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The Fictitious Time Integration Method to Solve the
Space- and Time-Fractional Burgers Equations

Chein-Shan Liu1

Abstract: We propose a simple numerical scheme for solving the space- and
time-fractional derivative Burgers equations: Dα

t u + εuux = νuxx + ηDβ
x u, 0 <

α,β ≤ 1, and ut + Dβ
∗ (D

1−β
∗ u)2/2 = νuxx, 0 < β ≤ 1. The time-fractional deriva-

tive Dα
t u and space-fractional derivative Dβ

x u are defined in the Caputo sense, while
Dβ
∗ u is the Riemann-Liouville space-fractional derivative. A fictitious time τ is

used to transform the dependent variable u(x, t) into a new one by (1+τ)γu(x, t) =:
v(x, t,τ), where 0 < γ ≤ 1 is a parameter, such that the original equation is writ-
ten as a new functional-differential type partial differential equation in the space
of (x, t,τ). When the group-preserving scheme is used to integrate these equations
under a semi-discretization of u(x, t,τ) at the spatial-temporal grid points, we can
achieve rather accurate solutions.

Keywords: Fractional Burgers equation, Fictitious time integration method (FTIM),
Caputo derivative, Riemann-Liouville derivative, Group-preserving scheme

1 Introduction

In this paper we are concerned with the numerical solution of a fractional Burgers
equation:

Dα
t u+ εuux = νuxx +ηDβ

x u, a < x < b, 0 < t < T, (1)

u(a, t) = ua(t), u(b, t) = ub(t), 0≤ t ≤ T, (2)

u(x,0) = f (x), a≤ x≤ b, (3)

where 0 < α,β ≤ 1. The time-fractional derivative Dα
t u and space-fractional deriva-

tive Dβ
x u are defined in the Caputo sense. When α = 1, ε = 1, and η = 0 we recover

to the usual Burgers equation.
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The fractional advection-diffusion equation is recovered when ε = 0, which is
known as the anomalous subdiffusion equation [Gu, Zhuang and Liu (2010)]. The
phenomenon of anomalous subdiffusion has a broad application. It has been studied
as a complicated dynamical system [Ye and Ding (2009); Kou, Yan and Liu (2009)],
and had an extensive application in the fields such as semi-conductor, porous me-
dia, life science, and economy finance, etc. The anomalous diffusion is different
from the normal diffusion. In the normal diffusion, particle motion is a Brownian
motion, whose Green function is the Gaussian distribution, and the mean square
displacement is a linear function of time, while particle diffusion can be described
by the traditional second order advection-diffusion equation. The anomalous dif-
fusion is essentially one kind of non-locality non-Markovian motion, so the time-
space relativity must be taken into account. The particle motion is not a Brownian
type, and the mean square displacement is not a linear function of time.

Burgers’ equation has been of considerable physical interest because it is an ap-
propriate simplification of the Navier-Stokes equations, and is also the governing
equation for a number of one-dimensional flow systems, including the convection
and diffusion of heat, weak shock propagation, compressible turbulence, and con-
tinuum traffic simulation.

The Burgers equation was first appeared in a paper by Bateman (1915) and was
named after Burgers (1948, 1974). The behavior of Burgers equation exhibits a
delicate balance between advection and diffusion. Moreover, it is one of the few
nonlinear partial differential equations that exact and complete solutions are known
in terms of the initial values through the Cole-Hopf transformation [Cole (1951);
Hopf (1950)].

Besides the generalization in Eq. (1), we also consider the following nonlinear
fractional Burgers equation:

ut +
1
2

Dβ
∗ (D

1−β
∗ u)2 = νuxx, 0 < β ≤ 1, (4)

where the space-fractional derivative Dβ
∗ u is defined in the Riemann-Liouville sense.

When β = 1, we recover to the usual Burgers equation. As pointed out by Miskinis
(2002), the above generalization of the Burgers equation has two important advan-
tages: (a) the effect of nonlinearity and nonlocality is concentrated in one term, and
(b) a fractional generalization of the Hopf and Cole transformation is allowed.

In recent years, it has turned out that many phenomena in engineering sciences can
be well described by the models using the mathematical tools from fractional cal-
culus. For example, the fluid-dynamic traffic model with fractional derivatives can
eliminate the deficiency arising from the assumption of continuum traffic flow [He
(1999)]. The space-fractional Burgers equation describes the physical processes of
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unidirectional propagation of weakly nonlinear acoustic waves through a gas-filled
pipe. The fractional derivative results from the memory effect of the wall friction
through the boundary layer. The same form can be found in other systems such as
shallow-water waves and waves in bubbly liquids [Momani (2006)]. Biler, Funaki
and Woyczynski (1998) studied the local and global in time solutions to a class of
multidimensional generalized Burgers-type equations with a fractal power of the
Laplacian in the principal part and with general algebraic nonlinearity.

Previously, Liu (2006a) has computed the Burgers equation by using the group
preserving scheme, and Liu (2006b) also developed a backward group preserving
scheme to compute the backward in time problem of Burgers equation. Liu has
utilized a simple fictitious time integration method (FTIM) to compute both the
forward and backward in time problems of Burgers equation. Liu has found that
the FTIM is robust against the noise. In this paper, our purpose is developing a
new and simple numerical method of fictitious time integration method (FTIM) to
solve the fractional Burgers equations, which allows much larger temporal and spa-
tial grid sizes. It would be very interesting that the present approach is performed
much better than other numerical methods from the aspects of stability and accu-
racy. The idea by introducing a fictitious time was first proposed by Liu (2008a)
to treat an inverse Sturm-Liouville problem by transforming an ODE into a PDE.
Then, Liu and his coworkers [Liu (2008b, 2008c, 2008d)] extended this idea to
develop new methods for estimating parameters in the inverse vibration problems.
Liu and Atluri (2008a) have employed the technique of FTIM to solve a large sys-
tem of nonlinear algebraic equations, and showed that high performance can be
achieved by using the FTIM. More recently, Liu has used the FTIM technique to
solve the nonlinear complementarity problems, whose numerical results are very
well. Then, Liu (2008e) used the FTIM to solve the boundary value problems of
elliptic type partial differential equations. Liu and Atluri (2008b) also employed
this technique of FTIM to solve mixed-complementarity problems and optimiza-
tion problems. Then, Liu and Atluri (2008c) using the technique of FTIM solved
the inverse Sturm-Liouville problem under specified eigenvalues. In the paper by
Ku, Yeih, Liu and Chi (2009) a new time-like function is introduced in the FTIM,
which was found being able to speed up the convergence for some problems. For
its simple numerical implementation, the FTIM is also used in other places, like
as, Liu (2009), Liu and Atluri (2009), Chang and Liu (2009), Chi, Yeih and Liu
(2009), and Tsai, Liu and Yeih (2010).
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2 The fictitious time integration method

2.1 Fractional derivatives

There are several mathematical definitions about the fractional derivative [Samko,
Kilbas and Marichev (1987); Podlubny (1999)]. Here, we adopt the two usually
used definitions: the Caputo and its reverse operator of the Riemann-Liouville
fractional integral. Because the Caputo fractional derivative allows traditional ini-
tial condition assumption and boundary conditions, we can compare the initial-
boundary values problems of fractional and usual Burgers equations.

The Riemann-Liouville fractional integral is an essential concept to understand the
fractional derivatives of Riemann-Liouville and Caputo, and is given by [Samko,
Kilbas and Marichev (1987); Chen and Holm (2003)]:

Jα f (x) =
1

Γ(α)

∫ x

a

f (t)
(x− t)1−α

dt, (5)

where a and α > 0 are constants. The corresponding Riemann-Liouville fractional
derivative is written as

Dλ
∗ f (x) =

d
dx

[
J1−λ f (x)

]
= J−λ f (x) =

1
Γ(−λ )

∫ x

a

f (t)
(x− t)1+λ

dt, 0 < λ < 1. (6)

The Riemann-Liouville fractional derivative, however, has a notable disadvantage
in engineering applications of nonzero of the fractional derivative of constant C,
e.g., Dλ

∗C 6= 0, which would entail that dissipation does not vanish for a system in
equilibrium [Samko, Kilbas and Marichev (1987); Seredynska and Hanyga (2000)],
and violates the causality. The Caputo fractional derivative has instead been devel-
oped to overcome this drawback [Caputo (1967); Caputo and Mainardi (1971)]:

Dλ f (x) = J1−λ

[
d
dx

f (x)
]

=
1

Γ(1−λ )

∫ x

a

ḟ (t)
(x− t)λ

dt, 0 < λ < 1. (7)

A simple calculation shows that [Chen and Holm (2003)]

Dλ f (x) = Dλ
∗ f (x)− f (a)

Γ(1−λ )(x−a)λ
. (8)

Comparing Eqs. (6) and (7) it can be seen that when the Riemann-Liouville frac-
tional derivative has a hypersingular improper integral, where the order of singu-
larity is higher than the dimension of integrating variable, it has an advantage that
f (t) is used in the integrand, and that when the Caputo fractional derivative has an
advantage of a less singular improper integral with the order of singularity being
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lower than the dimension of integrating variable, it has a disadvantage that ḟ (t) is
used in the integrand.

In this paper, we consider Eq. (1) with time- and space-fractional derivative. When
α > 0, we have

Dα
t u(x, t) =

∂ αu(x, t)
∂ tα

=


1

Γ(n−α)
∫ t

0(t− s)n−α−1 ∂ nu(x,s)
∂ sn ds, n−1 < α < n,

∂ nu(x,t)
∂ tn , α = n.

(9)

The form of the space-fractional derivative is similar to the above and we omit it
here.

2.2 Transformation into a new functional PDE

It is known that for the nonlinear PDEs with derivatives of integer order, many
methods can be used to find numerical solutions. For example, the numerical
solutions of the integer-order Burgers equation with very high Reynold number
are reported by Liu (2006a, 2006b). However, for the fractional PDEs, there are
only limited approaches, such as the Laplace transform method [Podlubny (1999)],
the Fourier transform method, the iteration method [Samko, Kilbas and Marichev
(1987)], and the operational method.

By using the above fractional derivatives we can write Eq. (1) as

1
Γ(1−α)

∫ t

0

us(x,s)
(t− s)α

ds+ εuux = νuxx +
η

Γ(1−β )

∫ x

a

us(s, t)
(x− s)β

ds. (10)

We first introduce a fictitious damping coefficient ν0 > 0 into Eq. (10):

ν0νuxx−ν0εuux +
ν0η

Γ(1−β )

∫ x

a

us(s, t)
(x− s)β

ds− ν0

Γ(1−α)

∫ t

0

us(x,s)
(t− s)α

ds = 0. (11)

Then, we propose the following transformation:

v(x, t,τ) = (1+ τ)γu(x, t), 0 < γ ≤ 1, (12)

such that, by using Eq. (11) we have

ν0

(1+ τ)γ

[
νvxx−

εvvx

(1+ τ)γ
+

η

Γ(1−β )

∫ x

a

vs(s, t,τ)
(x− s)β

ds− 1
Γ(1−α)

∫ t

0

vs(x,s,τ)
(t− s)α

ds
]

= 0. (13)
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Recalling that ∂v/∂τ = γ(1+ τ)γ−1u(x, t) by Eq. (12), and adding it on both sides
of the above equation we can obtain

∂v
∂τ

=
ν0

(1+ τ)γ

[
νvxx−

εvvx

(1+ τ)γ
+

η

Γ(1−β )

∫ x

a

vs(s, t,τ)
(x− s)β

ds

− 1
Γ(1−α)

∫ t

0

vs(x,s,τ)
(t− s)α

ds
]
+ γ(1+ τ)γ−1u. (14)

Then, by using u = v/(1+ τ)γ we can recast Eq. (10) into a new type of functional
PDE for v:

∂v
∂τ

=
ν0

(1+ τ)γ

[
νvxx−

εvvx

(1+ τ)γ
+

η

Γ(1−β )

∫ x

a

vs(s, t,τ)
(x− s)β

ds

− 1
Γ(1−α)

∫ t

0

vs(x,s,τ)
(t− s)α

ds
]
+

γv
1+ τ

. (15)

Upon using

∂

∂τ

(
v

(1+ τ)γ

)
=

vτ

(1+ τ)γ
− γv

(1+ τ)1+γ
,

after multiplying the integrating factor 1/(1+τ)γ on both sides of Eq. (15), we can
further reduce it to

∂

∂τ

(
v

(1+ τ)γ

)
=

ν0

(1+ τ)2γ

[
νvxx−

εvvx

(1+ τ)γ

+
η

Γ(1−β )

∫ x

a

vs(s, t,τ)
(x− s)β

ds− 1
Γ(1−α)

∫ t

0

vs(x,s,τ)
(t− s)α

ds
]
.(16)

Now, by using v/(1 + τ)γ = u again, we can rearrange Eq. (10) into a new type of
functional PDE for u:

uτ =
ν0

(1+ τ)γ[
νuxx− εuux +

η

Γ(1−β )

∫ x

a

us(s, t,τ)
(x− s)β

ds− 1
Γ(1−α)

∫ t

0

us(x,s,τ)
(t− s)α

ds
]
. (17)

The above time τ , corresponding to the real time t, is a fictitious time, which is used
to embed Eq. (10) into a new functional PDE in a space of one-dimension higher.
Here, we must stress that u is an unknown function with u = u(x, t,τ) subjecting to
the constraints in Eqs. (2) and (3) for all τ ≥ 0, and u(x, t,τ = 0) is given initially
by a guess.
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2.3 Semi-discretization

Let u j
i (τ) := u(xi, t j,τ) be a numerical value of u at a grid point (xi, t j) and at a

fictitious time τ . Applying a semi-discretization to the above Eq. (17) yields

d
dτ

u j
i (τ) =

ν0

(1+ τ)γ

[
ν

(∆x)2 [u j
i+1−2u j

i +u j
i−1]−

ε

2∆x
u j

i [u
j
i+1−u j

i−1]

+
η

Γ(1−β )

∫ xi

a

us(s, t j,τ)
(xi− s)β

ds− 1
Γ(1−α)

∫ t j

0

us(xi,s,τ)
(t j− s)α

ds
]
, (18)

where ∆x = (b− a)/(m1 + 1), ∆t = T/(m2 + 1), xi = a +(i− 1)∆x and t j = ( j−
1)∆t. The above two integral terms can be calculated from using a simple rectan-
gular rule and a central difference of us(s, t j,τ) and a forward Euler difference of
us(xi,s,τ) by∫ xi

a

us(s, t j,τ)
(xi− s)β

ds =
u(x2, t j,τ)−u(x1, t j,τ)

(xi− x1)β
+

i−1

∑
`=2

u(x`+1, t j,τ)−u(x`−1, t j,τ)
2(xi− x`)β

,

∫ t j

0

us(xi,s,τ)
(t j− s)α

ds =
j−1

∑
`=1

u(xi, t`+1,τ)−u(xi, t`,τ)
(t j− t`)α

. (19)

For the nonlinear fractional Burgers equation (4), a similar derivation leads to

d
dτ

u j
i (τ) =

ν0

(1+ τ)γ

[
ν

(∆x)2 [u j
i+1−2u j

i +u j
i−1]−

ε

2∆x
u j

i [u
j
i+1−u j

i−1]

− 1
2Γ(−β )

∫ xi

a

w(s, t j,τ)
(xi− s)1+β

ds
]
, (20)

where

w(x, t,τ) =
[

1
Γ(β −1)

∫ x

a

u(s, t,τ)
(x− s)2−β

ds
]2

(21)

with w(a, t,τ) = 0. The above two integral terms can be calculated from using a
simple rectangular rule by∫ xi

a

u(s, t j,τ)
(x− s)2−β

ds =
i−1

∑
`=1

∆xu(x`, t j,τ)
(xi− x`)2−β

,

∫ xi

a

w(s, t j,τ)
(xi− s)1+β

ds =
i−1

∑
`=1

∆xw(x`, t j,τ)
(xi− x`)1+β

. (22)

It can be seen that Eq. (20) is much complex than Eq. (18). It is known that the
fractional Burgers equation is hard to be numerically solved; for example, Eqs. (18)
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and (20) by letting du j
i (τ)/dτ = 0 result in highly-dimensional nonlinear systems

of algebraic equations, which are typically solved by some iterative methods. In
contrast, we can use the above ODEs to find the numerical solutions rather easily.

2.4 The GPS for differential equations system

Upon letting u = (u1
1,u

2
1, . . . ,u

m2
m1

)T and f denoting a vector with the i j-th component
being the right-hand side of Eq. (18) we can write it as a vector form:

u′ = f(u,τ), u ∈ Rn, τ ∈ R, (23)

where u′ denotes the differential of u with respect to τ , and n = m1m2 is the number
of total grid points inside the domain Ω = (a,b)× (0,T ].
Group-preserving scheme (GPS) can preserve the internal symmetry group of the
considered ODE system. Although we do not know previously the symmetry group
of differential equations system, Liu (2001) has embedded it into an augmented
differential system, which concerns with not only the evolution of state variables
themselves but also the evolution of the magnitude of the state variables vector. Let
us note that

‖u‖=
√

uTu =
√

u ·u, (24)

where the superscript T signifies the transpose, and the dot between two n-dimensional
vectors denotes their inner product. Taking the derivatives of both the sides of
Eq. (24) with respect to τ , we have

d‖u‖
dτ

=
(u′)Tu√

uTu
. (25)

Then, by using Eqs. (23) and (24) we can derive

d‖u‖
dτ

=
fTu
‖u‖

. (26)

It is interesting that Eqs. (23) and (26) can be combined together into a simple
matrix equation:

d
dτ

[
u
‖u‖

]
=

 0n×n
f(u,τ)
‖u‖

fT(u,τ)
‖u‖ 0

[ u
‖u‖

]
. (27)

It is obvious that the first row in Eq. (27) is the same as the original equation (23),
but the inclusion of the second row in Eq. (27) gives us a Minkowskian structure
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of the augmented state variables of X := (uT,‖u‖)T, which satisfies the cone con-
dition:

XTgX = 0, (28)

where

g =
[

In 0n×1
01×n −1

]
(29)

is a Minkowski metric, and In is the identity matrix of order n. In terms of (u,‖u‖),
Eq. (28) becomes

XTgX = u ·u−‖u‖2 = ‖u‖2−‖u‖2 = 0. (30)

It follows from the definition given in Eq. (24), and thus Eq. (28) is a natural result.

Consequently, we have an n+1-dimensional augmented system:

X′ = AX (31)

with a constraint (28), where

A :=

 0n×n
f(u,τ)
‖u‖

fT(u,τ)
‖u‖ 0

 , (32)

satisfying

ATg+gA = 0, (33)

is a Lie algebra so(n,1) of the proper orthochronous Lorentz group SOo(n,1). This
fact prompts us to devise the group-preserving scheme (GPS), whose discretized
mapping G must exactly preserve the following properties:

GTgG = g, (34)

det G = 1, (35)

G0
0 > 0, (36)

where G0
0 is the 00-th component of G.

Although the dimension of the new system is raised one more, it has been shown
that the new system permits a GPS given as follows [Liu (2001)]:

X`+1 = G(`)X`, (37)
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where X` denotes the numerical value of X at τ`, and G(`) ∈ SOo(n,1) is the group
value of G at τ`. If G(`) satisfies the properties in Eqs. (34)-(36), then X` satisfies
the cone condition in Eq. (28).

The Lie group can be generated from A ∈ so(n,1) by an exponential mapping,

G(`) = exp[∆τA(`)] =

 In + a`−1
‖f`‖2 f`fT

`
b`f`
‖f`‖

b`fT`
‖f`‖ a`

 , (38)

where

a` := cosh
(

∆τ‖f`‖
‖u`‖

)
, (39)

b` := sinh
(

∆τ‖f`‖
‖u`‖

)
. (40)

Substituting Eq. (38) for G(`) into Eq. (37), we obtain

u`+1 = u` +η`f`, (41)

‖u`+1‖= a`‖u`‖+
b`

‖f`‖
f` ·u`, (42)

where

η` :=
b`‖u`‖‖f`‖+(a`−1)f` ·u`

‖f`‖2 (43)

is an adaptive factor. From f` ·u` ≥−‖f`‖‖u`‖ we can prove that

η` ≥
[

1− exp
(
−∆τ‖f`‖
‖u`‖

)]
‖u`‖
‖f`‖

> 0, ∀∆τ > 0. (44)

This scheme is group properties preserved for all ∆τ > 0, and is called the group-
preserving scheme (GPS).

2.5 Numerical procedures

Starting from an initial value of u j
i (0), we can employ the GPS to integrate Eqs. (18)

and (20) from τ = 0 to a selected final time τ f . In the numerical integration process
we can check the convergence of u j

i at the `- and `+1-steps by√√√√m1,m2

∑
i, j=1

[u j
i (`+1)−u j

i (`)]2 ≤ ε, (45)
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where ε is a selected convergence criterion. If at a time τ0 ≤ τ f the above criterion
is satisfied, then the solution of u is obtained.

In practice, if a suitable τ f is selected we find that the numerical solution is also
approached very well to the true solution, even the above convergence criterion
is not satisfied. The viscosity coefficient ν0 introduced in Eqs. (18) and (20) can
strengthen the stability of numerical integration, and the parameter γ appeared to
have the effect of enhancing the convergence speed. We should emphasize that the
present method is a new fictitious time integration method (FTIM). Because it does
not need to face the nonlinearity and complexity in the spatial-temporal domain,
this new FTIM can calculate the fractional Burgers equation (1) very stably and
effectively without needing of any iteration technique. Below we give numerical
examples to display some advantages of the present FTIM.

3 Numerical examples

From now on we use some numerical examples to test the performance of our ap-
proach by the FTIM to solve the fractional Burgers equations.

3.1 Example 1

For the fractional Burgers equation we consider the following boundary conditions
and initial condition:

u(0, t) = u(1, t) = 0,

u(x,0) = sinπx. (46)

We apply the FTIM to this example by fixing ε = 1, and ν = 0.05, and compare the
numerical solutions for four cases with (a) α = 1, and η = 0, (b) α = 1, β = 0.5,
and η = 1, (c) α = 0.5, and η = 0, and (d) α = 0.5, β = 0.5, and η = 1. Case
(a) is for the usual Burgers equation, case (b) is for the space-fractional derivative
Burgers equation, case (c) is for the time-fractional derivative Burgers equation,
and case (d) is for both the space- and time-fractional derivative Burgers equation.
In this example we use m1 = 19, m2 = 39, T = 2, ν0 = 2, ∆τ = 0.01, ε = 10−3, and
γ = 0.3. Starting from an initial guess of u j

i (0) = 0.1, the numerical solutions are
all convergent not more than 160 steps. In Fig. 1 we compare these four numerical
solutions over the space of (x, t). As usually, the solution of the original Burgers
equation is smoothly damped in time due to the viscosity effect. When the space-
fractional derivative is considered, the solution is seriously damped in time more
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fast than the first case. When the time-fractional derivative is considered, the solu-
tion is fast damped in time before one second, but the effect of the time-fractional
derivative is gradually balanced with the viscous dissipation, such that the ampli-
tude of solution is decreased less slowly after one second until the end of time, and
the amplitude is almost kept constant. When both the space- and time-fractional
derivative are considered, the amplitude of solution is decreased fast than the pre-
vious case, but after one second until the end of time the amplitude is also kept
constant. In Fig. 2 we use four plots to show the solutions at three different times
to demonstrate these phenomena.

Figure 1: Comparing the numerical solutions by the FTIM for the original Burgers
equation (left-top), the space-fractional derivative Burgers equation (right-top), the
time-fractional derivative Burgers equation (left-bottom), and both the space- and
time-fractional derivative Burgers equation (right-bottom).

Now, we turn our attention to the nonlinear fractional Burgers equation (4). Under
the following parameters: m1 = 19, m2 = 39, T = 2, ∆τ = 0.001, ν0 = 0.1, γ = 0.5,
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Figure 2: Comparing three different times numerical solutions by the FTIM for (a)
the original Burgers equation, (b) the space-fractional derivative Burgers equation,
(c) the time-fractional derivative Burgers equation, and (d) both the space- and
time-fractional derivative Burgers equation.

and ε = 10−3, we calculate this example for two cases β = 0.5 (top) and β = 0.75
(bottom) as shown in Fig. 3. It is interesting that after a few time, the numerical
solutions tend to a steady-state solution with a constant profile not varying with
time. For the case β = 0.5, the shape is inclined to the side of x = 1 with a unit
height as the initial condition is, while for the case β = 0.75, the shape has a wide
plateau with a height about 0.5. For the original Burgers equation the term uux is an
advective term, but for Eq. (4), the term Dβ

∗ (D
1−β
∗ u)2 becomes a dissipative term,

which is balanced with the viscous damping term νuxx, such that ut = 0 after a few
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Figure 3: For Example 1 of a nonlinear space-fractional derivative Burgers equa-
tion, the numerical results are calculated by the FTIM: β = 0.5 (top), and β = 0.75
(bottom).
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time. As compared with other fractional Burgers equations as shown in Fig. 1, the
numerical solutions in Fig. 3 have a very different behavior.

Figure 4: For Example 2 showing the numerical solution (top), and its numerical
error (bottom).
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Figure 5: For Example 2 of a time-fractional derivative Burgers equation, the nu-
merical results are calculated by the FTIM, displaying a distortion of the solution
with that from the ordinary time-derivative Burgers equation.
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3.2 Example 2

Next, we consider a time-fractional derivative Burgers equation:

Dα
t u+uux−νuxx = 0, −10 < x < 10, 0 < t < T. (47)

When α = 1, we have a closed-form solution:

u(x, t) =
µ +σ +(σ −µ)expF(x, t)

1+ expF(x, t)
,

F(x, t) =
µ

ν
(x−σt−λ ), (48)

where ν = 0.1, µ = 0.4, σ = 0.6 and λ = 0.125 are constants been fixed. The initial
condition and boundary conditions can be derived from this closed-form solution.
When α < 1, there exists no such a closed-form solution; however, we also employ
the same initial and boundary conditions, in order to focus on the investigation of
the effect due to the time-fractional derivative.

By applying the FTIM to this example we first check the accuracy. In the calcula-
tions we fix the initial guess of u j

i by u j
i (0) = 0.5, and the other parameters used are

m1 = 99, m2 = 49, T = 0.25, γ = 0.5, ∆τ = 0.01, ν0 = 0.1 and ε = 10−3. In Fig. 4
we show the numerical solution of the original Burgers equation, which is very
close to the above exact solution in Eq. (48) with the error as shown in the bottom
of Fig. 4 being smaller than 0.005. This computational case supported that we may
use a FTIM to compute the Burgers equation with a high accuracy. In Fig. 5 we
display the numerical solutions with the time-fractional derivatives of α = 0.5 (top)
and α = 0.75 (bottom). It can be seen that the effect of time-fractional derivative
obviously distorts the original constant solutions at the both ends of x to a curved
surface.

4 Conclusions

In this paper, we have transformed the original fractional Burgers equation into
another type of functional PDE in a one-dimension higher space by introducing
a fictitious time variable, and adding a fictitious viscous damping coefficient to
enhance the stability of numerical integration of the discretized equations by em-
ploying the GPS. The constant γ can be suitably chosen, such that the convergence
of numerical solutions can be faster. Several numerical examples were worked out,
which show that our proposed approach is applicable to the numerical solutions
of complicated fractional Burgers equations. When the fractional derivatives are
taken into account, the diffusive and dissipative behaviors of the Burgers equation
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may be modified. Especially, the nonlinear fractional Burgers equation results in a
profoundly changed profile of solutions.
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