Nm−1+1

T (sO
j ,xO

i )α j

−
N1+···+Np

∑
j=N1+···+NP−1+1

T (sI
j,x

I
i )αi, xOorI

i ∈ Bp, p = 1,2,3, · · · ,m, (19)



262 Copyright © 2009 Tech Science Press CMC, vol.9, no.3, pp.253-279, 2009

where u(xO
i ) can be denoted as w(xO

i
) and φ(xO

i
) in which the superscript O denotes

the exterior domain, xO
i is also located on the boundaries Bp (p = 1,2,3, · · · ,m).

Hence, we obtain

u(xO
i ) =

N1

∑
j=1

T (sO
j ,xO

i )α j + · · ·+
i−1

∑
j=N1+···+Np−1+1

T (sO
j ,xO

i )α j

+
N1+···+Np

∑
j=i+1

T (sO
j ,xO

i )α j + · · ·+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

T (sO
j ,xO

i )α j

+
N

∑
j=N1+···+Nm−1+1

T (sO
j ,xO

i )α j−

[
N1+···+Np

∑
j=N1+···+NP−1+1

T (sI
j,x

I
i )−T (sO

i ,xO
i )

]
αi,

xOorI
i ∈ Bp, p = 1,2,3, · · · ,m. (20)

Similarly, the boundary flux is obtained as

t(xO
i ) =

N1

∑
j=1

M(sO
j ,xO

i )α j + · · ·+
N1+···+Np

∑
j=N1+···+Np−1+1

M(sO
j ,xO

i )α j + · · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

M(sO
j ,xO

i )α j +
N

∑
j=N1+···+Nm−1+1

M(sO
j ,xO

i )α j

−
N1+···+Np

∑
j=N1+···+NP−1+1

M(sI
j,x

I
i )αi, xOorI

i ∈ Bp, p = 1,2,3, · · · ,m, (21)

where t(xO
i ) = ∂u(xO

i )/∂nxi . Hence, we obtain

t(xO
i ) =

N1

∑
j=1

M(sO
j ,xO

i )α j + · · ·+
i−1

∑
j=N1+···+Np−1+1

M(sO
j ,xO

i )α j

+
N1+···+Np

∑
j=i+1

M(sO
j ,xO

i )α j + · · ·+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

M(sO
j ,xO

i )α j

+
N

∑
j=N1+···+Nm−1+1

M(sO
j ,xO

i )α j−

[
N1+···+Np

∑
j=N1+···+NP−1+1

M(sI
j,x

I
i )−M(sO

i ,xO
i )

]
αi,

xOorI
i ∈ Bp, p = 1,2,3, · · · ,m. (22)

According to the dependence of the normal vectors for inner and outer boundaries
[Young; Chen and Lee (2005)], their relationships are{

T (sI
j,x

I
i ) =−T (sO

j ,xO
i ), i 6= j

T (sI
j,x

I
i ) = T (sO

j ,xO
i ), i = j

(23)



Regularized meshless method 263{
M(sI

j,x
I
i ) = M(sO

j ,xO
i ), i 6= j

M(sI
j,x

I
i ) = M(sO

j ,xO
i ), i = j

(24)

where the left and right hand sides of the equal sign in Eqs. (23) and (24) denote
the kernels for observation and source point with the inward and outward normal
vectors, respectively.

By using the proposed technique, the singular terms in Eqs. (9) and (10) have been

transformed into regular terms (−

[
N1+N2+···+Np

∑
j=N1+N2+···+NP−1+1

T (sI
j,x

I
i )−T (sI or O

i ,xI or O
i )

]

and −

[
N1+···+Np

∑
j=N1+···+Np−1+1

M(sI
j,x

I
i )−M(sI or O

i ,xI or O
i )

]
) in Eqs. (15), (18), (20) and

(22), respectively, where p = 1,2,3, · · · ,m. The terms of
N1+···+Np

∑
j=N1+···+NP−1+1

T (sI
j,x

I
i )

and
N1+···+Np

∑
j=N1+···+Np−1+1

M(sI
j,x

I
i ) are the adding-back terms and the terms of T (sI or O

i ,xI or O
i )

and M(sI or O
i ,xI or O

i ) are the subtracting terms in the two brackets for regulariza-
tion. After using the abovementioned method of regularization of subtracting and
adding-back techniques [Chen; Kao; Chen; Young and Lu (2006), Young; Chen
and Lee (2005)], we are able to remove the singularity and hypersingularity of the
kernel functions.

5 Derivation of influence matrices for arbitrary domain problems

5.1 Interior problem (Inclusion)

From Eqs. (15) and (18), the linear algebraic system can be obtained as:


u1
...

uN

=


[
T I

11

]
· · ·

[
T I

1N

]
...

. . .
...[

T I
N1

]
· · ·

[
T I

NN

]



α1
...

αN

 , u ∈ w or φ , (25)


t1
...

tN

=


[
MI

11

]
· · ·

[
MI

1N

]
...

. . .
...[

MI
N1

]
· · ·

[
MI

NN

]



α1
...

αN

 , t ∈ ∂w
∂n

or
∂φ

∂n
, (26)
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where w and φ denote the out-of-plane elastic displacement and in-of-plane electric
potential, respectively, and

[
T I

11

]
=


A11 T (sI

2,x
I
1) · · · T (sI

N1
,xI

1)
T (sI

1,x
I
2) A22 · · · T (sI

N1
,xI

2)
...

...
. . .

...
T (sI

1,x
I
N1

) T (sI
2,x

I
N1

) · · · ANN


N1×N1

, (27)

where

A11 =−

[
N1

∑
j=1

T (sI
j,x

I
1)−T (sI

1,x
I
1)

]
,

A22 =−

[
N1

∑
j=1

T (sI
j,x

I
2)−T (sI

2,x
I
2)

]
,

ANN =−

[
N1

∑
j=1

T (sI
j,x

I
N1

)−T (sI
N1

,xI
N1

)

]
.

[
T I

1N

]
=


T (sI

N1+···+Nm−1+1,x
I
1) T (sI

N1+···+Nm−1+2,x
I
1) · · · T (sI

N ,xI
1)

T (sI
N1+···+Nm−1+1,x

I
2) T (sI

N1+···+Nm−1+2,x
I
2) · · · T (sI

N ,xI
2)

...
...

. . .
...

T (sI
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I
N1

) T (sI
N1+···+Nm−1+2,x

I
N1

) · · · T (sI
N ,xI

N1
)


N1×Nm

,

(28)

[
T I

N1

]
=

T (sI
1,x

I
N1+···+Nm−1+1) T (sI

2,x
I
N1+···+Nm−1+1) · · · T (sI
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,xI

N1+···+Nm−1+1)
T (sI

1,x
I
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I
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,xI
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. . .
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T (sI

1,x
I
N) T (sI

2,x
I
N) · · · T (sI

N1
,xI

N)


Nm×N1

,

(29)

[
T I

NN

]
=

 A11 · · · T (sI
N1+···+Nm−1+1,x

I
N)

...
. . .

...
T (sI

N ,xI
N1+···+Nm−1+1) · · · ANN


Nm×Nm

, (30)
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where

A11 =−

[
N

∑
j=N1+···Nm−1+1

T (sI
j,x

I
N1+···+Nm−1+1)−T (sI

N1+···+Nm−1+1,x
I
N1+···+Nm−1+1)

]
,

ANN =−

[
N

∑
j=N1+···Nm−1+1

T (sI
j,x

I
N)−T (sI

N ,xI
N)

]
.

[
MI

11

]
=


A11 M(sI

2,x
I
1) · · · M(sI

N1
,xI

1)
M(sI

1,x
I
2) A22 · · · M(sI

N1
,xI

2)
...

...
. . .

...
M(sI

1,x
I
N1

) M(sI
2,x

I
N1

) · · · ANN


N1×N1

, (31)

where

A11 =−

[
N1

∑
j=1

M(sI
j,x

I
1)−M(sI

1,x
I
1)

]
,

A22 =−

[
N1

∑
j=1

M(sI
j,x

I
2)−M(sI

2,x
I
2)

]
,

ANN =−

[
N1

∑
j=1

M(sI
j,x

I
N1

)−M(sI
N1

,xI
N1

)

]
.

[
MI

1N

]
=
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I
1) M(sI

N1+···+Nm−1+2,x
I
1) · · · M(sI

N ,xI
1)

M(sI
N1+···+Nm−1+1,x

I
2) M(sI

N1+···+Nm−1+2,x
I
2) · · · M(sI

N ,xI
2)

...
...

. . .
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I
N1

) M(sI
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I
N1

) · · · M(sI
N ,xI

N1
)


N1×Nm

,

(32)

[
MI

N1

]
=
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1,x

I
N1+···+Nm−1+1) M(sI

2,x
I
N1+···+Nm−1+1) · · · M(sI

N1
,xI
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M(sI

1,x
I
N1+···+Nm−1+2) M(sI

2,x
I
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2,x
I
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,
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[
MI

NN

]
=

 A11 · · · M(sI
N1+···+Nm−1+1,x

I
N)

...
. . .

...
M(sI

N ,xI
N1+···+Nm−1+1) · · · ANN


Nm×Nm

, (34)

where

A11 =−

[
N

∑
j=N1+···Nm−1+1

M(sI
j,x

I
N1+···+Nm−1+1)−M(sI

N1+···+Nm−1+1,x
I
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]
,

ANN =−

[
N

∑
j=N1+···Nm−1+1

M(sI
j,x

I
N)−M(sI

N ,xI
N)

]
.

5.2 Exterior problem (Matrix)

Eqs. (20) and (22) yield
u1
...

uN

=


[
T O

11

]
· · ·

[
T O

1N

]
...

. . .
...[

T O
N1

]
· · ·

[
T O

NN

]



α1
...

αN

 , u ∈ w or φ , (35)


t1
...

tN

=


[
MO

11

]
· · ·

[
MO

1N

]
...

. . .
...[

MO
N1

]
· · ·

[
MO

NN

]



α1
...

αN

 , t ∈ ∂w
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∂φ

∂n
, (36)

in which
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]
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1 )
T (sO

1 ,xO
2 ) A22 · · · T (sO

N1
,xO

2 )
...

...
. . .

...
T (sO

1 ,xO
N1

) T (sO
2 ,xO

N1
) · · · ANN


N1×N1
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in which
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[
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6 Derivation of influence matrices for piezoelectricity problems

Substituting Eqs. (25), (26), (35) and (36) into Eqs. (7) and (8), the linear algebraic
system for the antiplane piezoelectricity problem can be obtained as:
−
[
T I

w

] [
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]
0 0

0 0 −
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] [
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]
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]
− ei

15
cm
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15
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φ
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}
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w }{
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}{
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φ

}


4N×1

=


−{w∞}
−{φ ∞}{

∂w
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∞}
+ em

15
cm

44

{
∂φ
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∞}
em

15
ei

15

{
∂w
∂n
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11

ei
15

{
∂φ

∂n
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4N×1

, (45)

where w and φ denote the out-of-plane elastic displacement and electric potential,

respectively. The unknown densities (
{

α i
w

}
, {αm

w },
{

α i
φ

}
,
{

αm
φ

}
) in Eq. (45) can

be obtained by implementing the linear algebraic solver and the stress concentration
can be solved by using Eq. (3). To express clearly, the solution procedures is listed
in Fig. 4.

7 Numerical examples

In order to show the accuracy and validity of the proposed method, the antiplane
piezoelectricity problems with multiple inclusions subjected to the remote shear
and the far-electric field are considered. Two examples contain single piezoelectric
inclusion and two piezoelectric inclusions under the antiplane shear, respectively.

7.1 Single piezoelectric inclusion

The single piezoelectric inclusion in a piezoelectric matrix is shown in Fig. 5.

In this case, the remote shear, shear modulus, piezoelectric modulus, dielectric
modulus and elastic modulus are τ = 5×107 Nm−2, ei

15 = 10.0 Cm−2, εm
11 = ε i

11 =
1.51×10−8 CV−1m−1and cm

44 = ci
44 = 3.53×1010 Nm−2, respectively. Stress con-

centrations versus different piezoelectric modulus ratio are shown in Figs. 6 and
7, respectively. When E =−106V/m and em

15/ei
15 =−10 for negative poling direc-

tion, the negative maximum stress concentration occurs in the matrix of θ = 0 as
shown in Fig. 6. However, the positive maximum stress concentration occurs in the
matrix of θ = π/2 as shown in Fig. 7. Contours of electric potential φ and shear
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Figure 4:  Flowchart of solution procedures 
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Solve { }iwα , { }mwα , { }iφα , { }mφα  

Find the stress concentration (Eq. (3)) 

End 

Figure 4: Flowchart of solution procedures

stress σm
zy are plotted in Fig. 8 (a)∼(b), respectively. Good agreement is made after

comparing with the analytical solution [Honein and Honein (1995)].

7.2 Two piezoelectric inclusions

Two piezoelectric inclusions in the piezoelectric matrix are shown in Fig. 9.
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Figure 5:  Problem sketch of single piezoelectric inclusion 
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Figure 5: Problem sketch of a single piezoelectric inclusion

The remote loading and material constants are τ = 5× 107Nm−2, cm
44 = ci

44 =
3.53×1010Nm−2, εm

11 = ε i
11 = 1.51×10−8CV−1m−1 and ei

15 = 10.0Cm−2, respec-
tively. Stress concentrations σm

zθ
/τ versus different piezoelectric modulus ratios are

plotted in Fig. 10. On the other hand, stress concentrations σm
zr/τ versus different

piezoelectric modulus ratios are respectively plotted in Fig. 11. The negative max-
imum stress concentration occurs in the matrix of θ = 0 and β = π/2 as shown in
Fig. 10 when E = −106v/m and em

15/ei
15 = −10. However, the maximum stress

concentration occurs in the matrix at θ = π/2 and β = π/2 as shown in Fig. 11.

When E = 106v/m, em
15/ei

15 = −5 and β = π/2, the tangential electric field along
the boundaries of the matrix distribution function of the different ratios d/r1 are
shown in Fig. 12 (a)∼(c).

Stress concentrations of the different ratios of d/r1 at β = 0 versus piezoelectric
modulus ratio are shown in Fig. 13. It is found that the stress concentration factor
becomes larger, when the two inclusions approach each other inclusion. The results
are well compared with those of the method of successive approximations [Chao
and Chang (1999)].

8 Conclusions

In this study, we employ the RMM to solve piezoelectricity problems with multi-
ple inclusions under antiplane shear and in-plane electric field. Only the boundary
nodes on the physical boundary are required. The major difficulty of the coinci-
dence of the source and collocation points in the conventional MFS is then circum-
vented. Furthermore, the controversy of the fictitious boundary outside the physical
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Figure 6: Stress concentration σm
zθ

/τ result of a single piezoelectric inclusion in the
piezoelectric matrix for different piezoelectric module ratios and electric field
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zr/τ result of a single piezoelectric inclusion in the

piezoelectric matrix for different piezoelectric module ratios and electric field
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Figure 8:  Contours result of single piezoelectric inclusion in piezoelectric matrix, (a) 
contours of constant for electric potential φ , (b) contours of constant for shear stress 
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Figure 8: Contours result of a single piezoelectric inclusion in the piezoelectric
matrix, (a) contours of constant for the electric potential φ , (b) contours of constant
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Figure 8:  Contours result of single piezoelectric inclusion in piezoelectric matrix, (a) 
contours of constant for electric potential φ , (b) contours of constant for shear stress 
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7.2  Two piezoelectric inclusions 

Two piezoelectric inclusions in piezoelectric matrix are shown in Fig. 9. 
 

Figure 9: Problem sketch of two piezoelectric inclusions 
The remote loading and material constants are 7105×=τ Nm-2, 10

4444 1053.3 ×== im cc Nm-2, 
8

1111 1051.1 −×== im εε CV-1m-1 and 0.1015 =ie Cm-2, respectively. Stress concentrations τσ θ /m
z  

versus different piezoelectric modulus ratios are plotted in Fig. 10. On the other hand, 
stress concentrations τσ /m

zr  versus different piezoelectric modulus ratios are respectively 
plotted in Fig. 11. The negative maximum stress concentration occurs in the matrix of 

0=θ  and 2/πβ =  as shown in Fig. 10 when 610−=E v/m and 10/ 1515 −=im ee . However, 
the maximum stress concentration occurs in the matrix at 2/πθ =  and 2/πβ =  as shown 
in Fig. 11. 
When 610=E v/m, 5/ 1515 −=im ee  and 2/πβ = , the tangential electric field along the 
boundaries of the matrix distribution function of the different ratios 1/ rd  are shown in 
Fig. 12 (a)~(c). 
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Figure 9: Problem sketch of two piezoelectric inclusions

domain by using the conventional MFS no longer exists. Although it results in the
singularity and hypersingularity due to the use of double-layer potential, the finite
values of the diagonal terms for the influence matrices have been determined by
employing the regularization technique. The numerical results were obtained by
applying the developed program to solve piezoelectricity problems through two
examples. Numerical results agreed very well with the analytical solution [Honein
and Honein (1995)] and those of the method of successive approximations [Chao
and Chang (1999)].
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/τ result of double piezoelectric inclusions in
piezoelectric matrix for different piezoelectric module ratios and electric field
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zr/τ result of double piezoelectric inclusions in

piezoelectric matrix for different piezoelectric module ratios and electric field
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Figure 12: Tangential electric field distribution along the boundaries of first inclusion for 
different ratios 1/ rd  with 2/πβ = , (a) 0.10/ 1 =rd , (b) 0.1/ 1 =rd , (c) 1.0/ 1 =rd  

 

Figure 12: Tangential electric field distribution along the boundaries of first inclu-
sion for different ratios d/r1 with β = π/2, (a) d/r1 = 10.0, (b) d/r1 = 1.0, (c)
d/r1 = 0.1
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