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Spectral Approaches for the Fast Computation of Yield
Surfaces and First-Order Plastic Property Closures for
Polycrystalline Materials with Cubic-Triclinic Textures
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Abstract: In recent work, we have demonstrated the viability and computational
advantages of DFT-based spectral databases for facilitating crystal plasticity solu-
tions in face-centered cubic (fcc) metals subjected to arbitrary deformation paths.
In this paper, we extend and validate the application of these novel ideas to body-
centered cubic (bcc) metals that exhibit a much larger number of potential slip
systems. It was observed that the databases for the bcc metals with a larger number
of slip systems were more compact compared to those obtained previously for fcc
metals with a smaller number of slip systems. Furthermore, we demonstrate in this
paper that these databases can be effectively used in the fast computation of yield
surfaces predicted by the Taylor model for both fcc and bcc metals. As another
demonstration of the many advantages of the novel DFT-based spectral databases,
we present first-order plastic property closures based on the Taylor model for both
fcc and bcc metals. This paper represents the first report of such closures produced
without invoking any simplifying assumptions regarding sample symmetry.

Keywords: crystal plasticity models, spectral method, yield surfaces, First-order
closures

1 Introduction

Property closures delineate the complete set of all theoretically achievable com-
binations of selected effective (anisotropic) properties in a given material system
and for a selected homogenization theory, and are of great interest in optimizing
the performance of engineering components. In general, these are very difficult to
compute as they aim to map the complete space of theoretically feasible microstruc-
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tures in the given material system into the property space of interest. Rigorous so-
lutions known as G-closures (Murat and Tartar 1985; Cherkaev 2000; Lurie 2004)
exist only for a limited number of problems, mostly restricted to relatively sim-
ple defect-insensitive properties and two-dimensional microstructures comprised
of isotropic local states. Clearly, the availability of theoretically predicted closures
for elastic-plastic properties of polycrystalline materials (where the local states are
typically anisotropic) is of tremendous value in the design and development of new
materials with enhanced properties or performance characteristics.

In recent years, a novel mathematical framework called Microstructure Sensitive
Design (MSD) (Adams et al. 2001; Adams et al. 2004; Kalidindi et al. 2004;
Lyon and Adams 2004; Kalidindi et al. 2006; Proust and Kalidindi 2006; Full-
wood et al. 2007; Houskamp et al. 2007; Knezevic and Kalidindi 2007; Wu et
al. 2007; Fast et al. 2008) was introduced to establish invertible linkages between
material microstructure and its effective properties. One of the main successes of
MSD has been the ability to compute efficiently the first-order approximations to
property closures (hereafter referred to as first-order closures) for combinations of
a broad range of anisotropic elastic-plastic properties exhibited by polycrystalline
material systems (Proust and Kalidindi 2006; Knezevic and Kalidindi 2007; Wu et
al. 2007; Knezevic et al. 2008). The first-order closures are approximations to the
rigorous G-closures because they utilize only the first-order statistics of the mate-
rial microstructure. For polycrystalline microstructures, the first-order microstruc-
ture statistics reflect the probability density associated with finding a region of a
selected crystal lattice orientation at a point thrown randomly into the polycrys-
talline microstructure (also called 1-point statistics). These first-order statistics for
polycrystalline microstructures are generally described through an orientation dis-
tribution function (ODF), also commonly referred to as texture (Bunge 1993).

In the MSD framework, the complete space of all theoretically feasible microstruc-
ture distribution functions is identified as a microstructure hull (Adams et al. 2001;
Proust and Kalidindi 2006; Wu et al. 2007). For the first-order statistics in poly-
crystalline microstructures, this essentially constitutes a texture hull that is conve-
niently expressed using Fourier representations (Adams et al. 2001; Proust and
Kalidindi 2006; Wu et al. 2007; Kalidindi et al. 2009). First-order property clo-
sures in polycrystalline materials are essentially obtained by mapping the texture
hulls into the selected property spaces. In prior work, this has been accomplished
using a number of different optimization techniques, including the gradient meth-
ods (Proust and Kalidindi 2006), Pareto-front methods (Fullwood et al. 2007), and
genetic-like algorithms (Knezevic et al. 2008).

To the best of our knowledge, all of the previously reported plastic property closures
for polycrystalline materials have been established assuming orthorhombic sample
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symmetry in the microstructure statistics (i.e. texture). This was largely because
of the computational difficulties involved in establishing the effective properties of
the polycrystals without the assumption of orthorhombic sample symmetry. As an
example, consider the computation of the uniaxial yield strength of the polycrys-
tal. Since most crystal plasticity models (Kalidindi et al. 1992) take the imposed
deformation as the input and predict the corresponding stress states, it becomes
necessary to guess the deformation mode that would result in an uniaxial stress
state. Without the assumption of orthorhombic sample symmetry, this search has
to take place on at least a four-dimensional surface (equivalent to establishing the
yield surface in five-dimensional stress space). However, with the assumption of
orthorhombic sample symmetry, the search can be restricted to a single parameter
space.

Much of the prior work in this area has been accomplished using generalized
spherical harmonics (GSH) (Bunge 1993) as the Fourier basis in representing the
structure-property linkages (Adams et al. 2001; Proust and Kalidindi 2006). In
recent work (Kalidindi et al. 2009; Knezevic et al. 2009), we have expounded
the computational advantages of using discrete Fourier transform (DFT) represen-
tations over the GSH representations. The use of fast Fourier transform (FFT)
algorithms (Cooley and Tukey 1965; Brigham 1988; Duhamel and Vetterli 1990;
Briggs and Henson 1995; Press et al. 2002) has produced major computational
advantages in the establishment of structure-property linkages in polycrystalline
materials using DFT representations instead of GSH representations (Kalidindi et
al. 2009; Knezevic et al. 2009). All of our recent work with these new methods
was applied on fcc metals with 12 slip systems. In this paper, we extend the use of
DFT representations of structure-property linkages in polycrystalline materials in
three important directions: (i) establishment and validation of the spectral crystal
plasticity database for deformation of bcc metals with 48 slip systems (which is
much higher than the 12 slip systems operating in fcc metals), (ii) fast computation
of the yield surfaces for both bcc and fcc metals using crystal plasticity theories in
the five-dimensional deviatoric stress space, and (iii) delineation of first-order plas-
tic property closures for both fcc and bcc metals using these yield surfaces while
avoiding any simplifying assumptions of sample symmetry. It is emphasized here
that these advances have been made possible due to the tremendous computational
savings realized in computing DFTs using established (and easily accessible) FFT
algorithms.

This paper is organized as follows. We briefly summarize in Section 2 our recently
developed DFT-based approach for crystal plasticity computations. We then pro-
ceed to build and validate a new DFT-based crystal plasticity database for bcc met-
als in Section 3. We then demonstrate the application of the DFT databases for the
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fast computation of yield surfaces using the Taylor model in Section 4. As a final
application of the DFT databases, we demonstrate the construction of several ex-
ample first-order plastic property closures in Section 5. In particular, we compare
and contrast the property closures produced here with those produced previously
with the assumption of orthorhombic sample symmetry. We present concluding
remarks in Section 6.

2 DFT-based Approach to Crystal Plasticity Computations

The rigid-viscoplastic crystal plasticity model (Asaro and Needleman 1985) used
in this work can be described by the following set of equations:

D = ∑
α

γ̇
αPα , Pα = 0.5 (mα ⊗nα + nα ⊗mα) , (1)

γ̇
α = γ̇o

∣∣∣∣τα

sα

∣∣∣∣1/m

sgn(τα), τ
α = σσσ

′ ·Pα . (2)

In Eqs. (1) and (2), D is the applied isochoric stretching tensor, mα and nα are the
unit vectors identifying the slip direction and the slip plane normal, respectively,
for slip system α . Since elastic stretching is not allowed in this model, D is also the
plastic stretching tensor in the sample. The deviatoric component of the Cauchy
stress tensor in the crystal, denoted by σσσ ′, can be evaluated by solving Eqs. (1) and
(2). τα , γ̇α , and sα represent the resolved shear stress, the shearing rate, and the slip
resistance, respectively, on slip system α . The reference value of the shearing rate,
γ̇o, is taken here as 0.001 sec−1. The strain rate sensitivity parameter denoted by m
is taken to be 0.01, which is typical for plastic deformation of most cubic metals
at room temperature. The lattice spin tensor W∗ (and the related lattice rotation
tensor, R∗) in the crystalline region is given by

W∗ = Ṙ∗R∗T = W−Wp, Wp = ∑
α

0.5γ̇
α (mα ⊗nα ⊗nα ⊗mα), (3)

where W is the applied spin tensor, and Wp is the plastic spin tensor. To capture
slip hardening, the evolution of the slip resistance with accumulated plastic strain
is described phenomenologically by a saturation-type law as

ṡα = ho

(
1− sα

ss

)a

∑
β

∣∣∣γ̇β

∣∣∣, (4)

where ho, ss and a denote the slip hardening parameters.



Spectral Approaches for the Fast Computation 157

The crystal plasticity computations typically demand significant computational re-
sources because of the low value of m (which makes the resulting system of alge-
braic equations numerically extremely stiff). In the DFT-based approach (Kalidindi
et al. 2009; Knezevic et al. 2009), we establish computationally efficient represen-
tations for the essential functions capturing the solutions to the crystal plasticity
theory described above. More specifically, our interest here is in establishing func-
tions such as σ ′i j (g,L), W ∗i j (g,L), and ∑

α

|γ̇α |(g,L), where g is the crystal lattice

orientation and L is the applied velocity gradient tensor. In any given time step
in the simulation of the deformation process, these functions can then be used to
compute all of the needed microscale and macroscale field quantities that would
be typically computed by the traditional crystal plasticity approach (by explicitly
solving Eqs. (1)-(4)).

It is important to note that the functions sought here are independent of the specific
homogenization theory used in bridging the microscale response of the crystalline
regions within individual grains to the macroscale polycrystal response. In the sim-
ple extended Taylor models (Taylor 1938) used in this work, the applied velocity
gradient tensor at the microscale is assumed to be the same as the one applied at
the macroscale (on the polycrystal). In the classical Taylor model, only the strain
tensor in each grain is assumed to be the same. However, in both versions of this
model, the macroscopic stress for the polycrystal is obtained by volume averaging
the stresses inside the polycrystal. In using the spectral databases described here
with more sophisticated homogenization theories, it will be necessary to first solve
for the local (microscale) velocity gradient tensor to be applied and then use that as
input to the functions described above.

The domain of the functions of interest in this work is the product space of the
orientation space and the deformation mode space. The orientation, g, may be de-
scribed using any one of the established representations (Randle and Engler 2000),
including Euler angles, angle-axis pairs, Rodriguez vectors, quaternions, or orthog-
onal matrices. A common feature of these different, but equivalent, representations
is that all of them require specification of three independent parameters to describe
a given crystal orientation. Consequently, the orientation space of interest can al-
ways be reduced to a three-dimensional space. In the present work, we have used
the Bunge-Euler representation for orientations (Bunge 1993), where the crystal
lattice orientation is typically denoted as g = (φ1,Φ,φ2) by a ordered set of three
rotation angles that transform the crystal reference frame to the sample reference
frame. The orientation space associated with this representation is usually defined
as (φ1 ∈ [0,2π) ,Φ ∈ [0,π) ,φ2 ∈ [0,2π)), which could be further compacted sig-
nificantly by taking advantage of any prevailing crystal and sample symmetries in
a given material system (Bunge 1993).



158 Copyright © 2010 Tech Science Press CMC, vol.15, no.2, pp.153-172, 2010

The deformation mode space of interest here includes the complete set of all ve-
locity gradient tensors that can be imposed on the selected material system. In
building the DFT-based spectral databases needed for crystal plasticity solutions,
we successfully employed a strategy developed by Van Houtte (Van Houtte 1994)
for compacting the deformation mode space. For this purpose, the velocity gradient
tensor is mathematically decomposed as

L = ε̇ Do +W, Do =
3

∑
j=1

D j ep
j ⊗ ep

j , ε̇ = |D| ,

D1 =

√
2
3

cos
(

θ − π

3

)
, D2 =

√
2
3

cos
(

θ +
π

3

)
, D3 =−

√
2
3

cos(θ) ,

(5)

where
{

ep
i , i = 1,2,3

}
denotes the principal frame of Do, and the range of angular

variable θ that defines all possible diagonal matrices is [0,2π). However, since
there are multiple choices for the selection of the principal frame, a restricted range
of
[

π

6 , π

2

)
can generate unique representations for all possible tensors D. Recogniz-

ing that all crystal plasticity computations can be performed in the {ep} reference
frame allows us to focus our efforts in building the spectral databases using two
primary variables, gp and θ , where gp denotes the crystal lattice orientation with
respect to the {ep} reference frame. As a consequence of this compaction, the do-
main for the functions of interest here is the product space of the domains for gp and
θ . In other words, we only need to establish the following spectral representations
for our work (Knezevic et al. 2009)

W∗
rq = ε̇

1
NgNθ

∑
k

∑
n

Bkn e
2πikr

Ng e
2πinq

Nθ +W, (6)

σσσ
′
rq = s |ε̇|m sgn(ε̇)

1
NgNθ

∑
k

∑
n

Ckn e
2πikr

Ng e
2πinq

Nθ , (7)(
∑
α

|γ̇α |
)

rq

= |ε̇| 1
NgNθ

∑
k

∑
n

Gkn e
2πikr

Ng e
2πinq

Nθ . (8)

In Eqs. (6)-(8), r and q enumerate the grid points in the orientation space (domain
of gp) and the θ space (describing the deformation mode), respectively, while Ng

and Nθ represent the corresponding total number of grid points in the same spaces.
The sets of Fourier coefficients Bkn, Ckn, and Gkn are generally referred to as the
DFTs, and constitute the spectral databases needed for facilitating the fast crystal
plasticity solutions described here.

In order to compute the DFTs of interest, we first need to compute the values of
the functions of interest on a uniform grid in their respective periodic domains. In
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this work, these values were computed using the crystal plasticity theory described
earlier on a uniform three-degree grid in each of the angular variables involved.
The periodic Bunge-Euler space of interest in computing DFTs for orientation-
dependent functions in cubic crystals is identified as

(φ1 ∈ [0,2π) ,Φ ∈ [0,2π) ,φ2 ∈ [0,2π))

(Kalidindi et al. 2009; Knezevic et al. 2009). The periodic space of interest in
defining the deformation mode is identified as θ ∈ [0,2π). It should be noted that
there exist several redundancies in the space identified above; in fact, there exist
at least 48 equivalent orientations based on the crystal symmetry alone. These
equivalent representations have been exploited in the computations of the function
values.

For the functions studied in this work, it is typically observed that only a small
fraction of the DFTs are numerically significant compared to the others. In other
words, although the number of DFTs computed is as large as the discrete dataset
of the function values that was used in computing the transform, only a relatively
small fraction of the terms in the computed transform need to be stored; ignoring
the rest of the terms in the transform has only a small influence on the reconstructed
values. The numbers of numerically significant DFTs (henceforth referred to as
dominant DFTs) varies for the different field variables. It was seen that as few as
200 DFTs dominated the representations of the various functions of interest for fcc
polycrystals (Knezevic et al. 2009). Keeping a minimal set of dominant DFTs
is critical for gaining computational speed in the spectral approach to the crystal
plasticity computations described in this paper. Taking into account more of the
DFTs will improve the accuracy at the expense of computational cost.

A characteristic feature of the DFTs is that they reproduce exactly the values of
the functions at the grid points that were used in evaluating the DFTs (here the
uniform three degree grid), when all of the DFTs are utilized. In order to recover
the function values at any other location of interest (not on the selected grid) in
their respective domains, we use the spectral interpolation technique described in
our earlier work (Knezevic et al. 2008).

3 Spectral Databases for BCC metals

Following the approach described in the previous section, we have developed in this
work a new spectral database for deformation of bcc metals with 48 slip systems.
The families of potential slip systems for the bcc crystals are assumed to include
{110}

〈
1̄11
〉
,
{

1̄12
}〈

11̄1
〉
, and

{
123̄
}
〈111〉. The DFTs of interest representing

the functions described in Eqs. (6)-(8) were computed using the same procedures
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Figure 1: (a) Magnitudes of dominant transforms (not including the zero trans-
form) normalized by the largest value and sorted by magnitude for the components
σ ′11 (gp,θ) ,W ∗12(g

p,θ), and ∑α |γα |(gp,θ), where Akn here indicates the dominant
DFTs. (b) Average percentage error for the same three components computed us-
ing Eq. (9) for different numbers of dominant DFTs retained in the computations
for 100,000 combinations of selected orientations and deformation modes.

that were used earlier for fcc metals. Fig. 1(a) shows the magnitude of the DFTs
(not including the zero transform) for σ ′11 (gp,θ), W ∗12 (gp,θ), and ∑

α

|γ̇α |(gp,θ)

normalized by the largest transform for each component and sorted by the magni-
tude. It is clear from Fig. 1(a) that it should be possible to represent any of the
three functions shown with only a few dominant DFTs with only a tolerable loss of
accuracy. The accuracy of the spectral representation of the functions using only a
limited number of dominant transforms was evaluated using an error metric defined
as

e =
1
N

N

∑
i=1

∣∣ fi− f DFT
i

∣∣
f n ×100 (9)

where fi and f DFT
i denote the values of the function of interest computed at N se-

lected locations in the domain of the function using the classical crystal plasticity
approach and the spectral approach described here (using Eqs. (6)-(8) and only the
dominant DFTs), respectively, and fn is an appropriate normalization value. In the
present work, the normalization value has been taken to be three times the initial
slip resistance (3so) for the deviatoric stress components, and 3ε̇ for the spin tensor
components and the total shearing rate. The locations where the functions were
evaluated included a total of 100,000 distinct combinations of gp and θ , distributed
randomly in their respective fundamental zones. The errors computed from Eq.
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(9) for σ ′11 (gp,θ), W ∗12 (gp,θ), and ∑
α

|γ̇α |(gp,θ)are plotted against the number of

dominant DFTs retained in the computation of f DFT
i in Fig. 1 (b). The average error

when using 500 dominant DFTs was less than 2% for all of these three components.
Similar results were also obtained for all the five independent components of the
deviatoric stress function and the three independent components of the spin func-
tion studied here. It was also observed that the errors noted here for the DFT-based
spectral databases for bcc metals were lower than the corresponding errors reported
in our earlier work on fcc metals (Knezevic et al. 2009). For example, when using
500 dominant DFTs for the deviatoric stress component σ ′11 (gp,θ) with the fcc
database, the corresponding error was about 2.5%, while it is around 1.5% for the
bcc database developed here. We attribute the more compact representation of the
functions for bcc crystals obtained here to the availability of many more potential
slip systems, compared to the fcc crystals. The availability of the larger number of
slip systems results in the functions of interest becoming more uniform in their re-
spective domains, and therefore needs lesser numbers of dominant DFTs to achieve
the desired accuracy.

The new bcc spectral database developed here was validated by comparing the
predictions of the stress-strain curves and the deformed textures against the cor-
responding predictions from the conventional crystal plasticity computations for
different deformation processes with different initial textures. Both of these pre-
dictions are based on the simple Taylor model described earlier. The slip hard-
ening parameters used in these simulations were those established previously for
interstitial-free (IF) steel by curve fitting the Taylor predictions to experimental
measurements (Peeters et al. 2001). The values of these slip hardening parameters
were ho = 500 MPa, ss = 230 MPa, a = 2.80, and so = 50 MPa. As an example,
the predicted texture and stress-strain curves for a polycrystalline IF steel deformed
by simple shear to a shear strain of γ = 0.6 using the conventional computational
approach and the new DFT spectral approach presented in this paper are shown in
Fig. 2. The initial texture in the sample was captured using a set of 1200 discrete
crystal orientations (Peeters et al. 2001). The DFT-based predictions used 500
dominant DFTs for the stress, the shearing rate, and the lattice spin components.
It is clear that the DFT-based databases developed here for bcc crystals produce
excellent predictions, and these are obtained at a significant faster computational
speed. The simulation time was 130 secs for the conventional calculations, and
only 2.9 secs for the spectral approach using dominant DFTs. All of the compu-
tations reported in this work were performed on a regular Pentium 4 desktop PC.
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Figure 2: Comparison of the predictions from the spectral method (using 500
DFTs for the stress, the shearing rate, and the lattice spin components) against
the corresponding predictions from the conventional approach for simple shear of
IF steel: (a) pole figures, and (b) stress-strain curves, including the experimental
result (Peeters et al. 2001).

4 Fast Computation of Yield Surfaces using Spectral Databases

The delineation of the anisotropic yield surface in stress space using the Taylor
polycrystal model is computationally very expensive. We describe here a new
method for the fast computation of the yield surface in the five-dimensional de-
viatoric stress space using the DFT-based databases developed here as well as in
previous work (Knezevic et al. 2009).

The distribution of the crystal lattice orientations in a polycrystalline sample can
be captured by an orientation distribution function (ODF). The ODF, denoted as
f (g), reflects the normalized probability density associated with occurrence of the
crystallographic orientation, g, in the sample. ODF is formally defined as

f (g)dg =
Ng±dg/2

N
,
∫

FZ

f (g)dg = 1, (10)

where N is the total number of orientations measured in the sample, Ng±dg/2 is
the number of orientations that lie within an invariant measure dg centered about
the orientation g, and FZ denotes the fundamental zone of distinct orientations in
a suitable defined orientation space. The orientation, g, is defined here using the
three Bunge-Euler angles g = (φ1,Φ,φ2) (Bunge 1993). The invariant measure is
then defined as

dg = sinΦdφ1dΦdφ2 (11)
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In this work, it is convenient to establish the DFT representation for texture as
(Kalidindi et al. 2009)

F̃k = ∑
b

fb sinΦb e
−2πikb

Ng (12)

where fb represents the value of the ODF at the grid point in the orientation space
enumerated by b, and F̃k denote the corresponding DFTs.

In the Taylor model (Taylor 1938), the macroscopic deviatoric stress tensor, σ̄σσ
′, is

given by the volume averaged value of the local stress tensors in the constituent
crystals of the polycrystalline aggregate. The volume-averaged value can be ef-
ficiently evaluated using Eqs. (7) and (12), and the orthogonal properties of the
spectral representations. It can be shown that

σ̄σσ
′
q = s |ε̇|m sgn(ε̇)

1
NgNθ

∑
k

∑
n

F̃kCkn e
2πinq

Nθ (13)

where σ̄ ′q denotes the components of the volume averaged deviatoric stress tensor
evaluated on a uniform grid in θ , with the grid points enumerated by q.

Recognizing once again that only a limited number of the Ckn transforms need to
be accounted in evaluating Eq. (13) leads to a very efficient computations. Using
this relation, the points on the yield surface corresponding to a selected choice of
the principle frame of D are established. However, to establish the complete yield
surface in the sample frame, one needs to explore the space of all possible principle
frames. The space of all possible principle frames can be identified using a set
of Euler angles, analogous to the Bunge-Euler angles used in the definition of the
crystal lattice orientation.

It should be noted that the spectral representations of the ODF and the stress func-
tions in this paper do not implicitly assume any sample symmetry. Consequently,
the yield surface can be constructed for any texture in the sample, without the need
to invoke any simplifying assumptions of sample symmetry. This approach has
been used here successfully to construct the complete five-dimensional yield sur-
face for both fcc and bcc polycrystalline materials. Fig. 3(a) represents a selected
projection of the five-dimensional yield surface computed here for IF-steel using
500 dominant DFTs. The material was assumed to possess a random texture de-
scribed by a set of 1000 discrete crystal orientations. The time required for comput-
ing the entire five-dimensional yield surface (involving computations of the values
of 7,200,000 stress tensors) was only 170 seconds. In order to check the accuracy
of the yield surface, we compare in Fig. 3(b) the (σ11,σ22) section of the IF-steel
yield surface computed using 500 dominant DFTs against the one computed us-
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ing the conventional approach. It is clear that the DFT-based computations are in
excellent agreement with the conventional computations.

 

Figure 3: (a) Three-dimensional projection of the yield surface computed using
the DFT-based spectral method for IF-steel with a random texture; (b) Plots of
the predicted (σ11,σ22)-yield locus for the same material comparing the spectral
approach with the conventional Taylor approach.

In order to demonstrate the applicability of the spectral methods described here
to fcc metals, we show in Fig. 4 the yield loci in the π-plane for polycrystalline
copper computed using 500 dominant DFTs from the fcc database and the corre-
sponding predictions from the conventional calculations. In this example, the metal
was assumed to possess a texture that is typically observed in rolled fcc samples.
In this work this texture was described by a set of 1000 discrete orientations, which
was obtained by simulating plane strain compression to a true strain of -1.0 on an
initially random texture. It was seen once again that the DFT method can repro-
duce all of the features of the conventional computations for this strongly textured
sample.

5 Plastic closures for cubic-triclinic textures

The MSD approach to the delineation of first-order property closures using various
optimization techniques has been discussed in prior work (Proust and Kalidindi
2006; Knezevic and Kalidindi 2007; Wu et al. 2007; Knezevic et al. 2008). Note
that all of the plastic properties addressed in prior work were associated with cubic-
orthorhombic textures (in this standard notation the first symmetry refers to crystal
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symmetry and the second one refers to the sample symmetry) in the samples. As
mentioned earlier, this was mainly because of the computational difficulties in-
volved in evaluating the properties for cubic-triclinic textures.

 

Figure 4: Plots of yield surface on the π-plane computed using the spectral methods
described in this work and the conventional approach for polycrystalline fcc copper.
The texture in the sample was assumed to be representative of textures found in
rolled fcc samples and is shown on the right.

The typical plastic properties of interest such as the tensile yield strength are de-
fined in the stress space. In order to establish these one typically has to guess the
imposed deformation mode (i.e. stretching tensor, D) that would correspond to
the stress state of interest. This is most conveniently computed for cubic-triclinic
textures by establishing the yield surface. Any other iterative method designed to
establish these properties is essentially equivalent to establishing the yield surface
in the vicinity of the stress state of interest. In this work, we utilized the meth-
ods described in the previous section for the fast computation of the yield surface
and produced for the first time a new class of plastic property closures that include
cubic-triclinic textures. It should be emphasized that the highly efficient computa-
tion of the yield surface using the DFT databases described in the previous section
allows us to establish these plastic property closures.

The methodology used here for building the first-order plastic closures follows the
genetic-like algorithms described in our prior work (Knezevic et al. 2008). The
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property combinations of interest were first evaluated for a set of crystal orienta-
tions that are uniformly distributed over the entire FZ. In the next step, weighted
combinations of crystal orientations located on the boundary were used to expand
the property closure. The process was repeated until the closure did not expand any
more.

One of our main interests here is to examine critically the differences in the plas-
tic property closures for cubic-orthorhombic and cubic-triclinic textures for both
fcc and bcc metals. Although the cubic-orthorhombic closures are expected to be
subsets of the cubic-triclinic closures, it is not at all clear how much bigger are
the later compared to the former. Since the property closures denote potential de-
sign spaces, it is important to ascertain how the cubic-triclinic closures expand the
available design space.

 

Figure 5: First-order cubic-triclinic and cubic-orthorhombic plastic closures for
(σy1/so,σy2/so) computed using the DFT-based methods developed in this work.
(a) OFHC Copper, (b) IF-steel.

In this paper, we computed two example plastic property closures in both fcc copper
and bcc IF-steel. Fig. 5 shows the first-order closures delineating all of the feasible
combinations of the normalized yield strengths in the sample e1 and e2 directions
(i.e. σy1 and σy2) for copper and IF-steel computed assuming both orthorhombic
and triclinic sample symmetries. Fig. 5 clearly indicates that some combinations
of σy1 and σy2 cannot be attained with the cubic-orthorhombic textures. Compar-
ison of the closures in Figs. 5(a) and 5(b) reveals that the difference between the
cubic-orthorhombic and the cubic-triclinic property closures is considerably larger
for fcc metals compared to bcc metals. This observation is attributed to the avail-
ability of the higher number of slip systems in the bcc metals (48 slip systems in
bcc compared to only 12 in the fcc crystals). The higher number of slip systems
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are expected to lower the degree of anisotropy in the response of the bcc metals,
and should therefore reduce the difference between cubic-orthorhombic and cubic-
triclinic closures for these metals compared to the fcc metals.

 
Figure 6: Predicted textures at salient points of interest in Fig. 5 corresponding to
the highest values of tensile yield strength, σy1.

Textures corresponding to the highest values of the tensile yield strengths in Figs.
5(a) and 5(b) are depicted in Fig. 6. It is seen that the highest tensile strength for
copper was obtained for a single crystal oriented close to the (110)[11̄1̄] orientation.
However, this single crystal is not represented in the cubic-orthorhombic closure.
The highest tensile yield strength in the cubic-orthorhombic closure, based on the
Taylor model used here, is obtained by a crystalline aggregate comprising of four
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Figure 7: (σy2/so,τy12/so) First-order property closures for polycrystalline materi-
als computed using DFT methods based on cubic-triclinic and cubic-orthorhombic
symmetries. a) OFHC Copper, b) IF-steel.

equi-volume crystals that are close to the (110)〈111〉orientations. Note that the
highest possible tensile yield strength in the orthorhombic closure (for the aggre-
gate comprising four equi-volume crystals) is 7% lower than the corresponding op-
timum solution in the triclinic closure (for the single crystal). For IF-steel, the ori-
entation corresponding to the highest yield strength was found to be the (132)[1̄11̄]
orientation, whereas the highest yield strength with orthorhombic sample symme-
try corresponded to a texture that may be visualized as (111) fiber texture with
the (111) direction parallel to the tensile loading direction. The difference in their
yield strengths was only 3%, somewhat lower than the corresponding difference
noted earlier for fcc copper. As noted earlier, the imposition of the orthorhombic
sample symmetry had a larger effect on fcc closures compared to the bcc closures.
Nevertheless, the results presented here do indicate that relaxing the assumption
of orthorhombic sample symmetry increases the design space and identifies new
solutions for optimized performance of materials.

As another example, we show first-order cubic-orthorhombic and cubic-triclinic
plastic closures for (σy2,τy12) for both copper and IF steel in Fig. 7. Once again
the imposition of the orthorhombic sample symmetry was seen to produce a bigger
effect on the fcc closure compared to the bcc closure. The fact that the difference
is consistently larger with a lower number of slip systems (i.e. a higher degree of
anisotropy) suggests that the effect will be even larger in the case of other lower
symmetry crystal structures such as hcp metals.
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6 Conclusions

In this study, we have demonstrated significant advances in the formulation and use
of computationally efficient DFT representations of structure-property linkages in
cubic polycrystalline materials. In particular, we have established the following
results:

A new spectral crystal plasticity database using discrete Fourier transforms (DFTs)
was established and validated for bcc metals with 48 slip systems. It was seen
that a small number of dominant DFTs is enough to capture the dependence of the
stresses, the lattice spins, and the total slip rate in individual crystals on their lattice
orientation and the applied deformation modes. The DFT-based spectral approach
for bcc metals was found to be significantly faster than the conventional crystal
plasticity computations.

A new efficient approach was developed for the fast computation of the yield sur-
faces in the five-dimensional deviatoric stress space for both bcc and fcc metals.
This approach was demonstrated in this paper using the Taylor polycrystal plastic-
ity models. This new approach exploited the spectral representations of the texture
and the stress function and their orthogonal properties. It was demonstrated that it
is possible to construct the entire five-dimensional yield surface at extremely fast
computational speeds.

A new class of first-order cubic-triclinic plastic property closures were delineated
for the first time for both fcc and bcc metals. This was possible because of the
fast computations of the yield surface using the DFT-based approach. It was ob-
served that the assumption of orthorhombic sample symmetry reduces the design
space and eliminates some of the optimal solutions in the design of materials with
improved performance characteristics. It was also found that the difference in the
first-order cubic-orthorhombic and cubic-triclinic plastic closures was higher in fcc
metals compared to the bcc metals.
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