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Interval-Based Uncertain Multi-Objective Optimization
Design of Vehicle Crashworthiness

F.Y. Li1,2 and G.Y. Li1

Abstract: In this paper, an uncertain multi-objective optimization method is sug-
gested to deal with crashworthiness design problem of vehicle, in which the uncer-
tainties of the parameters are described by intervals. Considering both lightweight
and safety performance, structural weight and peak acceleration are selected as
objectives. The occupant distance is treated as constraint. Based on interval num-
ber programming method, the uncertain optimization problem is transformed into
a deterministic optimization problem. The approximation models are constructed
for objective functions and constraint based on Latin Hypercube Design (LHD).
Thus, the interval number programming method is combined with the approxima-
tion model to solve the uncertain optimization problem of vehicle crashworthiness
efficiently. The present method is applied to two practical full frontal impact (FFI)
problems.

Keywords: vehicle crashworthiness; uncertain multi-objective optimization; in-
terval number programming; approximate model

1 Introduction

Crashworthiness design is very important in the automotive industry and trans-
portation safety field to ensure the vehicle structural integrity and more importantly
the occupant safety in the crash event. Optimization design [Lin et al. (2006), Li
et al. (2006), Sapountzakis et al. (2009), Amaziane et al. (2009)] based on com-
puter analysis has become a powerful and efficient tool for crashworthiness design
of vehicles. Successive response approximate optimization is applied to solve

crashworthiness problem[Kurtaran, Eskandarian, Marzougui and Bedewi (2002)].
Multi-objective optimization is applied in full frontal impact and 40% offset-frontal
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impact [Liao et al. (2008)]. Multi-cell section is investigated for crashworthi-
ness design with multi-objective optimization [Hou et al. (2008)].In the above-
mentioned works, deterministic optimization methods were used, in which all of
these parameters were given certain values. However, uncertainties in loading
conditions, material characteristics, geometric properties, manufacturing precision,
and etc widely exist in practical vehicle crashworthiness problems. To obtain a re-
liable design, uncertainty should be considered in the design process of the crash-
worthiness. Design for six sigma through robust optimization has been employed
in side impact [Koch, Yang and Gu (2004)]. Sinha (2007) used approximate mo-
ment approach and reliability index approach to perform multi-objective crashwor-
thiness optimization. System reliability [Acar and Solanki (2008)] based vehicle
design for crashworthiness is performed, and the effect of reliability allocation in
different failure modes is analyzed. The above mentioned works all used the proba-
bility method, in which system parameters of uncertainty were treated as stochastic
numbers based on precise probability distributions. Unfortunately, for crashwor-
thiness problems it is generally difficult and costly to specify a precise probability
distribution.

Thus to overcome the difficulty of the probability method, developing an efficient
optimization design method for crashworthiness design of vehicle with uncertainty
seems more and more important. In recent years, the interval method has been
developed to model the uncertainty, in which the bounds of the uncertain parame-
ters are only needed, unnecessarily knowing their precise probability distributions.
Based on the interval method, a new kind of uncertain optimization method, namely
interval number programming, has been obtaining more and more attentions. Most
of the practical engineering problems are nonlinear, and generally cannot be ex-
pressed in an explicit form as they are often based on some simulation analysis
models. Thus in recent years, some works have been published in the nonlin-
ear interval number programming (NINP). The reference [Ma (2002)] seems the
first to study the NINP problem, however, the uncertain constraints have not been
investigated and furthermore the low optimization efficiency blocks its practical
applications. Jiang et al. (2007a,b,c,d) proposed an NINP model to transform a
general NINP problem to a deterministic optimization problem successfully, and
furthermore developed several efficient algorithms to solve the transformed two-
layer optimization. As the interval method is very convenient and economical in
uncertainty modeling, it seems very inspiring to extend the interval optimization
method into the crashworthiness design of vehicle with uncertainty in which in-
formation on uncertainty is deficient. Unfortunately, most of the above mentioned
methods are focused on the uncertain single objective optimization, and there is no
efficient and precise interval multi-objective optimization algorithm to deal with
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this class of problems currently. However, crashworthiness design of vehicle often
involves uncertain multi-objective optimization such as the lightweight and safety
performance etc. Therefore, it is necessary to research the interval uncertain multi-
objective optimization algorithm for the crashworthiness design of vehicle.

In this paper, an uncertain multi-objective optimization method is suggested to deal
with crashworthiness problem based on an interval number programming method.
The uncertainties of the system parameters are described by intervals in the im-
pact model, in which the system parameters are treated as an uncertain coefficient.
The uncertainties of parameters are described by an interval, which can be eas-
ily determined through the engineering experiences and the practical crashwor-
thiness design problem. The uncertain multi-objective optimization is created to
reduce structural weight and peak acceleration together with enhance impact per-
formance of a vehicle. To improve the crashworthiness optimization efficiency,
the approximation models are constructed for the uncertain objective functions and
constraint function based on the Latin Hypercube Design (LHD).The interval op-
timization method is combined with approximation models to form an efficient
uncertain multi-objective optimization method. The present method is applied to
two full-frontal impact (FFI) problems. The results are given and discussed for FFI
problems.

2 Statement of the problem

In crashworthiness design, design variables are composed by structural considera-
tions (e.g, sheet metal thickness, geometric shape, or other design variables, etc.).
The lightweight of vehicle is of great importance to reduce the weight of the ve-
hicle. Reduction of vehicle weight can not only save materials, but also improve
fuel economy of the vehicle. Thus, for the consideration of lightweight, the weight
of the vehicle is set as the first design objective. Safety performance of a vehicle
can be measured by parameters such as intrusion distance, intrusion velocity, peak
acceleration, and contact force, dummy response. The vehicle impact response
is best described by the acceleration history with the peak acceleration typically
used as an indictor of impact severity. Intrusion distance is the key performance
measures for the most severe mechanical injury. Therefore, in this paper, consider-
ing safety performance of a vehicle, the peak acceleration is chosen as the second
design objective, and the intrusion distance is regarded as constraint.

The uncertainty widely exists in material property, component structures, impact
speed, the occupant mass etc. As a result, an uncertain multi-objective optimization
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for crashworthiness problem can be given in the following form:

min
x
{W (x,a),A(x,a)}

s.t. Intr(x,a)≤ vI = [vL,vR]

a ∈ aI = [aL,aR],

ai ∈ aI
i = [aL

i ,a
R
i ], i = 1,2, · · · ,q,

xil ≤ xi ≤ xiu, i = 1,2, · · · ,n,

(1)

Where W and A are the objective functions which represent the vehicle weight and
peak acceleration, respectively. Intr is constraint function, which represents intru-
sion distance. x is an n-dimensional decision vector. a is a q-dimensional uncertain
vector which collects all of the uncertain parameters in the crashworthiness model,
and its uncertainty is modeled by an interval vector aI . The superscripts I denote
an interval, and L and R denote lower and upper bounds of the interval. vI denotes
the allowable interval of the constraint.

Obviously, the objective function and constrain are both nonlinear functions of x
and a. For a specificx, the possible values of W (x,a), A(x,a) or Intr(x,a) form
an interval because each uncertain parameter vector a belongs to an interval. Thus
the above uncertain multi-objective optimization problem is much more difficulty
treated than the deterministic optimization problems. In the following sections, an
uncertain multi-objective optimization for crashworthiness design of vehicle will
be proposed to solve above complex uncertain optimization problem.

3 Uncertain multi-objective optimization based on interval method for crash-
worthiness design of vehicle

The reference [Jiang, Han and Liu (2008a ,2008b); Zhao, Han, Jiang and Zhou
(2010)] gives a definition of the satisfactory degree of interval, which represents the
possibility that one interval is larger or smaller than another. Using this satisfactory
degree, the uncertain constraint in Eq.(1) can be transformed into the following
deterministic constraints:

P(CI ≥ vI)≥ λ

CI = [IntrL(x), IntrR(x)],vI = [vL,vR]
(2)

Where P(CI ≥ vI) is satisfactory degree of the constraint. λ is a predetermined
satisfactory degree level. CI is interval of the intrusion distance at x which is caused
by the uncertainty, and IntrL(x) and IntrR(x) are the lower and upper bounds of this
interval, respectively:

IntrL(x) = min
a∈Γ

Intr(x,a), IntrR(x) = max
a∈Γ

Intr(x,a), (3)
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Γ =
{

a
∣∣aL ≤ a≤ aR }

An order relation implies that an interval number is better than another but not
that one is larger than another. In reference [Han, Jiang, Gong and Huang (2008);
Jiang et al. (2008c, 2008d)], an order relation ≤mw was adopted to treat objective
function. Similarly, the uncertain objective function in Eq. (1) can be transformed
into a deterministic multi-objective optimization problem using the order relation
≤mw:

min
x

[
m(AI(x,a)),w(AI(x,a))

]
min

x

[
m(W I(x,a)),w(W I(x,a))

]
m(A(x,a)) = 1

2(AL(x)+AR(x))
w(A(x,a)) = 1

2(AR(x)−AL(x))
m(W (x,a)) = 1

2(W L(x)+W R(x))
w(W (x,a)) = 1

2(W R(x)−W L(x))
(4)

Where m and w denote the midpoint and radius of intervals, respectively. For each
specific x, the bounds of the objective functions caused by uncertainty can be ob-
tained:

AL(x) = min
a∈Γ

A(x,a),AR(x) = max
a∈Γ

A(x,a),

W L(x) = min
a∈Γ

W (x,a),W R(x) = max
a∈Γ

W (x,a),

Γ =
{

a
∣∣aL

i ≤ ai ≤ aR
i , i = 1,2, ...,q

} (5)

Through Eq.(5),the uncertain vector a is eliminated and the deterministic objective
functions are obtained.

The midpoint of objective function interval in Eq.(4) analogously minimizes the
average value of the uncertain objective function, and the radius analogously mini-
mizes the deviation. Through minimizing the deviation, the design robustness can
be ensured.

Using linear combination method to deal with the multiple objectives and each
objective can be transformed as following:

min
x

f1(x,a) = (1−β )(m(A(x,a))+ξ )/ϕ +β (w(A(x,a))+ξ )/ψ

f2(x,a) = (1−β )(m(W (x,a))+ξ )/ϕ +β (w(W (x,a))+ξ )/ψ

(6)

Where 0.0≤ β ≤ 1.0 is a weight factor, and its different values will lead to differ-
ent optimization. ξ is a number making m and w non-negative. φ and ψ are the
normalization factors of objectives.
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Through above treatments, the uncertain optimization problem Eq. (1) can be trans-
formed into a following deterministic multi-objective optimization problem:

min
x

f1(x,a) = (1−β )(m(W (x,a))+ξ )/ϕ +β (w(W (x,a))+ξ )/ψ

f2(x,a) = (1−β )(m(A(x,a))+ξ )/ϕ +β (w(A(x,a))+ξ )/ψ

(7)

s.t. P(CI ≥ vI)≥ λ ,

xil ≤ xi ≤ xiu, i = 1,2, · · · ,n.

Applying the penalty function method to deal with the constraint, a nonconstraint
optimization problem can be obtained for each objective function, and Eq.(7) can
be transformed:

min
x

fp1(x,a) = (1−β )(m(W (x,a))+ξ )/ϕ +β (w(W (x,a))+ξ )/ψ

+σφ(P(CI ≥ vI)−λ )
fp2(x,a) = (1−β )(m(A(x,a))+ξ )/ϕ +β (w(A(x,a))+ξ )/ψ

+σφ(P(CI ≥ vI)−λ )

(8)

Where fp1, fp2 are penalty functions. Penalty factor is σ which is usually specified
as a large value. The function φ has the following form:

φ(P(CI ≥ vI)−λ ) =
(
max

(
0,−

(
P(CI ≥ vI)−λ

)))2
(9)

4 Uncertain multi-objective optimization of crashworthiness based on ap-
proximation models

Crash simulations with acceptable accuracy are computationally very expensive.
To improve optimization efficiency, approximation models are widely used in most
crashworthiness optimization, Eq.(8) can be formulated as a following approxima-
tion optimization problem:

min
x

f̃p1(x,a) = (1−β )(m(W̃ (x,a))+ξ )/ϕ +β (w(W̃ (x,a))+ξ )/ψ

+σφ(P(C̃I ≥ vI)−λ )
f̃p2(x,a) = (1−β )(m(Ã(x,a))+ξ )/ϕ +β (w(Ã(x,a))+ξ )/ψ

+σφ(P(C̃I ≥ vI)−λ )

(10)

where

(C̃I = [IntrL(x,a), IntrR(x,a)] (11)
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Where W̃ (x,a) and Ã(x,a) are approximation models of vehicle weight and ac-
celeration, respectively. Iñtr(x,a) is approximation model of intrusion distance
constraint on crashworthiness design, respectively. f̃p1(x,a) and f̃p2(x,a) are the
penalty function based on the approximation models of the objective functions
(termed as “approximate penalty function”), respectively. C̃I is interval of approx-
imate intrusion distance constraint. Here, the design vector x and the uncertain
vector a are both used as input variables when creating the approximation mod-
els, and hence W̃ (x,a), Ã(x,a) and Iñtr(x,a) are explicit functions with respect to
both of x and a, instead of only x as we usually do for deterministic optimization
problems.

The Latin Hypercube Design (LHD) technique [Morris and Mitchell (1995)] is em-
ployed to select the sampling points in the space of input variables when creating
the approximation models. LHD is capable of capturing the higher order of nonlin-
earity with relatively fewer design points.

The flowchart of uncertain crashworthiness optimization is shown in Fig.1. In the
uncertainty space and current design space, x and a are both used as the input
variables, one set of sampling points are obtained by LHD. After inputting the
sampling points into the actual crash simulation models, the samples can be ob-
tained to construct the approximation models of the objective function W̃ (x,a),
Ã(x,a) and constraint Iñtr(x,a). Then the actual crash simulation models can be
discarded temporally, and the optimization process can be performed only based
on these approximation models. Obviously, it is a two-layer nesting optimization
problem. Here, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [Deb
(2001); Deb, Pratap, Agarwal and Meyarivan (2002)] and sequential quadratic pro-
gramming (SQP) are used as the outer layer and inner layer optimization solver,
respectively. In the outer layer, an amount of individuals of the design vector x are
generated by multi-objective genetic algorithm named NSGA-II, NSGA-II is em-
ployed to optimize the design vector. In the inner layer, the SQP method for each
individual will be called two times to obtain the intervals of objective functions and
constraint based on these approximation models. Then the approximate penalty
function can be calculated based on these intervals. As a result, the Pareto set can
be obtained.

5 The application

In this section, two application examples are investigated, which are frontal impact
problems.
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Figure 1: Nesting optimization based on the approximation models

5.1 Application 1

As shown in Fig.2, the thickness of four reinforced members around the frontal
structure is chosen as the design variables which could significantly affect the crash
safety. For the weight which is the first objective, we only generate linear polyno-
mial response surface, because the weight must be linearly related to component
thickness. Peak acceleration of engine bottom is chosen as the second objective.
Radial basis function (RBF) produces good results for the nonlinear function [Fang,
Raus-Rohani, Liu and Horstemeyer (2005)], so RBF [Hon, Ling and Liew (2005),
Amaziane, Naji and Ouazar(2004), Le, Mai-Duy, Tran-Cong and Baker (2007),
Mai-Duy, Khennane and Tran-Cong (2007)] is constructed for the peak accelera-
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tion of engine bottom and intrusion distance, respectively. The intrusion distance
of the fire wall is shown in Fig.3.

 
Figure 2: Design variables of the vehicle model

 

Figure 3: Approximate locations for intrusion measurement

Table 1: Material properties considering uncertain

Material Young’s Poisson’s Density ρ Yield stressσs

Modulus E (MPa) ratio ν (kg/mm3) (MPa)
1 2.07×105 0.3 7.85×10−6 400
2 2.07×105 0.3 7.85×10−6 330
3 2.07×105 0.3 7.85×10−6 570
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Figure 4: The material of considering uncertainty

 

Figure 5: Finite element model of vehicle

Materials are complex, hierarchical, heterogeneous systems, it is not reasonable or
sufficient to adopt a deterministic approach to materials design, due to the measur-
ing and manufacturing errors and model errors, the uncertainty of material in crash-
worthiness design is more complicate. In this study, the material of considering un-
certainty is shown in Fig.6. Their nominal values are given in Table 1. Yield stress
σσσ s is treated as uncertain parameters, and the uncertain level is ±10% off from
their nominal values, namely σs1 ∈ [360Mpa,440Mpa], σs2 ∈ [297Mpa,363Mpa],
σs3 ∈ [513Mpa,627Mpa]. As a result, a following optimization problem can be
formulated:

min
x
{W (x),A(x,a)}

s.t Intr(x,a)≤ [265mm,270mm]
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Figure 6: The deformation of the full frontal impact

a ∈ aI = [σσσL
s ,σσσ

R
s ], (12)

ai ∈ aI
i = [σL

si,σ
R
si ], i = 1, ...,3,

xT = (t1, t2, t3, t4)

0.5mm≤ x≤ 2.0mm

σs1 ∈ [360Mpa,440Mpa], σs2 ∈ [297Mpa,363Mpa], σs3 ∈ [513Mpa,627Mpa]

The FEM simulation is carried out on the commercial software LS-DYNA. The
finite element analysis (FEA) model of a Dodge Neon was developed by NCAC
(National Crash Analysis Center). It has 283859 nodes and 270768 (mostly shell)
elements. The total vehicle mass is 1,333kg. The initial velocity is 56.5km/h. This
model was used for full-frontal impact (FFI) simulations and found the results to
be consistent with physical crash test data by NCAC. A simulation of 100ms FFI
takes approximately seven hours with 4 processors p4 2.40 GHz. In this study, we
used FEA model in simulations of FFI. Fig.5 shows the original FEA model .The
deformation of the full frontal impact is given in Fig.6.

50 sampling points of crash simulations are executed through LHD, thus the ap-
proximation models are created within the uncertainty material parameters σσσ s and
current design variable x. Approximation model of mass is a linear function of
design variable x, but approximation models of acceleration and intrusion are non-
linear function with respect to x and σσσ s, then in outer layer using NSGA-II, design
variable x can be generated, in inner layer intervals of the objective functions and
constraint can be obtained based on approximation models by calling the SQP.
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Thus the penalty function can be calculated based on these intervals. Therefore the
Pareto optimal points of weight and peak acceleration can be achieved.

NSGA-II specific parameters are given in table 2. The possibility degree level λ of
the constraint and the penalty factor σ are set to 0.95 and 1000, respectively. ϕ and
ψ are specified as 1000 and 65.

Table 2: Details of NSGA-II specific parameters used

GA parameter name Value
Population size 100
Number of generation 100
Probability of crossover 0.9
Probability of mutation 0.1
Distribution index for crossover 2.0
Distribution index for mutation 2.0

Table 3: Typical Pareto front points of optimization result with β = 0.5

Weight(Kg) Acceleration penalty function Acceleration interval(m/s2)
1 1326.013 1.0259 [1807.012, 1836.059]
2 1327.000 0.9813 [1730.807, 1759.108]
3 1328.016 0.9698 [1720.300, 1747.086]
4 1329.084 0.9609 [1695.669, 1723.292]
5 1330.196 0.9506 [1688.187, 1714.192]
6 1331.108 0.9417 [1675.613, 1700.998]
7 1332.089 0.9341 [1661.111, 1686.405]
8 1333.045 0.9280 [1626.374, 1654.410]
9 1334.138 0.9186 [1595.845, 1625.312]
10 1335.174 0.9113 [1570.716, 1601.464]
11 1336.167 0.9057 [1544.493, 1577.023]
12 1337.223 0.9016 [1517.486, 1552.366]
13 1338.060 0.8993 [1500.085, 1536.505]
14 1339.119 0.8983 [1475.632, 1514.832]

In Fig.7 and Fig.8, 100 Pareto front points are achieved, and Table 3 and Table 4
show the typical Pareto front points of optimization result. From the table, when
β = 0.5, the midpoint of the acceleration objective function at the optimum is rel-
atively bigger than the one at β = 0.2, while the radius is relatively smaller than
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Table 4: Typical Pareto front points of optimization result with β = 0.2

Weight(Kg) Acceleration penalty function Acceleration Interval(m/s2)
1 1326.025 1.5091 [1808.402, 1840.588]
2 1327.173 1.4365 [1694.910, 1736.510]
3 1328.127 1.4162 [1660.455, 1705.792]
4 1329.035 1.4028 [1616.314, 1672.961]
5 1330.039 1.3853 [1571.713, 1637.720]
6 1331.120 1.3677 [1530.716, 1604.561]
7 1332.105 1.3542 [1497.498, 1578.115]
8 1333.367 1.3345 [1450.177, 1540.140]
9 1334.148 1.3247 [1423.460, 1518.852]
10 1335.078 1.3142 [1400.988, 1500.787]
11 1336.121 1.3003 [1371.497, 1476.276]
12 1337.065 1.2901 [1351.675, 1459.415]
13 1338.208 1.2731 [1331.116, 1438.544]
14 1339.195 1.2612 [1307.669, 1418.623]
15 1340.023 1.2499 [1306.712, 1412.228]
16 1341.049 1.2386 [1301.668, 1403.469]
17 1342.065 1.2290 [1297.963, 1396.342]
18 1343.002 1.2242 [1293.829, 1391.415]
19 1344.043 1.2191 [1298.275, 1391.383]
20 1345.279 1.2116 [1304.440, 1390.079]
21 1346.274 1.2058 [1304.274, 1388.069]

β = 0.2. With the decrease of β , the midpoint of the acceleration objective function
also decreases, while the radius increases. It means that the average value of the
objective function becomes better but the design robustness becomes worse. As a
result, the midpoint and radius of the objective function behave two different trends
with the variation of β . If we pay more attention to the average crashworthiness
performance of the vehicle under the uncertain material property, a large weight-
ing factor β can be selected; if the robust of crashworthiness performance of the
vehicle is cared more, a relatively small weighting factor β is preferred.

According to the decision make, when robust of crashworthiness performance is
considered, β = 0.5 is selected, the designer may choose the 1th, the 2th, or the 3th
as the solution, considering the lightweight of vehicle design; while the designer
would like to care for the safety performance, they may choose the 12th, the 13th,
or the 14th solutions. When average crashworthiness performance is considered,
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Figure 7: Pareto optimal front with β = 0.5
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Figure 8: Pareto optimal front with β = 0.2

β = 0.2 is selected, the designer can select the 1th, the 2th, or the 3th as the solution,
paying attention to the lightweight of vehicle design; while the designer would like
to care for the safety performance, they may choose 14 th-21th solutions.

5.2 Application 2

There are three design variables used for this optimization study (see Fig.9).The
yield stress σ is treated as the uncertain parameter (see Fig.10). Their nominal
values are given in Table 5. The weight and the peak acceleration of B-pillar are
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Figure 9: Design variables of the vehicle model 

 

 

Figure 10:The material of considering uncertainty 
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Figure 9: Design variables of the vehicle model
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Figure 9: Design variables of the vehicle model 

 

 

Figure 10:The material of considering uncertainty 
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Figure 10: The material of considering uncertainty

selected as objectives. The instruction of the fire wall is chosen as constraint (see
Fig.11). Thus, the uncertain multi-objective optimization can be formulated as
follow£º

min
x
{W (x),A(x,a)}

s.t Intr(x,a)≤ [150mm,170mm]
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Figure 11:Approximate locations for intrusion measurement 

 
Figure 12: The finite element model of the vehicle 

 

 
Figure 13: A typical deformation of the model 
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Figure 11: Approximate locations for intrusion measurement

a ∈ aI = [σσσL
s ,σσσ

R
s ], (13)

ai ∈ aI
i = [σL

si,σ
R
si ], i = 1, ...,3,

xT = (t1, t2, t3)

0.8mm≤ t1 ≤ 2.5mm

2.0mm≤ t2 ≤ 4.0mm

0.8mm≤ t3 ≤ 2.5mm

σs1 ∈ [206.1Mpa,251.9Mpa],

σs2 ∈ [299.7Mpa,366.3Mpa], σs3 ∈ [225Mpa,275Mpa]

Table 5: Material properties considering uncertain

Material Young’s Poisson’s Density ρ Yield stress σs

Modulus E (MPa) ratio ν (kg/mm3) (MPa)
1 2.10×105 0.3 7.85×10−6 229
2 2.10×105 0.3 7.85×10−6 330
3 2.10×105 0.3 7.85×10−6 250

The finite element analysis (FEA) model was developed by NCAC (National Crash
Analysis Center). Fig.12 shows the original FEM model. The total number of
the elements in this model is about 17554 while total number of nodes is around
19217. The initial velocity is 50km/h with impact duration time of 100ms. The
FEM simulation is carried out in the explicit non-linear finite element coded Ls-
dyna. The deformation of the full frontal impact is given in Fig.13.
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Table 6: Details of NSGA-II specific parameters used

GA parameter name Value
Population size 50
Number of generation 100
Probability of crossover 0.9
Probability of mutation 0.1
Distribution index for crossover 20
Distribution index for mutation 20

 

Figure 12: The finite element model of the vehicle

 

Figure 13: A typical deformation of the model

The LHD is used to generate the sample points for building the approximation
models by the LHD. The number of sample points is 40. The approximation model
of weight of vehicle is built, which is the linear response surface. The Kriging
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Figure 14: The Pareto set obtained

approximation models [Simpson, Peplinski, Koch, Allen (2001)] are constructed
for peak acceleration of B-pillar and intrusion distance of the fire wall.

The parameters in NSGA-II are specified as the Table 1. The weighting factor β is
set 0.5, and the satisfactory degree level k of the constraint is specified as 0.9. The
factors σ , ϕ and ψ are specified as 1.0×1010, 2000 and 1800, respectively.

The flowchart of the present method is as shown in Fig.1. The obtained Pareto set
is given in Fig.14. The penalty value of the peak acceleration is from 148.4 to 277.4
and the weight is from 804 to 813.6.

6 Conclusion

This paper presents an uncertain multi-objective optimization problem based on
interval number programming method for the design of vehicle crashworthiness,
and interval is used to model the parameter uncertainty. It is typically nesting op-
timization, in outer layer, multi-objective genetic algorithm (NSGA-II) is used to
generate design variable; in inner layer, SQP is employed to obtain the intervals of
objective and constraint functions. To improve efficiency, the approximation mod-
els are generated by LHD. The interval number programming method combined
with the approximation model to form an efficient and effective design optimiza-
tion approach for crashworthiness applications of vehicle.

Two automotive application-vehicle structural designs for full frontal impact are
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demonstrated the effect of this method. In these applications, the uncertain param-
eters of materials are treated as interval number. Two objectives and one constraint
are taken into account simultaneously, where objectives of acceleration and weight
are constructed, and the constraint of intrusion distance is formulated. The Pareto
optimal points can be obtained, and the design engineers can select a set of solution
points on the Pareto font according to their decision making.

However, full frontal impact is only one crash scenario. Future investigations are
necessary to combine various crash modes (side impact, 40% offset frontal im-
pact, rear impact, roof crush). Furthermore, it seems possible to extend the present
method to analyze other practical engineering problem for the uncertain optimiza-
tion, such as sheet metal forming, etc. The more uncertain parameters and relatively
larger uncertainty level would be considered in future.
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