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Abstract: The phenomenon of stress softening observed in the cyclic inflation of
spherical balloons or membranes is quantitatively and qualitatively examined. A
new measure of the stress softening extent is proposed which correctly captures the
main feature of this phenomenon. This measure of the stress softening is related to
the relevant response functions in the constitutive models proposed in the literature
to describe this effect. Using these relationships, the predictive capability of the
theoretical models is examined. It is shown that only those theoretical models
which admit a non-monotone character of the stress softening can properly describe
this phenomenon.
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1 Introduction

It has long been known that the inflation of a toy balloon may provide a good
illustration of a peculiar behavior of elastomeric membranes. Typically, in such an
inflation test the following sequence of events is recorded: initially the radius of the
balloon increases continually until the pressure reaches a maximum at a relatively
small deformation. If the balloon is further inflated, the pressure decreases and
finally rises again at very large strains. The data illustrating this type of behavior
of elastomeric balloons were already presented at the beginning of the last century
by Osborne (1909). This peculiar property of balloons results from the combined
effects of geometric and material non-linearity and the observed non-monotonous
(N-shaped) pressure-radius relationship gives rise to a highly nontrivial stability
problem [Müller and Strehlow (2004)].

Over years, the problem of inflation of balloons or spherical membranes has been
studied by many authors under the assumption that the deformation is completely
reversible, e.g. Hart-Smith (1966) and Alexander (1971). These papers contain
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also interesting experimental data. The review of the earlier studies in this field
may be found in Crisp and Hart-Smith (1971), Chen and Healey (1991) and in the
more recent study by Gent (1999).

It must be noted, however, that the perfect elasticity is often a very crude assump-
tion. A typical inelastic effect observed in the inflation and subsequent deflation of
balloons is that of hysteresis accompanied by stress-softening (the Mullins effect)
and residual strains (the permanent set) as it may be seen from data presented by
Beatty (1987) and Johnson and Beatty (1995). It is interesting to note that the phe-
nomenon of stress softening of balloons has already been recognized by Sutherland
as it may be seen from his letter of 1908 to Osborne (see [Bolton and Rae (1994)]).
This phenomenon is also observed in the inflation of certain biological membranes,
e.g. van Mastrigt, et al. (1978) and Hughes and Vergara (1978). Therefore, the
understanding of the nature and properties of the stress softening phenomenon and
its mathematical modeling is of importance not only in the science of elastomers
but also in the physiology of natural organs. In fact, the study of inflation of mem-
branes has been largely stimulated by the research in physiology (see e.g. [Frank
(1910); Brody and Quigley (1948); Rigato (1967)]).

The phenomenon of stress softening observed in the cyclic inflation-deflation tests
of spherical balloons or membranes has been studied by Beatty and Krishnaswamy
(2000) within their own theoretical model for the Mullins effect in incompress-
ible elastomers. Very recently, this problem has been considered by Ren (2008)
within the concept of pseudo-elasticity, originally proposed by Ogden and Rox-
burgh (1999) and further developed by Dorfmann and Ogden (2004). However,
neither of these two studies presents a comparison of the theoretical results with
the available experimental data. Moreover, an analysis of their results shows that
the main physical characteristics of the stress softening phenomenon are not prop-
erly represented. In particular, the results of Ren (2008) appear to be at marked
variance with the experimental data shown in Beatty (1987), the paper to which
Ren refers in his study.

In this work a new methodology of analyzing data of cyclic inflation tests of bal-
loons or spherical membranes is presented. It leads to the concept of stress reten-
tion giving a measure of the amount of stress softening recorded in every inflation-
deflation cycle. This measure provides the quantitative and qualitative represen-
tations of the main physical characteristics of the stress softening and serves as
basic tool for the study of predictive capabilities of theoretical models of this phe-
nomenon. In order to be able to study various theoretical models proposed in the
literature, general theory of the stress softening for the radially symmetric defor-
mation of spherical balloons is first developed. This theory takes into account the
residual strains besides the stress softening effect. Next, the developed theory is
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reduced to the model originally presented by Dorfmann and Ogden (2004). This
model contains as a special case the model developed by Ogden and Roxburgh
(1999) which is obtained by neglecting the residual strains. The results predicted
by these models are compared with the data of Beatty (1987). It is pointed out that
the theoretical results show certain divergence from the experimental data. The
reasons of this discrepancy are discussed and, finally, the thermodynamic basis of
the pseudo-elastic models for the Mullins effect is examined.

2 Cyclic inflation tests - data analysis

Let us consider a thin spherical membrane or balloon of radius R0 and uniform
thickness h0� R0 in its initial (undeformed) state, and subject to an inflation pres-
sure p. In a typical inflation test, the measurable quantities are the pressure p and
volume V of the balloon. If the balloon remains spherical during the inflation pro-
cess with the deformed radius R and uniform thickness h� R, then the measure-
ments of V is equivalent to the measurements of the diameter D = 2R of the inflated
balloon with volume calculated from the classical formula V = 4πR3/3. The initial
state of the balloon is characterized by p = 0 and the initial volume V0 = 4πR3

0/3.

That the balloon remains spherical during the inflation process implies that the
skin of the balloon stretches by the same proportion in all directions. Hence, each
surface element undergoes an equibiaxial in-plane extension λ ≡ λ1 = λ2 equal to
the radial stretch given by λ = R/R0. The uniform transverse normal stretch λ3
of the balloon is determined by the change in thickness. Moreover, the change in
volume is given by the formula υ ≡V/V0 = λ 3. Thus, the data of a typical inflation
test may be represented as p−υ curve, equivalently, as p−λ curve.

The data obtained from a typical cyclic inflation experiment is shown in Fig. 1,
where the inflation and deflation curves over one cycle are followed by inflation
to failure. There is a notable retracing of a similar curve in the deflation phase
which includes a relative maximum pressure at a stretch larger than that corre-
sponding to the maximum on the primary inflation curve. The smaller maximum
pressure attained in the second inflation is consonant with every day experience in
prestretching a balloon prior to its primary inflation.

There are different ways of characterizing the amount of stress softening effect seen
in Fig. 1. For example, the change in shape of the pressure-stretch curve before
and after prestressing to a fixed elongation may be used as a measure of the stress
softening. Another way of characterizing the amount of softening is by means of
the energy loss ratio which is defined in terms of energy input on primary stretching
and energy recovered on unloading. These two methods were studied in detail by
Charrier and Gent (1975), who also derived the general relationship between these
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Figure 1: Balloon inflation test - cyclic loading to failure [Beatty (1987)]

two representations of stress softening.

For the purpose of this work, it will be convenient to characterize the amount of
stress softening by means of the pressure retention ρ defined as (see Fig. 1)

ρ = ρ(λ ;λm) =
ps(λ ;λm)

pv(λ )
(1)

for each inflation cycle with the specified value of pre-stretch λm. Here pv is the
value of pressure on the primary inflation curve and ps denotes either the value of
pressure pu on the deflation (unloading) path or the value of the pressure pr on the
reinflation (reloading) path. The data of Fig. 1 replotted as the ρ −λ curves are
shown in Fig. 2.

As indicated in (1), for each value of pre-stretch λm, the stress ratio ρ may be
considered as function of the radial stretch λ or the corresponding engineering
strain ε = λ−1. Moreover, in order to have the possibility of comparing the amount
of softening as measured by ρ for different values of pre-stretch, it is instructive to
replot the conventionally represented data in the form giving the stress retention ρ

as a function of the dimensionless strain ξ = (λ −1)/(λm−1).



On Pseudo-Elastic Models for Stress Softening in Elastomeric Balloons 31

Figure 2: Stress softening in inflation test of balloon represented by stress retention

3 Radially symmetric deformation of balloons

The assumption that the balloon is a spherically symmetric membrane of constant
initial thickness and uniform material properties implies that the state of stress is
essentially equibiaxial. Thus, the resultant (two-dimensional) true membrane stress
tensor N has the form N = T 1, where 1 is the unit tensor in the tangent plane and T
denotes the isotropic extensional force per unit length in the inflated balloon. The
equilibrium equation may now be obtained by elementary considerations: equilib-
rium of a hemispherical portion of the balloon requires that the total edge force be
balanced by the total inflation pressure acting over the diametral cross-section of
the sphere, that is 2πRT = πR2 p and hence,

2T
R

= p , (2)

which is the famous Laplace law. Let P denote the isotropic, extensional force per
unit length in the initial (undeformed) state of the balloon. Then, 2πRT = 2πR0P
and recalling that λ = R/R0, we have P = λT so that the Laplace law (2) may be
written as

P
λ 2 =

pR0

2
. (3)
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It follows that either the true membrane stress T or the engineering membrane stress
P may be used for the analysis.

Because of the assumption h0� R0, the engineering (first Piola-Kirchhoff) equib-
iaxial stress π ≡ π1 = π2 will be nearly uniform across the membrane thickness.
Hence, π = P/h0 and the Laplace law (3) may be written as

π =
1
2

λ
2 p∗, p∗ ≡ pR0

h0
, (4)

where p∗ is the reduced pressure. Thus, the inflation of spherical balloons can
be investigated by considering the constitutive relations for equibiaxial stress of
elastic or unelastic elastomers. When comparing the theoretical results with the
data shown in Fig. 1 it will be assumed R0/h0 = 103.

4 Equibiaxial stress softening models

The constitutive modeling of the stress softening in elastomeric and biological
membranes has been considered by Kazakevičiūtė-Makovska (2002) on the basis
of a two-dimensional theory of perfectly flexible membranes. For the purpose of
this work, however, it is more convenient to use directly the relation (4) and to study
the problem of inflation of spherical balloons within the three-dimensional theories
reduced to the equibiaxial problems for incompressible elastomer materials.

The constitutive equation for the equibiaxial engineering stress π in the material
undergoing stress softening coupled to the permanent set may be assumed in the
following general form

π = π̂(λ ,α,κ) . (5)

Here the response function π̂(λ ,α,κ) depends on the equibiaxial stretch λ and two
internal variables: the softening variable α and the residual strain variable κ . These
two variables must be specified by appropriate evolution laws in consistency with
the relevant softening and residual strain criteria. In modeling the behavior of elas-
tomers, it is generally assumed that the response of these materials to cyclic loading
depends only on the maximum stretch λm previous experienced by the material dur-
ing the deformation history (see e.g. [Dorfmann and Ogden (2004)] and references
cited therein). Accordingly, the evolution laws for the softening and residual strain
variables may be assumed in the following general form

α = α̂(λ ;λm), κ = κ̂(λ ;λm) . (6)

Introducing the constitutive equation (5) into the Laplace law (4), the reduced pres-
sure p∗ is obtained as

p∗ = p̂∗(λ ,α,κ) = 2λ
−2

π̂(λ ,α,κ) (7)
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with the evolution laws for α and κ given by (6).

Within the constitutive laws (5)-(7), two broad classes of theoretical models for
the stress softening may now be distinguished. The first class of models, which is
the subject of this paper, is based on the assumption that both variables α and κ

take zero value during the primary inflation of a virgin balloon, while they evolve
according to specified evolution laws (6) upon deflation and subsequent reinflation
provided that the deformation is smaller than the previous one. Since the maxi-
mum stretch on the primary inflation path is equal the current stretch, λm = λ , this
assumption requires that

α̂(λ ;λ ) = 0, κ̂(λ ;λ ) = 0 (8)

for all λ ∈ [1,λm] and every pre-stretch λm. By implication, the constitutive equa-
tion (5) reduces to the classical law of non-linear elasticity

π = π̂E(λ ) = π̂(λ ,0,0) =
1
2

ŵ′(λ ) . (9)

Here w = ŵ(λ ) is the strain energy function specified for the equibiaxial defor-
mation and a prime indicates the derivative with respect to λ . Correspondingly,
the primary inflation of the virgin balloon is modeled by the constitutive law of
non-linear elasticity

p∗ = p̂∗E(λ ) = 2λ
−2

π̂E(λ ) , (10)

where the response function π̂E(λ ) is given by (9).

It follows that within this class of models the behavior of a virgin balloon during
the primary inflation is completely described by the elastic constitutive law (9) and
the deflation (unloading) and subsequent reinflation (reloading) of the balloon are
defined by the general constitutive law (5). To this class belongs the model devel-
oped by Dorfmann and Ogden (2004) as well as its special version without residual
strains taken into account first proposed Ogden and Roxburgh (1999). These two
special models are considered below.

The second class of models, which may be developed within the general constitu-
tive equations (5)-(7), is based on the assumption that the variables α and κ evolve
along the primary loading path (the virgin pressure-deformation curve) according
to a specified rule while they take constant values upon unloading (deflation) and
subsequent reloading (reinflation) provided that the actual stretch does not exceed
its maximum value achieved in the previous deformation. The model proposed by
Beatty and Krishnaswamy (2000) with the residual strains neglected belongs to this
class, but this model will not be studied in this paper.
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4.1 Idealized stress softening models (without residual strains)

The theoretical model for the idealized Mullins effect, i.e. without residual strains
taken into account, has been developed by Ogden and Roxburgh (1999) within the
new concept of pseudo-elasticity. When specified for the equibiaxial deformation,
their model yields the stress-strain relation in the form

π = π̂(λ ,α,κ) = (1− α̂(λ ;λm))π̂E(λ ) (11)

with the evolution law for the softening variable α assumed by Dorfmann and Og-
den (2004) in the form

α = α̂(λ ;λm) = α̃(w;wm) =
1
r

tanh
(

wm−w
mµ

)
. (12)

In (11), π̂E(λ ) is the response function for the stress on the primary inflation path
and it is given by the classical elastic law (9). In (12), r > 0 and m > 0 are dimen-
sionless positive material parameters, and µ > 0 is the shear modulus. Moreover,
w = ŵ(λ ) denotes the value of elastic energy at the current stretch and wm = ŵ(λm)
its maximum value attained at the prestretch λm.

The Ogden-Roxburgh (1999) model may be considered as a special case of the
general theory presented in Section 4. In particular, it is seen that the evolution
law (12) satisfies the condition (8)1. By implication, the softening variable in the
Ogden-Roxburgh (1999) theory is directly related to the experimentally based vari-
able defined in (1), namely, we have

ρ(λ ;λm) = 1− α̂(λ ;λm) . (13)

Accordingly, the softening function α̂(λ ;λm) in the constitutive equation (11) may
be determined directly from experimental data.

4.2 Stress softening model including residual strains

Dorfmann and Ogden (2004) extended the original theory due to Ogden-Roxburgh
(1999) by taking into account the residual strains besides the stress softening. Their
theory involves two internal variables, as in the theory presented in Section 4, and
for equibiaxial deformation yields the following constitutive equation for the equib-
iaxial engineering stress

π = π̂(λ ,α,κ)
= (1− α̂(λ ;λm))π̂E(λ )+ κ̂(λ ;λm)π̂P(λ ) .

(14)
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Here the response function π̂E(λ ) for the stress on the primary loading path is given
by the elastic law (9) and the response function π̂P(λ ) is defined by

π̂P(λ ) =
1
2

n̂′(λ ) , (15)

where n̂(λ ) denotes the equibiaxial energy function which characterizes the resid-
ual strains. In Dorfmann and Ogden (2004), the evolution law for the residual strain
variable κ was assumed in the form

κ = κ̂(λ ;λm) = κ̃(w;wm) = 1−C−1
0 tanh

{(
w

wm

)β (wm)
}

. (16)

Here C0 = tanh(1), w = ŵ(λ ) and

β (wm) = b0 +b1µ
−1wm . (17)

The residual strain energy for the general three-dimensional state of deformation is
taken in the form [Dorfmann and Ogden (2004)]

N = N̂(λ1,λ2,λ3) =
1
2
{

ν1(λ 2
1 −1)+ν2(λ 2

2 −1)+ν3(λ 2
3 −1)

}
, (18)

with the material parameters νi, i = 1,2,3, assumed to depend on the maximum
stretches λ m

i in the respective directions, i.e.

νi = ν̂i(λ m
i ), i = 1,2,3 . (19)

The residual strain energy function (18) together with specific laws (19) determine
the residual strains.

In Dorfmann and Ogden (2004), the uniaxial state of deformation has only been an-
alyzed in detail. In this case, λ ≡ λ1 and λ2 = λ3 = λ−1/2 due to incompressibility
assumption, so that the residual strain energy (18) simplifies to the form

n̂(λ )≡ N̂(λ ,λ−1/2,λ−1/2) =
1
2
{

ν1(λ 2−1)+(ν2 +ν3)(λ−1−1)
}

. (20)

Correspondingly, the response function for the residual stress is obtained in the
form

π̂P(λ ) = n̂′(λ ) = ν1λ − 1
2
(ν2 +ν3)λ−2 (21)
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with the material parameters assumed by Dorfmann and Ogden (2004) in the form

ν1 = ν̂1(λm) = c0µ {1− c1 tanh(c2(λm−1))} (22)

and

ν2 = ν3 =
1
2

c0µ . (23)

For the equibiaxial deformation, λ ≡ λ1 = λ2 and λ3 = λ−2, and the corresponding
residual strain energy is obtained as

n̂(λ )≡ N̂(λ ,λ ,λ−1) =
1
2
{
(ν1 +ν2)(λ 2−1)+ν3(λ−4−1)

}
. (24)

Moreover, for this state of deformation, it is more reasonable to assume that ν ≡
ν1 = ν2 so that the material parameters are obtained in the form

ν = ν(λm) = c0µd(λm), ν3 =
1
2

c0µ , (25)

where the new parameter d(λm) is defined by

d(λm) = 1− c1 tanh(c2(λm−1)) . (26)

By implication, the constitutive law for the equibiaxial residual stress is obtained
in the form

πP = π̂P(λ ;λm) =
1
2

n̂′(λ ) = c0µ

{
d(λm)λ − 1

2
λ
−5
}

. (27)

Moreover, since π̂E(λ ) > 0 for all λ > 1, the constitutive equation (14) can be
written as

π = π̂(λ ;λm) = (1− α̂(λ ;λm)+ κ̂(λ ;λm)ζ (λ ;λm)) π̂E(λ ) , (28)

where the new response function ζ (λ ;λm) is defined by

ζ (λ ;λm) =
π̂P(λ ;λm)

π̂E(λ )
. (29)

The comparison of the constitutive law (28) with the definition (1) shows that

ρ = ρ̂(λ ;λm) = 1− α̂(λ ;λm)+ κ̂(λ ;λm)ζ (λ ;λm) . (30)

This relation makes it possible to identify the relevant response functions in Dorfmann-
Ogden model directly from the data analysis presented in Section 2 (see Fig. 4).
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Figure 3: The comparison of the experimental data [Beatty (1987)] with Dorfmann
Ogden model predictions

5 Comparison of model predictions with data

Within the pseudo-elastic models for the Mullins effect (without and with residual
strains taken into account) studied in this paper, the elastic strain energy function
may be used in any form proposed in the literature. Moreover, both models have
this convenient property that the material constants appearing in the elastic strain
energy function are completely determined from the data for the primary inflation
curve. As in Ren (2008), the theoretical results presented below were obtained for
the Gent model (see Appendix) with just two elastic constants, the shear modulus
µ > 0 having the physical dimension of the Young modulus and the dimensionless
parameter Jm. In modeling the data shown in Fig. 1, the value of µ was determined
by fitting the maximum pressure pmax and the value of Jm was evaluated from the
condition of fitting the value of pressure at the maximum stretch λm. This procedure
gives µ = 3.47 MPa and Jm = 111. It is interesting to note that the parameter Jm

has only minor influence on the predicted value of the maximum pressure.

Once the elastic constants are determined, there remain to evaluate the values of
the material parameters appearing in the evolution laws (12) and (16), and in the
residual strain energy (18). It follows from the definition (1) and the derived rela-
tion (30) that these parameters are entirely determined by the shape of deflation (or
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Figure 4: The comparison of the experimental data and theoretical results plotted
as pressure ratio vs stretch curve

reinflation) curve.

Considering first the model without residual strains, the material parameters r and
m in the evolution laws (12) were determined by fitting the slope of the deflation
curve at the maximum stretch λm and the maximum value of pressure on this curve.
The material parameters determined by this procedure are r = 1.56 and m = 28.4.

For the model with residual strains, five additional material constants must be deter-
mined, b0 and b1 appearing in the evolution law (16) through the parameter β (wm)
defined in (17), c0 appearing in the expressions (25) and two constants c1 and c2
in the definition (26) of the parameter d(λm). Recalling that wm = w(λm), it be-
comes clear that for every pre-stretch λm only parameters β (wm) and d(λm) can be
determined. In order to determine the values of b0, b1 and c1, c2, the data must
given for at least few inflation cycles with different values of the pre-stretch λm.
In the analysis of the single inflation cycle only the constant c0 and two resulting
parameters β (wm) and d(λm) need to be determined.

A comparison of the data [Beatty (1987)] with the results of the Dorfmann-Ogden
models with and without residual strains is shown in Fig. 3. These results were
obtained for c0 = 0.4 and β (wm) = 18.2 as in Ren [2008], and two values of
the parameter d(λm) illustrating the predictive capabilities of the Dorfmann-Ogden
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model: d(λm) = 0.1 giving the results close to that obtained with the model with-
out residual strains and d(λm) = −1.6 for which the solution fits the experimental
value of the residual strain.

It is seen in Fig. 3 that the primary inflation curve of the virgin balloon is very
accurate modeled by the Gent elastic model. The stress softening behavior of the
balloon is also reasonably well represented by the Dorfmann-Ogden theory with
and without residual strains, a far better than this could be seen in the Ren paper
(compare the results presented in Fig. 3 with the results shown in Fig. 3 and
Fig. 5 in Ren (2008)). It may be noted that Ren [2008] has used the constitutive
relations (14), (16) and (17) together with the relations (21), (22) and (23) derived
in Dorfmann-Ogden (2004) for the uniaxial and not for the equibiaxial state of
deformation. It turns out, however, that this has minor influence on the solutions.

The discrepancies between the theoretical results and experimental data seen in
Fig. 3 are the consequence of the monotonic property of the constitutive functions
assumed in the evolution laws (12) and (16). This follows from the basic relations
(13) and (30) between the measure of stress softening defined in (1) and the evo-
lution laws in the Dorfmann-Ogden theory. It is clearly seen in Fig. 4, where the
data and results of Fig. 3 are presented as pressure ratio vs stretch relations, that
these constitutive functions must be non-monotonic. In both figures, the results
obtained using the Dorfmann-Ogden model with permanent set are shown for two
sets of material parameters. For the one set of parameters, the residual strain is
very accurately modeled while for the other set the stress softening is more cor-
rectly modeled.

6 Energy considerations and discussion

Although the theoretical modeling of the Mullins effect may be based directly on
the stress-deformation relation of the general form (5) without any reference to
energy considerations (e.g. [Beatty and Krishnaswamy (2000)]), the modern the-
ories of continuum mechanics require that the relevant constitutive equations are
compatible with the laws of thermodynamics. In the purely mechanical theories,
these laws reduce to the dissipation inequality (see [Kazakevičiūtė-Makovska and
Kačianauskas (2004)] and references cited therein) which in the case of equibiaxial
deformation takes the form

δ ≡ 2πλ̇ − φ̇ ≥ 0 . (31)

Here 2πλ̇ is the stress power density and φ is denotes the equibiaxial energy po-
tential identified as a free energy function for isothermal processes. Moreover, the
superimposed dot stands for the time derivative. In consistency with the constitu-
tive law for the equibiaxial stress (5), the energy potential is assumed in the form
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φ = φ̂(λ ,α,κ). Taking the time derivative of φ and substituting the resulting ex-
pression together with the stress-deformation relation (5) into (31), one gets

δ ≡
(
2π̂(λ ,α,κ)−∂λ φ̂(λ ,α,κ)

)
λ̇ −

(
∂α φ̂(λ ,α,κ)α̇ +∂κ φ̂(λ ,α,κ)κ̇

)
≥ 0 .

(32)

It follows that φ = φ̂(λ ,α,κ) serves as the potential for the response function for
the equibiaxial stress,

π̂(λ ,α,κ) =
1
2

∂λ φ̂(λ ,α,κ) , (33)

and the dissipation inequality (32) reduces to the form

δ =−
(
∂α φ̂(λ ,α,κ)α̇ +∂κ φ̂(λ ,α,κ)κ̇

)
≥ 0 . (34)

This reduced dissipation inequality imposes the restrictions on the evolution laws
for the variables α and κ , and thus on the response functions α̂(λ ;λm) and κ̂(λ ;λm)
in the evolution laws (6). Further possible limitations on the nature of the response
functions may only be derived for particular classes of models.

In order to illustrate this point, let us consider the three-dimensional damage-
type model of the idealized Mullins effect (without residual strains) developed by
Chagnon et al. (2004). When reduced to the equibiaxial deformation, this type of
model is based on the the constitutive equation for the energy φ = φ̂(λ ,α) in the
special form

φ = φ̂(λ ,α) = (1−α)ŵ(λ ) , (35)

where w = ŵ(λ ) is the strain-energy of a perfectly elastic material. The assump-
tion (35) together with the general evolution law (6)1 for the softening variable α

gives the constitutive equation for the biaxial stress in the form (11). Moreover,
∂α φ̂(λ ,α) = −ŵ(λ ) and since ŵ(λ ) ≥ 0 by the classical assumption of the non-
linear elasticity, the reduced dissipation inequality (34) requires that α̇ ≥ 0. Taking
further into account that for this class of models the evolution of the softening vari-
able is given by (6)1, we have

α̇ = (∂λ α̂(λ ;λm)) λ̇ ≥ 0 . (36)

For λ̇ > 0 with 1≤ λ ≤ λm, the inequality (36) implies that ∂λ α̂(λ ;λm)≥ 0. Thus
the softening function α̂(λ ;λm) must be a monotonic non-decreasing function of λ

for every value of the pre-stretch λm.
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It is a different matter, however, with the pseudo-elastic models studied in this
work. The theory originally formulated by Ogden and Roxburgh (1999) and the
extended theory due to Dorfmann and Ogden (2004) which accounts for residual
strains are based on energy considerations with the ad hoc assumption that the
pseudo-energy potential φ = φ̂(λ ,α,κ) satisfies the additional conditions

∂α φ̂(λ ,α,κ) = 0, ∂κ φ̂(λ ,α,κ) = 0 . (37)

These assumptions imply that the reduced dissipation inequality (34) is satisfied
identically independently of a particular form of φ = φ̂(λ ,α,κ). As a result, there
are no a priori restrictions on the admissible forms of the evolutions laws (6) which
may be assumed in this class of theoretical models. In particular, the monotonic
non-decreasing character of α̂(λ ;λm) with respect to the stretch λ for any value
of pre-deformation λm is not implied by the dissipation inequality, although this is
assumed in Ogden and Roxburgh (1999) and Dorfmann and Ogden (2004) models.

In conclusion, the results of this paper may be summarized by stating that the pre-
dictive capability of the studied models for the Mullins effect may be improved by
admitting the non-monotone forms of the evolution laws. Moreover, the proposed
measure ρ of the stress softening extent provides a convenient way of comparing
data and theoretical results for the cyclic inflation of spherical balloons. This has
been shown in details for the deflation (unloading) curve. The same methodology
may be applied to the curve in the reinflation (reloading) phase. It may be noted
that using the relations (4) between the pressure and the equibiaxial engineering
stress, the measure of stress softening (1) is obtained as ρ = πs/πv. Thus, this
method of characterizing the amount of stress softening is essentially equivalent
to the measure studied by Kazakevičiūtė-Makovska (2007) in the case of uniaxial
cyclic deformation.
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Kazakevičiūtė-Makovska, R. (2007): Experimentally determined properties of
softening functions in pseudo-elastic models of the Mullins effect. International
Journal of Solids & Structure, vol. 44, issues 11-12, pp. 4145-4157.

Kazakevičiūtė-Makovska, R.; Kačianauskas, R. (2004): Modelling of stress
softening in elastomeric materials: foundations of simple theories. Mechanics Re-
search Communications, vol. 31, issue 4, pp. 395-403.

Müller, I.; Strehlow, P. (2004): Rubber and Rubber Balloons - Paradigms of Ther-
modynamics. Springer, Berlin, Heidelberg.

Ogden R.W.; Roxburgh D.G. (1999): A pseudo-elastic model for the Mullins
effect in filled rubber. Proceedings of Royal Society of London, A 455, pp. 2861-
2877.

Osborne, W.A. (1909): The elasticity of rubber balloons and hollow viscera. Pro-
ceedings of Royal Society of London, Series B, Containing Papers of a Biological
Character, vol. 81, no. 551, pp. 485-499 (with note by Sutherland, W.).

Ren, J.S. (2008): Elastic instability of pseudo-elastic rubber balloons. CMC: Com-
puters Materials & Continua, vol. 7, issue 1, pp. 25-31.

Rigato, M. (1967): Sul comportamento di un pallone di materiale elastico isotropo
con riferimento allo studio delle proprieta’ meccaniche della vescica urinaria e di
altri organi cavi. Atti della Accademia dei fisiocritici in Siena. Sezione medico-
fisica, vol. 16, issue 2, pp. 1721-1730.

van Mastrigt, R.; Coolsaet, B.L.R.A.; van Duyl, W.A. (1978): Passive properties
of the urinary bladder in the collection phase. Medical and Biological Engineering
and Computing, vol. 16, pp. 471-482.

Appendix

The elastic strain energy function proposed by Gent (1999) has the form

W = W (I1) =−µ

2
Jm ln

(
1− (I1−3)

Jm

)
,

where µ and Jm are the material constants, and I1 is the first strain invariant. In
the case of equibiaxial deformation of incompressible materials, λ ≡ λ1 = λ2 and
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λ3 = λ−2 so that

I1(λ ) = 2λ
2 +λ

−4

and the equibiaxial energy function is obtained as

ŵ(λ )≡W (I1(λ )) =−µ

2
Jm ln

(
1− (I1(λ )−3)

Jm

)
.

Both elastic constants in the Gent model have unique physical meaning, µ > 0 is
the shear modulus and the dimensionless parameter Jm represents the limiting value
for the strain invariant I1− 3 corresponding to the deformation when the polymer
network is fully stretched.


