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Meshless Local Petrov-Galerkin (MLPG) Method for
Laminate Plates under Dynamic Loading

J. Sladek1, V. Sladek1, P. Stanak1 and Ch. Zhang2

Abstract: A meshless local Petrov-Galerkin (MLPG) method is applied to solve
laminate plate problems described by the Reissner-Mindlin theory. Both station-
ary and transient dynamic loads are analyzed here. The bending moment and the
shear force expressions are obtained by integration through the laminated plate
for the considered constitutive equations in each lamina. The Reissner-Mindlin
theory reduces the original three-dimensional (3-D) thick plate problem to a two-
dimensional (2-D) problem. Nodal points are randomly distributed over the mean
surface of the considered plate. Each node is the center of a circle surrounding this
node. The weak-form on small subdomains with a Heaviside step function as the
test functions is applied to derive local integral equations. After performing the
spatial MLS approximation, a system of ordinary differential equations of the sec-
ond order for certain nodal unknowns is obtained. The derived ordinary differential
equations are solved by the Houbolt finite-difference scheme as a time-stepping
method.

Keywords: Local integral equations, Reissner-Mindlin plate theory, Houbolt finite-
difference scheme, MLS approximation, orthotropic material properties

1 Introduction

Laminated composite plates are widely applied in engineering structures because
they can be optimized to satisfy the high-performance requirements according to
different in-service conditions. Much previous research works have been done for
static and dynamic analysis of isotropic thin plates. Previous research results show
that the transverse shear effects are more significant for orthotropic plates than for
isotropic ones [Wang and Huang (1991), Wang and Schweizerhof (1996)]. It is well
known that the classical thin plate theory of Kirchhoff gives rise to certain non-
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physical simplifications mainly related to the omission of the shear deformation
and the rotary inertia, which become more significant for increasing thickness of
the plate. The effects of shear deformation and rotary inertia are taken into account
in the Reissner (1946), Mindlin (1951) plate bending theory and higher order shear
theories [Reddy, 1997]. They are widely accepted and applied to many engineering
problems. Suetake (2006) modified the high-order bending theory of plates by con-
stitution of the lateral loads through consideration of the transverse normal stress.
The effects of shear deformation and rotary inertia following Reissner-Mindlin’s
plate theory are included in the elastoplastic transient response of plates with all
possible boundary conditions on edges and any interior support conditions such as
isolated points (columns), lines (walls) or regions (patches) by Providakis (2007).
Wen and Hon (2007) used smooth radial basis functions for the geometrically non-
linear analysis of Reissner-Mindlin plates. Pagano (1969) obtained analytical solu-
tions for simply supported orthotropic laminates. This benchmark solution has been
used to validate new or improved plate theories and finite element formulations
[Murakami (1986); Mau, Tong and Pian (1972)]. Three-dimensional deformations
of multilayered, linear elastic, anisotropic rectangular plates are analyzed by Vel
and Batra (1999). Later, Vel and Batra (2000) used the Eshelby-Stroh formalism
to analyze the cylindrical bending of anisotropic and linear elastic laminate plates.
They extended their theory to quasi-static thermoelastic deformations of laminated
anisotropic thick plates [Vel and Batra (2001)]. Smojver and Soric (2007) have
applied FEM (ABAQUS) to consider delamination for layered composite plates.

The solution of the boundary or initial boundary value problems for laminated
anisotropic plates requires advanced numerical methods due to the high mathe-
matical complexity. Beside the well established finite element method (FEM), the
boundary element method (BEM) provides an efficient and popular alternative to
the FEM. The conventional BEM is accurate and efficient for many engineering
problems. However, it requires the availability of the fundamental solutions or
Green’s functions to the governing partial differential equations (PDE). The mate-
rial anisotropy increases the number of elastic constants in Hooke’s law, and hence
makes the construction of the fundamental solutions cumbersome. The elimination
of shear locking in thin walled structures by FEM is difficult and the developed
techniques are less accurate. Meshless methods for solving PDE in physics and
engineering sciences are a powerful new alternative to the traditional mesh-based
techniques. Focusing only on nodes or points instead of elements used in the con-
ventional FEM or BEM, meshless approaches have certain advantages. The moving
least-square (MLS) approximation ensures C1 continuity which satisfies the Kirch-
hoff hypotheses. The continuity of the MLS approximation is given by the mini-
mum between the continuity of the basis functions and that of the weight function.
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So continuity can be tuned to a desired degree. The results showed excellent con-
vergence, however, the formulation is not applicable to shear deformable laminated
plate problems up to date. One of the most rapidly developed meshfree methods
is the meshless local Petrov-Galerkin (MLPG) method. The MLPG method has
attracted much attention during the past decade [Atluri and Zhu, 1998; Atluri at
al. 2000; Atluri, 2004; Han et al., 2003; Mikhailov, 2002; Sellountos et al., 2005;
Liu et al., 2006; Vavourakis and Polyzos, 2007] for many problems of continuum
mechanics. Recent successes of the MLPG methods have been reported in solving
a 4th order ordinary differential equation [Atluri and Shen (2005)]; in the devel-
opment of a nonlinear formulation of the MLPG finite-volume mixed method for
the large deformation analysis of static and dynamic problems [Han et al (2005)];
in simplified treatment of essential boundary conditions by a novel modified MLS
procedure [Gao et al (2006)]; in analysis of transient thermomechanical response
of functionally graded composites [Ching and Chen (2006)]; in the ability for solv-
ing high-speed contact, impact and penetration problems with large deformations
and rotations [Han et al (2006)]; in the development of the mixed scheme to in-
terpolate the elastic displacements and stresses independently [Atluri et al (2006a),
(2006b)]; in proposal of a direct solution method for the quasi-unsymmetric sparse
matrix arising in the MLPG [Yuan et al (2007)]; and in the development of the
MLPG using the Dirac delta function as the test function for 2D heat conduction
problems in irregular domain [Wu et al (2007)].

In the present paper we will present for the first time a meshless method based
on the local Petrov-Galerkin weak-form to solve dynamic problems for laminated
plate bending described by the Reissner-Mindlin theory. The bending moment and
the shear force expressions are obtained by integration through the laminated plate
for the considered constitutive equations in each lamina. The Reissner-Mindlin
governing equations of motion are subsequently solved for an elastodynamic plate
bending problem. The Reissner-Mindlin theory reduces the original three-dimensional
(3-D) thick plate problem to a two-dimensional (2-D) problem. In our meshless
method, nodal points are randomly distributed over the mean surface of the con-
sidered plate. Each node is the center of a circle surrounding this node. A similar
approach has been successfully applied to a thin Kirchhoff plate [Sladek et al.,
2002, 2003] where the governing equation is decomposed into two partial differ-
ential equations (PDE) of the second order [De Leon and Paris, 1987]. Long and
Atluri (2002) applied the meshless local Petrov Galerkin method to solve the bend-
ing problem of a thin plate. The MLPG method has been also applied to Reissner-
Mindlin plates and shells under dynamic load by Sladek et al. (2007, 2006). Soric
et al. (2004) have performed a three-dimensional analysis of thick plates, where a
plate is divided by small cylindrical subdomains for which the MLPG is applied.
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Homogeneous material properties of plates are considered in previous papers. Re-
cently, Qian et al. (2004) extended the MLPG for 3-D deformations in thermoelas-
tic bending of functionally graded isotropic plates.

The weak-form on small subdomains with a Heaviside step function as the test
functions is applied to derive local integral equations. Applying the Gauss diver-
gence theorem to the weak-form, the local boundary-domain integral equations are
derived. After performing the spatial MLS approximation, a system of ordinary
differential equations for certain nodal unknowns is obtained. Then, the system of
the ordinary differential equations of the second order resulting from the equations
of motion is solved by the Houbolt finite-difference scheme [Houbolt (1950)] as
a time-stepping method. Numerical examples are presented and discussed to show
the accuracy and the efficiency of the present method.

2 Local integral equations for laminated plate theory

The classical laminate plate theory is an extension of the classical plate theory
to composite laminates. Consider a plate of total thickness h composed of N
orthotropic layers with the mean surface occupying the domain Ω in the plane
(x1, x2). The x3 ≡ z axis is perpendicular to the mid-plane (Fig.1). The k-th layer
is located between the points z = zk and z = zk+1 in the thickness direction.

The Reissner-Mindlin plate bending theory [Reissner, 1946; Mindlin, 1951] is used
to describe the plate deformation. The transverse shear strains are represented as
constant throughout the plate thickness and some correction coefficients are re-
quired for the computation of transverse shear forces in that theory. Then, the spa-
tial displacement field in time τ , due to transverse loading and expressed in terms
of displacement components u1, u2 and u3, has the following form [Reddy, 1997]

u1(x,x3,τ) = x3w1(x,τ),

u2(x,x3,τ) = x3w2(x,τ),

u3(x,τ) = w3(x,τ), (1)

where x = [x1, x2]
T is the position vector, wα(x1, x2, τ) and w3(x1, x2, τ) represent

the rotations around the in-plane axes and the out-of-plane deflection, respectively
(Fig. 1).

The linear strains are given by

ε11(x,x3,τ) = x3w1,1(x,τ),

ε22(x,x3,τ) = x3w2,2(x,τ),
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Figure 1: Sign convention of bending moments, forces and layer numbering for a
laminate plate

ε12(x,x3,τ) = x3 [w1,2(x,τ)+w2,1(x,τ)]/2,

ε13(x,τ) = [w1(x,τ)+w3,1(x,τ)]/2,

ε23(x,τ) = [w2(x,τ)+w3,2(x,τ)]/2. (2)

In the case of orthotropic materials for the k-th lamina, the relation between the
stresses σi j and the strains εi j is described by the constitutive equations for the
stress tensor

σ
(k)
i j (x,x3,τ) = c(k)

i jmlεml(x,x3,τ), (3)

where the material stiffness coefficients c(k)
i jml are assumed to be homogeneous for

the k-th lamina.
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It can be seen from equation (2) that the strains are continuous throughout the
plate thickness. Hence, discontinuous material coefficients yield discontinuities in
stresses on the lamina surfaces.

For plane problems the constitutive equation (3) is frequently written in terms of
the second-order tensor of elastic constants [Lekhnitskii (1963)]. The constitutive
equation for orthotropic materials and plane stress problem has the following form

σ11
σ22
σ12
σ13
σ23


(k)

= G(k)(x)


ε11
ε22
2ε12
2ε13
2ε23

 , (4)

where

G(k)(x) =


E(k)

1 /e(k) E(k)
1 ν

(k)
21 /e(k) 0 0 0

E(k)
2 ν

(k)
12 /e(k) E(k)

2 /e(k) 0 0 0
0 0 G(k)

12 0 0
0 0 0 G(k)

13 0
0 0 0 0 G(k)

23


with e(k) = 1−ν

(k)
12 ν

(k)
21 , E(k)

α are the Young’s moduli refering to the axes xα (α =
1, 2), G(k)

12 , G(k)
13 and G(k)

23 are shear moduli, and ναβ are Poisson’s ratios.

Despite the stress discontinuities, one can define the integral quantities such as the
bending moments Mαβ and the shear forces Qα asM11

M22
M12

=
∫ h/2

−h/2

σ11
σ22
σ12

x3dx3 =
N

∑
k=1

zk+1∫
zk

σ11
σ22
σ12

(k)

x3dx3

and[
Q1
Q2

]
= κ

∫ h/2

−h/2

[
σ13
σ23

]
dx3 = κ

N

∑
k=1

zk+1∫
zk

[
σ13
σ23

](k)

dx3, (5)

where κ = 5/6 in the Reissner plate theory.

Substituting equations (4) and (2) into moment and force resultants (5) allows the
expression of the bending moments Mαβ and shear forces Qα for α , β=1,2, in
terms of rotations and lateral displacements of the orthotropic plate. In the case of
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the considered layer-wise continuous material properties through the plate thick-
ness, one obtains

Mαβ = Dαβ

(
wα,β +wβ ,α

)
+Cαβ wγ,γ ,

Qα = Cα (wα +w3,α) . (6)

In eq. (6), repeated indices α and β do not imply summation, and the material
parameters Dαβ and Cαβ are given as

2D11 =
∫ h/2

−h/2
z2E1(z)

1−ν21

e
dz =

N

∑
k=1

∫ zk+1

zk

E(k)
1

1−ν
(k)
21

e(k) z2dz =
N

∑
k=1

E(k)
1

1−ν
(k)
21

e(k)

1
3
(
z3

k+1− z3
k
)
,

2D22 =
∫ h/2

−h/2
z2E2(z)

1−ν12

e
dz =

N

∑
k=1

E(k)
2

1−ν
(k)
12

e(k)

1
3
(
z3

k+1− z3
k
)
,

D12 =
∫ h/2

−h/2
z2G12(z)dz =

N

∑
k=1

G(k)
12

1
3
(
z3

k+1− z3
k
)
,

C11 =
∫ h/2

−h/2
z2E1(z)

ν21

e
dz =

N

∑
k=1

E(k)
1

ν
(k)
21

e(k)

1
3
(
z3

k+1− z3
k
)
,

C22 =
∫ h/2

−h/2
z2E2(z)

ν12

e
dz =

N

∑
k=1

E(k)
2

ν
(k)
12

e(k)

1
3
(
z3

k+1− z3
k
)
,

C12 = C21 = 0,

Cα = κ

∫ h/2

−h/2
Gα3(z)dz = κ

N

∑
k=1

G(k)
α3 (zk+1− zk). (7)

For a homogeneous plate equations (7) are reduced into simple forms

D11 =
D1

2
(1−ν21) , D22 =

D2

2
(1−ν12) , D12 = D21 =

G12h3

12
,

C11 = D1ν21 , C22 = D2ν12 , C12 = C21 = 0,

Dα =
Eαh3

12e
, D1ν21 = D2ν12 , Cα = κhGα3, (8)

The plate is subjected to a transverse dynamic load q(x, τ). Assuming the mass den-
sity to be homogeneous within each lamina and using the Reissner’s linear theory
of thick plates [Reissner, 1946], the equations of motion may be written as

Mαβ ,β (x,τ)−Qα(x,τ) = IMẅα(x,τ), (9)
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Qα,α(x,τ)+q(x,τ) = IQẅ3(x,τ), x ∈Ω , (10)

where

IM =
∫ h/2

−h/2
z2

ρ(z)dz =
N

∑
k=1

∫ zk+1

zk

ρ
(k)z2dz =

N

∑
k=1

ρ
(k) 1

3
(
z3

k+1− z3
k
)
,

IQ =
∫ h/2

−h/2
ρ(z)dz =

N

∑
k=1

∫ zk+1

zk

ρ
(k)dz =

N

∑
k=1

ρ
(k) (zk+1− zk)

are global inertial characteristics of the laminate plate. If the mass density is con-
stant throughout the plate thickness, we obtain

IM =
ρh3

12
, IQ = ρh.

Throughout the analysis, Greek indices vary from 1 to 2, and the dots over a quan-
tity indicate differentiations with respect to time τ .

subdomain =Ω Ωs s
i '

∂Ωs

∂  Ω Γs s s
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∂Ωs =  i ∂ Li
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Ωs
''
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sM    , Γi
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support of node xi
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x
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Figure 2: Local boundaries for weak formulation, the domain Ωx for MLS ap-
proximation of the trial function, and support area of weight function around node
xi.

Instead of writing the global weak-form for the above governing equations, the
MLPG methods construct the weak-form over local subdomains such as Ωs , which
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is a small region taken for each node inside the global domain [Atluri, 2004]. The
local subdomains overlap each other and cover the whole global domain Ω (Fig. 2).
The local subdomains could be of any geometrical shape and size. In the current
paper, the local subdomains are taken to be of circular shape. The local weak-form
of the governing equations (9) and (10) for xi ∈Ωi

s can be written as∫
Ωi

s

[
Mαβ ,β (x,τ)−Qα(x,τ)− IMẅα(x,τ)

]
w∗αγ(x)dΩ = 0, (11)

∫
Ωi

s

[Qα,α(x,τ)+q(x,τ)− IQẅ3(x,τ)] w∗(x)dΩ = 0, (12)

where w∗
αβ

(x) and w∗(x) are weight or test functions.

Applying the Gauss divergence theorem to Eqs. (11) and (12) one obtains∫
∂Ωi

s

Mα(x,τ)w∗αγ(x)dΓ−
∫
Ωi

s

Mαβ (x,τ)w∗
αγ,β (x)dΩ−

∫
Ωi

s

Qα(x,τ)w∗αγ(x)dΩ−

−
∫
Ωi

s

IMẅα(x,τ)w∗αγ(x)dΩ = 0, (13)

∫
∂Ωi

s

Qα(x,τ)nα(x)w∗(x)dΓ−
∫
Ωi

s

Qα(x,τ)w∗,α(x)dΩ −
∫
Ωi

s

IQẅ3(x,τ)w∗(x)dΩ+

+
∫
Ωi

s

q(x,τ)w∗(x)dΩ = 0, (14)

where ∂Ωi
s is the boundary of the local subdomain and

Mα(x,τ) = Mαβ (x,τ)nβ (x)

is the normal bending moment and nα is the unit outward normal vector to the
boundary ∂Ωi

s. The local weak-forms (13) and (14) are the starting point for de-
riving local boundary integral equations on the basis of appropriate test functions.
Unit step functions are chosen for the test functionsw∗

αβ
(x) and w∗(x) in each

subdomain

w∗αγ(x) =

{
δαγ at x ∈ (Ωs∪∂Ωs)
0 at x /∈ (Ωs∪∂Ωs)

, w∗(x) =

{
1 at x ∈ (Ωs∪∂Ωs)
0 at x /∈ (Ωs∪∂Ωs)

. (15)
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Then, the local weak-forms (13) and (14) are transformed into the following local
integral equations (LIEs)∫
∂Ωi

s

Mα(x,τ)dΓ−
∫
Ωi

s

Qα(x,τ)dΩ−
∫
Ωi

s

IMẅα(x,τ)dΩ = 0, (16)

∫
∂Ωi

s

Qα(x,τ)nα(x)dΓ−
∫
Ωi

s

IQẅ3(x,τ)dΩ+
∫
Ωi

s

q(x,τ)dΩ = 0. (17)

In the above local integral equations, the trial functions wα(x,τ) related to rotations,
and w3(x,τ) related to transversal displacements, are chosen as the moving least-
squares (MLS) approximations over a number of nodes randomly spread within the
domain of influence.

3 Numerical solution

In general, a meshless method uses a local interpolation to represent the trial func-
tion with the values (or the fictitious values) of the unknown variable at some ran-
domly located nodes. The moving least-squares (MLS) approximation [Lancaster
and Salkauskas, 1981; Nayroles et al., 1992; Belytschko, 1996] used in the present
analysis may be considered as one of such schemes. Let us consider a sub-domain
Ωx of the problem domainΩ in the neighbourhood of a point x for the definition of
the MLS approximation of the trial function around x (Fig. 2). To approximate the
distribution of the generalized displacements (rotations and deflection) in Ωx over
a number of randomly located nodes {xa} , a = 1,2, ...n , the MLS approximant
wh

i (x,τ)of wi(x,τ) is defined by

wh(x,τ) = pT (x)ã(x,τ) , ∀x ∈Ωx , (18)

where wh =
[
wh

1, wh
2,w

h
3

]T , pT (x) =
[
p1(x), p2(x), ..., pm(x)

]
is a complete mono-

mial basis of order m, and ã(x,τ) =
[
a1(x,τ), a2(x,τ), ..., am(x,τ)

]T is composed

of vectors a j(x,τ) =
[
a j

1(x,τ), a j
2(x,τ), a j

3(x,τ)
]T

which are functions of the spa-

tial co-ordinates x = [x1, x2]
T and the time τ .

The coefficient vector ã(x,τ) is determined by minimizing a weighted discrete
L2-norm defined as

J(x) =
n

∑
a=1

va(x)
[
pT (xa)ã(x,τ)− ŵa(τ)

]2
, (19)

where va(x) > 0 is the weight function associated with the node a and the square
power is considered in the sense of scalar product. Recall that n is the number of
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nodes in Ωx for which the weight function va(x) > 0 and ŵa(τ) are the fictitious
nodal values, but not the nodal values of the unknown trial function wh(x,τ) , in
general. The stationarity of J in eq. (19) with respect to ã(x,τ) leads to

A(x)ã(x,τ)−B(x)ŵ(τ) = 0 , (20)

where

ŵ(τ) =
[
ŵ1(τ), ŵ2(τ), ..., ŵn(τ)

]T
,

A(x) =
n

∑
a=1

va(x)p(xa)pT (xa) ,

B(x) =
[
v1(x)p(x1), v2(x)p(x2), ....,vn(x)p(xn)

]
. (21)

The solution of eq. (20) for ã(x,τ) and the subsequent substitution into eq. (18)
lead to the following expression

wh(x,τ) = ΦΦΦ
T (x) · ŵ(τ) =

n

∑
a=1

φ
a(x)ŵa(τ) , (22)

where

ΦΦΦ
T (x) = pT (x)A−1(x)B(x) . (23)

In eq. (22), φ a(x) is usually referred to as the shape function of the MLS approxi-
mation corresponding to the nodal point xa . From eqs. (21) and (23), it can be seen
that φ a(x) = 0 when va(x) = 0. In practical applications, va(x) is often chosen in
such a way that it is non-zero over the support of the nodal point xi . The support
of the nodal point xa is usually taken to be a circle of the radius ri centred at xa

(see Fig. 2). The radius ri is an important parameter of the MLS approximation
because it determines the range of the interaction (coupling) between the degrees
of freedom defined at considered nodes.

A 4th-order spline-type weight function is applied in the present work

va(x) =

{
1−6

(da

ra

)2
+8
(da

ra

)3−3
(da

ra

)4
0≤ da ≤ ra

0 da ≥ ra
, (24)

where da = ‖x−xa‖ and ra is the radius of the circular support domain. With eq.
(24), the C1-continuity of the weight function is ensured over the entire domain,
therefore the continuity condition of the bending moments and the shear forces is
satisfied. The size of the support ra should be large enough to cover a sufficient
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number of nodes in the domain of definition to ensure the regularity of the matrix
A. The value of n is determined by the number of nodes lying in the support domain
with radius ra .

The partial derivatives of the MLS shape functions are obtained as [Atluri, 2004]

φ
a
,k =

m

∑
j=1

[
p j

,k(A
−1B) ja + p j(A−1B,k +A−1

,k B) ja
]
, (25)

wherein A−1
,k =

(
A−1

)
,k represents the derivative of the inverse of A with respect

to xk , which is given by

A−1
,k =−A−1A,kA−1 .

The directional derivatives of w(x,τ) are approximated in terms of the same nodal
values as

w,k(x,τ) =
n

∑
a=1

ŵa(τ)φ a
,k(x) . (26)

Substituting the approximation (26) into the definition of the bending moments (6)
and then usingMα(x,τ) = Mαβ (x,τ)nβ (x) , one obtains for

M(x,τ) =
[
M1(x,τ), M2(x,τ)

]T
M(x,τ) = N1

n

∑
a=1

Ba
1(x)w∗a(τ) +N2

n

∑
a=1

Ba
2(x)w∗a(τ) = Nα(x)

n

∑
a=1

Ba
α(x)w∗a(τ) ,

(27)

where the vector w∗a(τ) is defined as a column vector w∗a(τ) = [ŵa
1(τ), ŵa

2(τ)]T ,
the matrices Nα(x) are related to the normal vector n(x) on ∂Ωs by

N1(x) =
[

n1 0 n2
0 n2 n1

]
and

N2(x) =
[
C11 0
0 C22

] [
n1 n1
n2 n2

]
,

and the matrices Ba
α are represented by the gradients of the shape functions as

Ba
1(x) =

2D11φ a
,1 0

0 2D22φ a
,2

D12φ a
,2 D12φ a

,1

 , Ba
2(x) =

[
φ a

,1 0
0 φ a

,2

]
.
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The influence of the material properties for composite laminates is incorporated
into Cαβ and Dαβ defined in equations (7).

Similarly one can obtain the approximation for the shear forces

Q(x,τ) = C(x)
n

∑
a=1

[φ a(x)w∗a(τ)+Fa(x)ŵa
3(τ)], (28)

where Q(x,τ) = [Q1(x,τ) , Q2(x,τ)]T and

C(x) =
[
C1(x) 0

0 C2(x)

]
, Fa(x) =

[
φ a

,1
φ a

,2

]
.

Then, insertion of the MLS-discretized moment and force fields (27) and (28) into
the local integral equations (16) and (17) yields the discretized local integral equa-
tions

n

∑
a=1

 ∫
Li

s+Γi
sw

Nα(x)Ba
α(x)dΓ−

∫
Ωi

s

C(x)φ a(x)dΩ

w∗a(τ)−

−
n

∑
a=1

IMẅ∗a(τ)

∫
Ωi

s

φ
a(x)dΩ

−

−
n

∑
a=1

ŵa
3(τ)

∫
Ωi

s

C(x)Fa(x)dΩ

=−
∫

Γi
sM

M̃(x,τ)dΓ, (29)

n

∑
a=1

 ∫
∂Ωi

s

Cn(x)φ a(x)dΓ

w∗a(τ)+
n

∑
a=1

ŵa
3(τ)

 ∫
∂Ωi

s

Cn(x)Fa(x)dΓ

 =

−IQ

n

∑
a=1

¨̂wa
3(τ)

∫
Ωi

s

φ
a(x)dΩ

 =−
∫
Ωi

s

q(x,τ)dΩ , (30)

in which M̃(x,τ) represent the prescribed bending moments on Γi
sM and

Cn(x) = (n1, n2)
(

C1 0
0 C2

)
= (C1n1, C2n2) .
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Equations (29) and (30) are considered on the subdomains adjacent to the interior
nodes xi as well as to the boundary nodes on Γi

sM.

For the source point xi located on the global boundary Γ the boundary of the sub-
domain ∂Ωi

s is decomposed into Li
s and Γi

sM (part of the global boundary with
prescribed bending moment) according to Fig. 2.

It should be noted here that there are neither Lagrange multipliers nor penalty pa-
rameters introduced into the local weak-forms (11) and (12) because the essential
boundary conditions on Γi

sw (part of the global boundary with prescribed rotations
or displacements) can be imposed directly, using the interpolation approximation
(22)

n

∑
a=1

φ
a(xi)ŵa(τ) = w̃(xi,τ) (31)

for xi ∈ Γi
sw, where w̃(xi,τ) is the generalized displacement vector prescribed on

the boundary Γi
sw. For a clamped plate all three vector components (rotations and

deflection) are vanishing on the fixed edge, and eq. (31) is used at all the boundary
nodes in such a case. However, for a simply supported plate only the third com-
ponent of the displacement vector (deflection) is prescribed, while the rotations are
unknown. Then, the entire equation (29) and the third component of eq. (31) are
applied to the nodes lying on the global boundary. On those parts of the global
boundary where no displacement boundary conditions are prescribed both local
integral equations (29) and (30) are applied.

Collecting the discretized local boundary-domain integral equations together with
the discretized boundary conditions for the generalized displacements, one obtains
a complete system of ordinary differential equations and it can be rearranged in
such a way that all known quantities are on the r.h.s. Thus, in matrix form the
system becomes

Aẍ+Cx = Y. (32)

Recall that the system matrix has a block structure. There are many time integration
procedures for the solution of this system of ordinary differential equations. In
the present work, the Houbolt method is applied. In the Houbolt finite-difference
scheme [Houbolt (1950)], the “acceleration” ẍ is expressed as

ẍτ+∆τ =
2xτ+∆τ −5xτ +4xτ−∆τ −xτ−2∆τ

∆τ2 , (33)

where ∆τ is the time-step.
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Substituting eq. (33) into eq. (32), we obtain the following system of algebraic
equations for the unknowns xτ+∆τ[

2
∆τ2 A+C

]
xτ+∆τ =

1
∆τ2 5Axτ +A

1
∆τ2 {−4xτ−∆τ +xτ−2∆τ}+Y . (34)

The value of the time-step has to be appropriately selected with respect to material
parameters (elastic wave velocities) and time dependence of the boundary condi-
tions.

4 Numerical examples

In this section, numerical results are presented for laminate plates under a mechan-
ical load. In order to test the accuracy, the numerical results obtained by the present
method are compared with the results provided by the FEM-ANSYS code using a
very fine mesh. Clamped and simply supported square plates are analysed. In all
numerical calculations, deviations of the results for plates with a laminate struc-
ture from those corresponding to a homogeneous plate are investigated. The mass
density is assumed to be uniform within the whole bulk of the plate.

4.1 Clamped square plate

Consider a clamped square plate with a side-length a = 0.254m and the plate thick-
nesses h/a = 0.05. The plate is subjected to a uniformly distributed static load.
Homogeneous material properties are considered firstly to test the accuracy of the
present computational method. The following material parameters are used in our
numerical analysis: Young’s moduli E2 = 0.6895 ·1010 N / m2 and E1 = 2E2 , Pois-
son’s ratios ν21 = 0.15 and ν12 = 0.3 and mass density ρ = 5.0×103 kgm−3. The
used shear moduli correspond to Young’s modulus E2, namely, G12 = G13 = G23 =
E2/ [2(1+ν12)].
In our numerical calculations, 441 nodes with a regular distribution were used for
the approximation of the rotations and the deflection. The origin of the coordinate
system is located at the center of the plate. The variation of the deflection with
the x1-coordinate at x2 = 0 of the plate is presented in Fig. 3. The deflection value
is normalized by the corresponding central deflection of an isotropic plate with
material constants given above but E1 = E2. For a uniformly distributed load q0 =
300 psi = 2.07×106 Nm−2 we have wiso

3 (0)= 8.842 ·10−3m. The numerical results
are compared with the results obtained by the FEM-ANSYS code with a very fine
mesh of 900 quadrilateral eight-node shell elements for a quarter of the plate. Our
numerical results are in a very good agreement with those obtained by the FEM
for an orthotropic plate. One can observe that the deflection value is reduced for
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an orthotropic plate if one of the Young’s moduli is increased. This is due to the
increase of the plate stiffness for the orthotropic plate.
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Figure 3: Variation of the deflection
with the x1 -coordinate for a clamped
homogeneous square plate
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Figure 4: Variation of the bending
moment with the x1 -coordinate for a
clamped homogeneous square plate

The variation of the bending moment M11 is presented in Fig. 4. Here, the bending
moment is normalized by the central bending moment value corresponding to an
isotropic plate Miso

11 (0) = 3064Nm. The absolute values of the bending moment at
the plate center (0,0) and the center of the clamped side (0.5a,0) are higher than in
the isotropic case.

Next, a clamped orthotropic thick square plate under an impact load with Heav-
iside time variation is analyzed. The used geometrical and material parameters
are the same as in the static case. For the numerical modelling we have used
again 441 nodes with a regular distribution. Numerical calculations are carried
out for a time-step ∆τ = 0.357 · 10−4s. The MLPG results are compared with
those obtained by FEM-ANSYS computer code, where 900 quadrilateral eight-
node shell elements with 1000 time increments have been used. The time varia-
tions of the central deflection and the bending moment M11 are given in Fig. 5
and Fig. 6, respectively. Both quantities are normalized by their correspond-
ing static values at the center of the isotropic plate. The static central deflec-
tion is wstat

3 (0) = 8.842 · 10−3m for the considered load q0 = 2.07× 106 Nm−2.
The static bending moment isMstat

11 (0) = 3064Nm. The time is normalized by
τ0 = a2/4

√
ρh/D = 0.3574 · 10−2s . A good agreement of the present results

for the deflection and the bending moment at the plate center and the FEM results
is observed in both figures.

The peaks of the moment amplitudes are shifted to shorter time instants for the or-
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Figure 5: Time variation of the deflec-
tion at the center of a clamped square
plate subjected to a suddenly applied
load
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Figure 6: Time variation of the bend-
ing moment at the center of a clamped
square plate subjected to a suddenly ap-
plied load

thotropic plate with a larger flexural rigidity. Since the mass density is the same for
both isotropic and orthotropic plates, the wave velocity is higher for the orthotropic
plate with higher Young‘s modulus. The amplification of the bending moments due
to the dynamic impact load for both isotropic and orthotropic plates are almost the
same if they are normalized with respect to the corresponding static values. The
static bending moment for the orthotropic plate is slightly higher at the center of
the plate (see Fig. 4). Then, the peak value for the orthotropic plate under an im-
pact load in Fig. 6 has to be higher since that value is normalized by the isotropic
bending moment.

Next, a clamped three-ply square plate under a uniform static load is analyzed. The
used geometrical parameters are the same as in the previous homogeneous case.
The total plate thickness is h = 0.0127m, which is equal to the thickness of the ho-
mogeneous plate in previous examples. The bottom and top layers have the same
thickness h1 = h3 = h/4. Young‘s moduli for both bottom and top layers are the
same and they are 5 times larger than that ones corresponding to the homogeneous
orthotropic plate. The second mid-layer has the thickness h2 = h/2 and the same
material properties as the homogeneous plate analyzed in previous examples. For
the numerical modelling we have used again 441 nodes with a regular distribu-
tion. The variation of the deflection with the x1-coordinate at x2 = 0 of the plate
is presented in Fig. 7. The deflection value is normalized by the corresponding
central deflection of an isotropic homogeneous plate. The numerical results for the
laminated orthotropic plate are compared with the results obtained by the FEM-
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ANSYS code with a very fine mesh of 900 quadrilateral eight-node shell elements
for a quarter of the plate. Our numerical results are in a very good agreement with
those obtained by the FEM. One can observe that the deflection value is reduced
for the laminated orthotropic plate due to the larger flexural rigidity.

The variation of the bending moment M11 is presented in Fig. 8. Here, the bend-
ing moment is normalized by the central bending moment value corresponding to
an isotropic homogeneous plate Miso

11 (0) = 3064Nm. By comparing the bending
moments for the orthotropic homogeneous plate shown in Fig. 4 with results for
orthotropic laminate plate presented in Fig. 8, it can be concluded that the results
are very similar. It means that the considered lamination has a vanishing influence
on the bending moment variation.
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Figure 7: Variation of the deflection
with the x1 -coordinate for a clamped
laminated square plate
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Figure 8: Variation of the bending
moment with the x1 -coordinate for a
clamped laminated square plate

Next, a clamped orthotropic laminated square plate under an impact load with
Heaviside time variation is analyzed. The used geometrical and material param-
eters are the same as in the previous static case. Numerical calculations are carried
out for a time-step ∆τ = 0.357 ·10−4s. The MLPG results are compared with those
obtained by FEM-ANSYS computer code. The time variations of the central de-
flection and the bending moment M11 are given in Fig. 9 and Fig. 10, respectively.
Both quantities are normalized by their corresponding static values at the center of
the isotropic homogeneous plate. The time is normalized by τ0 = 0.3574 ·10−2s .
A good agreement of the present results for the deflection and the bending moment
at the plate center and the FEM results is observed in both figures.

The peaks of the deflection amplitudes are shifted to shorter time instants for the



MLPG Method for Laminate Plates 19

-0.5

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

τ/τ0

w
3(

0)
/w

3sta
t (0

)

homogeneous-iso

laminated-ortho-FEM

                       MLPG

 

Figure 9: Time variation of the deflec-
tion at the center of a clamped lami-
nated plate subjected to a suddenly ap-
plied load
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Figure 10: Time variation of the bend-
ing moment at the center of a clamped
laminated plate subjected to a suddenly
applied load

laminated orthotropic plate with a larger flexural rigidity. Since the mass density
is the same for both isotropic homogeneous and orthotropic laminated plates, the
wave velocity is higher for the laminated orthotropic plate with higher Young‘s
moduli. The peaks values are reduced for the laminated orthotropic plate since
the corresponding static values are also reduced with respect to the corresponding
isotropic homogeneous plate. However, an amplification of the bending moment
for the laminated orthotropic plate is observed. The reason for the shifting peak
values of the bending moment to shorter time instants is the same as that for the
deflection peaks.

4.2 Simply supported three-ply orthotropic square plate

A simply supported three-ply orthotropic square plate under a uniform static load
is then analyzed. The used geometrical and material parameters are the same
as for the previous clamped plate. For the numerical modelling we have used
again 441 nodes with a regular distribution. A uniformly distributed load q0 =
300 psi = 2.07× 106 Nm−2 is considered here. The deflection value is normal-
ized by the corresponding central deflection of an isotropic homogeneous plate
wiso

3 (0) = 0.02829m. The variation of the deflection with the x1-coordinate at x2 = 0
of the plate is presented in Fig. 11. One can observe that the deflection value is re-
duced for the homogeneous orthotropic plate due to the larger flexural rigidity. A
higher deflection reduction is obtained for laminated orthotropic plate due to a fur-
ther increase of the flexural rigidity.
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The variation of the bending moment M11 is shown in Fig. 12. The bending mo-
ment at the center of the plate Miso

11 (0) = 6482Nm is used as a normalization pa-
rameter. The bending moment is enlarged for the orthotropic homogeneous or lam-
inated plates with respect to the moment for an isotropic homogeneous plate. Here
again, the lamination has a vanishing influence on the bending moment.
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Figure 11: Variation of the deflection
with the x1 -coordinate for simply sup-
ported square plates
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Figure 12: Variation of the bending mo-
ment with the x1 -coordinate for simply
supported square plates

Finally, a simply supported three-ply laminated orthotropic square plate under an
impact load with Heaviside time variation is analyzed. The used geometrical and
material parameters are the same as in the previous static case. In the numerical
modelling, again 441 nodes with a regular distribution have been used. Numerical
calculations are carried out for a time-step ∆τ = 0.357 ·10−4s. The time variations
of the central deflection and the bending moment M11 are given in Fig. 13 and
Fig. 14, respectively. Both quantities are normalized by their corresponding static
values at the center of the isotropic homogeneous plate. The static central deflection
is wstat

3 (0) = 0.02829m for the considered load q0 = 2.07× 106 Nm−2. The static
bending moment isMstat

11 (0) = 6482Nm. The time is normalized by τ0 = 0.3574 ·
10−2s.

The peaks of the deflection and bending moment amplitudes are shifted to shorter
time instants for the orthotropic homogeneous and laminated plates due to larger
Young‘s moduli. They are largest for the laminated orthotropic plate. Since the
mass density is the same in all plates, the elastic wave velocity is largest for the
laminated plate. The maximum reduction of the deflection is achieved for the lam-
inate plate, where the flexural rigidity is the largest. Here, one can observe again
that the lamination has practically no influence on the bending moment. Therefore,
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Figure 13: Time variation of the deflec-
tion at the center of a simply supported
plates subjected to a suddenly applied
load
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Figure 14: Time variation of the bend-
ing moment at the center of simply sup-
ported plates subjected to a suddenly
applied load

the peak values for the bending moment in laminated and homogeneous plates have
almost the same value (Fig. 14).

5 Conclusions

A meshless local Petrov-Galerkin method is applied to laminate plates under me-
chanical loadings. Both stationary and impact loads are considered. The present
computational method has no restriction on the number of the laminae and their ma-
terial properties. The laminate plate bending problem is described by the Reissner-
Mindlin theory. The Reissner-Mindlin theory reduces the original three-dimensional
(3-D) thick plate problem to a 2-D problem. Nodal points are randomly distributed
over the mean surface of the considered plate. Each node is the center of a circle
surrounding this node. The weak-form on small subdomains with a Heaviside step
function as the test functions is applied to derive local integral equations. After per-
forming the spatial MLS approximation, a system of ordinary differential equations
for certain nodal unknowns is obtained. Then, the system of the ordinary differen-
tial equations of the second order resulting from the equations of motion is solved
by the Houbolt finite-difference scheme as a time-stepping method.

The proposed method is a truly meshless method, which requires neither domain
elements nor background cells in either the interpolation or the integration. It is
demonstrated numerically that the quality of the results obtained by the proposed
MLPG method is very good. The degree of the agreement of our numerical re-
sults with those obtained by the FEM-ANSYS computer code ranges from good
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to excellent. Since in our illustrative examples only simple problems are analysed,
only a regular node distribution has been used. However, a random location of
nodes should be considered for general boundary value problems. To this end, an
efficient random node generator is required, which has to be developed for further
progress of the method.
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