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Failure Model for Fiber-Reinforced Polymers
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Abstract: In this article, a constitutive formulation of a transversely-isotropic
material and failure model for fiber-reinforced polymers is presented comprising
pre-failure material nonlinearities, a novel invariant based quadratic failure crite-
rion (IQC) as well as post failure material softening. The failure surface of the
IQ criterion is assumed to take the influence of triaxiality on fracture into account.
Further, a distinction between fiber failure and inter-fiber failure is conducted. Ma-
terial softening is governed by a fracture energy formulation and the introduction of
an internal length. The constitutive model is implemented into a programming user
interface of the commercial finite element program Abaqus. As results, different
laminate lay-ups are modelled and exposed to different stress states in an FE anal-
ysis. The obtained failure surfaces and stress strain curves for each laminate lay-up
are compared to experimental data. As further applications of the material model
presented, a curved composite beam, showing delamination, and a 0°/90°/0°-rod,
showing the characteristic damage state in the 90°layer, are simulated and com-
pared to tests.
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1 Introduction

Due to their great potential for weight savings, fiber reinforced polymer laminates
are becoming increasingly important for light weight design in aerospace, wind
energy, mechanical and civil engineering. In order to exploit the advantages of
fiber reinforced polymer laminates (FRP laminates), reliable prediction of the me-
chanical behavior, particularly the onset and propagation of failure of such lami-
nates, is essential. A variety of failure criteria has been developed and published
in literature. [Nahas (1986)] gives a review of about 30 criteria. A very impor-
tant selection of leading failure and post failure theories is included in the World-
Wide-Failure-Exercise (WWFE), conceived and conducted by [Hinton, Kaddour,
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and Soden (2004)]. The WWFE is the result of a project known as the “Failure
Olympics”, in which contributors around the world tested the accuracy of various
theories for predicting deformation and failure strength of laminated composite
structures. Within the exercise, the leading failure theories for composite laminates
are described by their originators and used by them to solve a prescribed set of
problems. The criterion of [Tsai and Wu (1971)] was published among the first
and is probably the most often used criterion. It employs a single global, quadratic
failure condition and thus is very efficient in computational cost. Due to the sin-
gle global formulation, it does not provide information about the type of failure,
which is, however, very important for the design engineer in order to judge about
the criticality of failure. The substantial differentiation between fiber-failure and
inter-fiber failure was first postulated by [Puck and Schneider (1969)]. It was taken
up by [Hashin (1980)] and enhanced by use of invariants and a Mohr-coulomb
fracture approach. The latter was considered as computationally costly at that time,
therefore it was no longer pursued until it was taken up again by [Puck (1996)].
Criteria that differentiate failure modes, e.g. [Puck and Schürmann (2004); Cuntze
and Freund (2004)], have proven their reliability in the WWFE. A further outcome
of the WWFE is, that pre-failure material nonlinearities and post-failure material
softening are as well very important for a realistic failure description.
In general, damage in fiber reinforced polymers can be modeled at different lev-
els, at sub-ply level and at ply level. Sub-ply level damage models are able to
regard different failure mechanisms, that occur in a single ply of a laminate, such
as matrix cracking, delamination and fiber failure. Delamination is normally simu-
lated using methods based on linear-elastic fracture mechanics, such as the virtual
crack closure technique [Krueger, Paris, O’Brien, and Minguet (2002)], or using
cohesive formulations [Allix and Corigliano (1999); Turon, Camanho, Costa, and
Dávila (2006); Turon, Camanho, Costa, and Renart (2010); Camanho, Dávila, and
Moura (2003)]. [Pinho, Dávila, Ianucci, and Robinson (2004)] developed a fully
three-dimensional continuum damage model at sub-ply level able to predict both
the intralaminar and the interlaminar failure mechanisms of fiber-reinforced poly-
mer composites in an integrated way. Thus it is possible to model the effects of
transverse matrix cracks on the residual stiffness of laminates, the interaction be-
tween transverse matrix cracks and delamination, and final failure of the laminate.
Another approach, regarding both delamination and ply failure is to combine co-
hesive elements that simulate delamination with continuum damage models that
simulate ply damage [Hallett, Green, Jiang, and Wisnom (2009)].
Ply level continuum damage models are a computationally very efficient way of
modeling damage in fiber reinforced composites. In contrast to sub-ply level dam-
age models, these kind of damage models consider the actual discontinuous mate-
rial of a ply embedded in a laminate as a homogenized material showing the same
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effective material behavior. The damage variables are derived as thermodynamic
conjugate variables from the Helmholtz free energy. Some of the most promi-
nent ones are those developed at LMT Cachan, see [Ladevèze, Allix, Deü, and
Lèvêque (2000); Allix, Feissel, and Thévenet (2003)], which have been adopted by
several other authors. Further models can be found in [Barbero and Cortes (2010);
Schuecker and Pettermann (2006)]. Recent developments in this field are the works
of [Maimí, Mayugo, and Camanho (2008); Maimí, Camanho, Mayugo, and Dávila
(2007a); Maimí, Camanho, Mayugo, and Dávila (2007b)].
In the following, a novel nonlinear material model and a stress based quadratic fail-
ure criterion are presented, modelling the lamina material behavior on sub-ply level.
The constitutive equations and the invariant based failure criterion are explained in
detail. Finally, numerical results are shown and compared to experimental data.
At first, laminates presented in the WWFE are modeled and compared to test data.
Experimentally determined failure envelopes in stress space as well as pre- and
post failure behavior of the tested laminates are predicted in the simulations. As
a further example, a progressive failure analysis is performed at an FE model of a
curved composite beam, where the onset and growth of delamination caused by out
of plane normal tensile stresses is investigated. Finally, the characteristic damage
state in a (0°/90°/0°)-rod is simulated and prediction of the experimentally con-
firmed remaining stiffness (in-situ effect). A further application of this material
model is the modelling of single plies of textile composites within the framework
of a multiscale analysis for determination of stiffnesses and strengthes of textile
non-crimped fabrics. This approach is explained in detail in [Ernst (2009); Ernst,
Vogler, Hühne, and Rolfes (2010)].

2 Constitutive Model

UD-composites exhibit a strong direction dependent mechanical behavior, which
can be assumed as transversely-isotropic. The mechanical behavior can be traced
back to the properties of the constituents, fiber and matrix. The mode of loading de-
termines the properties, which finally prevail. In fiber direction the characteristics
of the fiber take effect, whereas in transverse direction the characteristics of the ma-
trix predominate. Accordingly, the behavior in fiber direction is linear elastic until
fracture, whereas under longitudinal and transverse shear stress states as well as
under transverse compression, pronounced nonlinearities are observed. In order to
find an adequate modelling approach, it is very important to capture these different
behavior. The observed nonlinearities, see Fig. 1, are caused by plastic deforma-
tions of the matrix as well as by damage and viscous effects. From an experimental
point of view it is a challenging task to distinguish between these different effects.
In the material model presented, the focus is laid on capturing the nonlinear mate-
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(a) Transverse compressive loading (b) In-plane shear loading

Figure 1: Nonlinear material behavior of an E-glass/epoxy lamina, taken from
[Hinton, Kaddour, and Soden (2004)]

rial behavior by neglecting the causation. Hence, as a simplified assumption, the
observed nonlinearities are considered to be plastic and an elastic plastic material
law is chosen to model these nonlinearities.

The constitutive equations are developed by means of structural tensors in the
framework of invariant theory. In contrast to conventional methods describing
anisotropy by using symmetry conditions, this approach alleviates the derivation
of the constitutive equations as well as the determination of material parameters
significantly. Furthermore a coordinate system independent representation of the
constitutive equations is obtained. Transversely-isotropic materials are character-
ized by a preferred direction a. Thus, the material response is invariant with respect
to arbitrary rotations around this preferred direction a, to reflections at fiber parallel
planes and with respect to the reflection at that plane, whose normal is a. These are
the group of symmetry transformations for transverse isotropy. The structural ten-
sor A of transverse isotropy, which represents the material’s intrinsic characteristic,
is defined as the dyadic product of the preferred direction a

A = a⊗a . (1)

As the elastic range of the material is assumed to be small, an additive decomposi-
tion of the strain tensor is justified:

ε = ε
e + ε

p . (2)

In the subsequent representations, isotropic tensor functions for the elastic free
energy and the yield surface are derived.
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2.1 Elastic Stress Strain Relations

Considering only small elastic deformations, HOOKE’s linear elasticity law σ =
σ̂(ε) = Ceε is assumed. Postulating hyperelasticity, the first derivative of the free
energy function Ψ̂ with respect to the strains ε yields the stresses σ and the second
derivation with respect to the strains ε gives the elasticity tensor Ce. In case of
transverse isotropy, the free energy function is formulated in isotropic invariants of
the strain tensor ε and the structural tensor A, see [Boehler (1987)]. To derive a rep-
resentation of Ψ̂ and the infinitesimal stress tensor σ as isotropic tensor-functions,
the functional basis of the two symmetric second order tensorial arguments σ and
A is needed. Assuming the stresses to be a linear function of the strains and provid-
ing a stress free undistorted initial configuration, i.e. σ(ε = 0) = 0, such terms are
neglected, which are linear or cubic in the strains. This enforces the elasticity ten-
sor Ce to be constant and yields to a formulation of the free energy function with
five elasticity constants λ , α , µL, µT and β describing the transversely-isotropic
material behavior:

Ψ̂(ε,A) :=
1
2

λ ( trε)2 + µT tr(ε)2 +α(aεa) trε+

2(µL−µT )(aε2a)+
1
2

β (aεa)2 .
(3)

For the stresses one obtains

σ = λ ( trε)1+2µT ε +α(aεa1+ trε A)
+2(µL−µT )(Aε + εA)+β (aεa)A (4)

and the elasticity tensor is written as

Ce = λ1⊗1+2µT I+α(A⊗1+1⊗A)
+2(µL−µT )IA +βA⊗A ,

(5)

where

IA = AimI jmkl +A jmImikl . (6)

In matrix notation the 4th order elasticity tensor of transversely-isotropic material
for a preferred X1-direction in a Cartesian coordinate system, i.e. a = [1,0,0], reads:

Ce =



λ +2α +β +4µL−2µT λ +α λ +α 0 0 0
λ +α λ +2µT λ 0 0 0
λ +α λ λ +2µT 0 0 0

0 0 0 µL 0 0
0 0 0 0 µL 0
0 0 0 0 0 µT

 . (7)
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2.2 Transversely-isotropic Yield Surface

This proposal of a transversely-isotropic yield surface is an extension of a yield
function following [Rogers (1987); Spencer (1987)] and its numerical treatment in
[Schröder (1995); Eidel (2004)]. This model is based on two assumptions, on plas-
tic incompressibility and that projections of stresses onto the preferred direction a
do not induce plastic yielding. This condition is taken into account by a decompo-
sition of the stress tensor into an extra stress tensor σ pind, inducing plastic yielding,
and a remaining reaction stress tensor σ reac:

σ = σ pind +σ reac . (8)

The assumption of plastic incompressibility is fulfilled with the postulation

trσ pind = 0 . (9)

Presuming inextensibility of the preferred direction a, in which plasticity is as-
sumed not to occur, leads to an additional constraint. The projection of the stress
tensor onto the fiber direction a must vanish:

aσ pinda = a⊗a : σ pind = 0 . (10)

A is the structural tensor belonging to the fiber direction a. With Eq. (9), Eq. (10)
and an ansatz for σ reac of the form

σ reac = p1+Ta A , (11)

the stress components σ reac and σ pind yield

σ reac =
1
2
( trσ −aσa)1− 1

2
( trσ −3aσa)A

σ pind = σ − 1
2
( trσ −aσa)1+

1
2
( trσ −3aσa)A .

(12)

As can be seen in the following equation, Ta can be interpreted as a fiber overstress,
exceeding the hydrostatical part of the stress tensor. The total stress of the fiber is

aσa = aσ reaca = p+Ta . (13)

To account for an influence of plastification in fiber direction, the projection of the
deviatoric part of the reaction stress tensor σ reac onto a can be regarded:

a( devσ reac)a = aTa( devA)a = Ta a(A− 1
3

1)a =
2
3

Ta . (14)
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The construction of the anisotropic yield condition follows the same considera-
tions as the derivation of the hyperelastic potential Ψ̂. The yield function has to
be invariant with respect to transformations belonging to the group of symmetry
transformations for transverse isotropy. The yield condition can be composed of
the basic invariants of the related stresses and the structural tensor. The invariants
I1 and I2 are formulated with σ pind, following a proposal of [Schröder (1995)], who
refers to the work of [Spencer (1987); Rogers (1987)]:

I1 :=
1
2

tr (σ pind)2−a(σ pind)2 a ,

I2 := a(σ pind)2 a .
(15)

If only these two invariants are considered in the yield locus, solely shear defor-
mations are assumed to cause plastic yielding. If yielding in the preferred fiber
direction should be considered, an additional invariant, formulated in deviatoric
stresses, is introduced:

I4 :=
3
2

aσ deva = Ta . (16)

In order to account for a pressure dependency of the yield locus, a further invariant,
representing the hydrostatical pressure is introduced:

I3 := trσ −aσa . (17)

The yield function as a function of the introduced invariants is formulated as

f = α1 I1 +α2 I2 +α3I3 +α32I2
3 +α4 I2

4 −1 (18)

with the flow parameters α1, α2, α3, α32 and α4. The derivations of the yield
surface are:

∂σ f = ∂Ii f ∂σ Ii =
α1 σ pind +(α2−α1)(Aσ pind +σ pindA)+α3(1−A)
+2α32I3(1−A)α4 (3 I4Adev) =: A : σ +B

∂ 2
σσ f = α1 Ppind +(α2−α1)Ppind

A +2α32(1−A)⊗ (1−A)

+α3(1−A)
9
2

α4 Adev⊗Adev =: A

(19)

with the projection tensors

Ppind := ∂σ σ pind = I− 1
2(1⊗1)+ 1

2(A⊗1+1⊗A)− 3
2
(A⊗A)

(Ppind
A )i jkl := AimPpind

m jkl +Am jPpind
imkl .

(20)
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Adev is the deviator of the structural tensor A, A is the constant bending tensor and
B is the first derivative of the linear terms in σ of the quadratic yield locus. This
enables us to state the yield function Eq. (18) in the more general form

f =
1
2

σ : A : σ +B : σ −1 . (21)

2.3 Hardening Formulation

In the material law presented, an isotropic hardening model is implemented. The
hardening formulation is fully tabulated and consequently, the user can directly
input measurement results from material testings in terms of load curves giving the
yield stress as a function of the corresponding plastic strain. Thus, test results that
are reflected in the load curves will be used exactly in the simulation without time
consuming parameter fitting. The tabulated input of hardening curves requires true
stresses over true plastic strains. As the hardening curves usually are measured as
stresses over total strains, the curves have to be prepared by subtracting the elastic
part of the strains from the total strains. If hardening data are given as engineering
stresses and engineering strains, a conversion into true stresses and true strains has
to be performed.

2.3.1 Parameter Identification

In order to determine the five material parameters α1, α2, α3, α32 and α4 of the yield
function Eq. (18), five material tests are required, giving the yield stresses over the
plastic strains. Concerning the numerical treatment, a table lookup is performed in
every time step and the yield surface parameters are updated. As input serve the
corresponding plastic strain for each material test. In the sequel, the conversion
of the yield stresses y into the yield surface parameters are derived. The chosen
material tests should be understood as an example of a possible set of tests. Of
course, any of these testings can be replaced by other suitable material tests if
available. The following five material tests are suggested to determine the yield
surface parameters :

1. tension in fiber direction

σ = devσ =

 ya 0 0
0 0 0
0 0 0

 , a =

 1
0
0

 , σ pind = 0

I1 = 0 , I2 = 0 , I4 = ya

 f = α4I2
4 −1 = 0

α4 := 1/y2
a (22)
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2. simple shear in the plane perpendicular to the fiber (transverse shear)

σ = devσ = σ pind =

 0 ytr 0
ytr 0 0
0 0 0

 , a =

 0
0
1


I1 = y2

tr , I2 = 0 , I3 = 0 , I4 = 0

 f = α1y2
tr−1 = 0

α1 := 1/y2
tr (23)

3. simple shear in the fiber plane (in-plane shear)

σ = devσ = σ pind =

 0 yip 0
yip 0 0
0 0 0

 , a =

 1
0
0


I1 = 0 , I2 = y2

ip , I3 = 0 , I4 = 0

 f = α2y2
ip−1 = 0

α2 := 1/y2
ip (24)

4. uniaxial tension and uniaxial compression perpendicular to the fiber

σ =

 0 0 0
0 0 0
0 0 yuni

 , a =

 1
0
0


I1 =

y2
uni

4
, I2 = 0 , I3 = yuni , I4 = 0

 f = α1
y2

uni

4
+α3yuni +α23(yuni)2−1 = 0

The parameter α1 is known from the second material test (transverse shear),
thus two parameters α3 and α32 remain to be determined. Inserting in the
yield function for yuni, the yield stresses from uniaxial tension yut and uni-
axial compression yuc leads to a system of equations with two equations and
two unknowns from which the parameters α3 and α32 can be obtained:

α32 :=

1
yut
− 1

yuc
− α1

4
(yut − yuc)

yut − yuc
(25)

α3 :=
1

yut
− α1

4
yut −α32yut (26)
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2.4 Novel Invariant-based Quadratic Failure Criterion (IQC) and Softening
Formulation

The developed stress-based failure criterion distinguishes between fiber failure (FF)
and inter-fiber failure (IFF). The inter-fiber failure criterion takes interactions be-
tween normal and shear stresses as well as interactions between transverse and
in-plane shear stresses into account. Further, different failure modes are regarded
and a strain energy release rate formulation combined with the introduction of an
internal length scale ensures mesh independent solutions in the softening regime.

2.4.1 Fiber Failure Condition

It is assumed, that the strength in fiber direction is mainly governed by the strength
of the fibers and that the fibers are only subject to stresses in fiber direction. There-
fore, the fiber failure condition is rather simple:

aσa
R‖

= 1 (27)

The fiber tensile strength Rt
‖ and a compressive strength Rc

‖, representing the resis-
tance of the UD-Composite under uniaxial tension and compression in fiber direc-
tion, are needed as input data. If one of these strengths is achieved, the material
fails and there is no remaining load carrying capacity. The term aσa is the projec-
tion of the stress tensor onto the preferred direction and R‖ is the resistance of the
fiber bundle in fiber direction in tension (R‖ = Rt

‖) and in compression (R‖ = Rc
‖)

respectively.

2.4.2 Inter-Fiber Failure Condition

Inter-fiber failure is formulated in the format of the yield locus Eq. 18, based on the
invariants presented there. The fourth invariant I4 is omitted, because for loading in
fiber direction the fiber failure criterion is activated, see Eq. 27. The failure surface
is:

r = β1 I1 +β2 I2 +β3I3 +β32I2
3 −1 (28)

The failure criterion is fulfilled, when r = 0. The parameters β1, β3 and β32 are
obtained in the same manner as the parameters α1, α3 and α32 for the yield function
Eq. 18. Therefore, the material strengths of uniaxial tension Rt

⊥ and compression
Rc
⊥ perpendicular to the fiber and the material strength of transverse shear R⊥⊥ and

in-plane shear R‖⊥ have to be inserted instead of the yield stresses in Eq. 18. If not
available from experimental tests, the required strengths Rt

⊥, Rc
⊥, R⊥⊥ and R‖⊥ can

be obtained from micromechanical unit cell computations [Ernst, Vogler, Hühne,
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and Rolfes (2010); Rolfes, Ernst, Vogler, and Hühne (2008)]. If the inter-fiber
failure condition is achieved, the current stress state is saved as effective stress,
i.e. all hardening moduli are set to zero and ideally plastic behavior is assumed.
Stiffness degradation is then initiated and controlled by a scalar damage variable d.
Here, the damage variable d does not affect the stresses in fiber direction σ11. Fig. 2
shows yield and fracture surface in the

√
I1-I3-invariant-plane, where I3 accounts

for biaxial and triaxial stress states and
√

I1 stands for deviatoric stresses.

Figure 2: Yield and failure surface of the transversely-isotropic material model in√
I1-I3-invariant-plane

2.4.3 Softening Formulation

If the failure criterion is fulfilled, an exponential softening formulation is applied.
Two different damage variables are used for FF and IFF. If the IQC detects IFF, the
plasticity algorithm changes from plastic hardening to ideally plastic behavior, and
an isotropic damage variable is multiplied with the effective plastic stress to give the
nominal stresses. The evolution of the damage variable is governed by the fracture
energy regularization technique, i.e. dependent on strain energy release rate and
equivalent plastic displacement since damage initiation. All elastic constants, apart
from the stiffness in fiber direction are damaged in the same way. Therefore, only
fiber stresses remain in the element. If FF is detected, the fiber direction stresses
are degraded with a formulation analogous to Hillerborg’s softening [Hillerborg,
Modeer, and Petersson (1976)]. The damage variable d f is calculated from the
displacement at damage initiation

ut,c
f ail = Le

Rt,c
‖

E‖
(29)
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and the displacement at ultimate failure

ut,c
ult = 2

GIc

Rt,c
‖

+ut,c
f ail (30)

and the actual displacement u with

d f =
u−u f ail

uult −u f ail
. (31)

The nominal stresses are then calculated by multiplication of the fiber direction
stresses with the damage variable d f .
The presented material model is implemented as a user subroutine into the user de-
fined programming interface VUMAT for Abaqus Explicit and into the user defined
programming interface UMAT for Abaqus Implicit. For an implicit analysis, the al-
gorithmic consistent material tangent is required, which is obtained numerically. In
order to assure numerical stability in the softening regime and to enforce the elastic
plastic material tangent to remain positive definite , a visco-plastic regularisation is
applied according to [Duvaut and Lions (1976)].

3 Results

Subsequently, three examples are chosen in order to demonstrate the applicabil-
ity of the novel IQC failure criterion and the nonlinear material model developed.
At first, different laminate lay-ups of the World Wide Failure Exercise (WWFE)
[Hinton, Kaddour, and Soden (2004)] are modelled and experimentally obtained
failure envelopes as well as the stress strain curves from uniaxial and biaxial tensile
tests are compared to simulations. Secondly, a four-point-bending test of a curved
composite beam consisting of 22 layers of a uniaxial carbon fiber reinforced com-
posite is simulated. The 4-point bending test imposes a pure bending moment at
the curved region of the beam and the stresses into thickness direction cause intra
laminar failure leading to final collapse of the composite beam. In a third example,
the initiation and propagation of cracks in an embedded 90◦-layer is simulated by
modelling the discontinuous material behavior at sub-ply level.

3.1 Laminate Models and Load Cases from the WWFE

In the World Wide Failure Exercise, conceived and conducted by [Hinton, Kad-
dour, and Soden (2004)] a multitude of different laminate configurations and single
UD-layers are investigated experimentally and compared to common used failure
criteria. The laminate lay-ups, which are simulated with the novel material and
failure model, are illustrated in Fig. 3. Further lay-ups are modelled and discussed
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in [Ernst (2009)]. In order to get the σ1−σ2-failure surface for each laminate ex-
perimentally, cylindrical test specimen are manufactured. These cylindrical tubes
then are subjected to internal pressure superimposed by axial loading and torsion.
Hence, the whole range of stress states from uniaxial loading over biaxial stress
states to pure shear loading can be covered. For the detailed test setup and the
exact material data the reader is referred to the WWFE [Hinton, Kaddour, and So-
den (2004)]. The following table gives an assignment of laminate lay-ups and the
chosen WWFE Load Cases:

• (±45°)s-laminate: E-glass fibers and epoxy resin MY750/HY917/DY063,

WWFE Load Case 6 and WWFE Load Case 8

• (0°/90°)s-laminate: E-glass fibers and epoxy resin MY750/HY917/DY063,

WWFE Load Case 12

• (0°/±45°/90°)s-laminate: Carbon fibers AS4 and epoxy resin 3501-6.

WWFE Load Case 14

In order to reproduce the real test situation in the finite element model, it is assumed
that the load is applied on an infinite shell. Thus, no free-edge effects or inter-
laminar shear stresses have to be considered. Each lamina is represented by one
element and the elements are stacked in z-direction. The faces of the elements are
restricted to remain parallel to their reference configuration, but can deform freely.

WWFE Load Case 6: σx-σy-failure envelope of a 0°/±45°/90°)s-laminate

Failure envelopes of Puck [Puck and Schürmann (2004)] and IQC for FF in the σy-
σx-plane compared with test data are shown in Fig. 4. In this load case the differ-
ences between Puck’s criterion and IQC are negligible. Buckling in the tests might
be an explanation of the overestimation of the compressive strengths of both mod-
els. Under mixed tension/compression the IQC reproduces the test results slightly
better.

Load Case 8: Biaxial σy/σx = 2/1-loading of a 0°/±45°/90°)s-laminate

In Fig. 5, computationally obtained stress-strain curves for a force-driven biaxial
σy/σx = 2/1 tensile load using IQC are shown and compared with test data. A
very good agreement of the simulation curves with the experimental data and the
reported failure modes can be seen. The experimentally observed matrix crack-
ing coincides perfectly with the inter-fiber failure (IFF) detected in the simulation.
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Figure 3: Laminates from the WWFE [Hinton, Kaddour, and Soden (2004)].
(0°/90°)s, total thickness: 1.04 mm, b = 0.52 mm, a = 0.26 mm
(±45°)s, total thickness: 1.00 mm, h = 0.25 mm
(0°/±45°/90°)s, total thickness: 1.1 mm, h = 0.1375 mm

Considering the εy branch in Fig. 5, the simulation with the IQC material model
lies nearly exactly on the experimentally measured stress strain curve. Especially
the nonlinearities after matrix cracking are very well predicted in the simulation.
Considering the εx branch, the nonlinearities are a little bit overestimated. Further-
more, the final failure of the laminate is predicted exactly by the IQC. The upper-
most measuring points do not exactly coincide with the final failure (see Fig. 5),
but they are rather the last gauge detection during the test, as stated by [Hinton,
Kaddour, and Soden (2004)]. Final failure is reported at 857MPa, which coincides
accurately with the prediction of the IQC criterion.

Load Case 12: Uniaxial εy-loading of a (0°/90°)s-laminate

Stress-strain curves for a (0°/90°)s laminate exposed to a displacement-driven ten-
sile loading εx : εy = 1 : 0 are shown in Fig. 6. There is a very good correlation of the
simulation with Puck’s criterion and IQC compared with test data. Initial laminate
damage due to tensile matrix failure in the 0°layer is predicted with IQC at approx-
imately 90MPa, whereas [Hinton, Kaddour, and Soden (2004)] report the onset of
cracking at 117.5MPa. There is no remarkable difference between the simulation
with IQC and with Puck’s criterion. Concerning final failure (FF), the IQC predic-
tion is a little closer to the experimental data, but it also slightly overestimates the
ultimate load.
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Figure 4: Load case 6: σy-σx-failure envelope for AS4/3501-6
(0°/±45°/90°)s-Laminate - Test data and prediction with Puck and IQC

Load Case 14: σy/σx = 1/−1 of a (±45°)s-Laminate

In Fig. 7, stress-strain curves obtained by simulation with Puck failure criterion
and IQC criterion for a force-driven biaxial σy/σx = 1/− 1 load are depicted and
compared with test data. The experimentally observed nonlinear behavior prior
to failure is characteristic for this load case. The IQC criterion is used with the
nonlinear material model presented as well as with a linear elastic material model.
All three simulations (Puck linear, IQC linear and IQC nonlinear) predict the inter-
fiber failure at σy ∼= 70 MPa and are thus in exact agreement with the test data.
But, considering the nonlinear material behavior, it is obvious, that Puck as well
as IQC in conjunction with a linear elastic material law are not able to reproduce
the experimentally observed behavior at all. The failure strains are considerably
underestimated, see Fig. 7. The IQC failure criterion used with the nonlinear elas-
tic plastic material law presented in Sec. 2 is able to recover the nonlinear material
behavior in numerical simulation. Considering loading in x-direction, the experi-
mentally determined inter-fiber failure is exactly predicted by the IQC nonlinear at
3.8% (compare right-hand side in Fig. 7) and the failure strain for inter-fiber failure
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Figure 5: Load case 8: stress strain curves for AS4/3501-6 (0°/±45°/90°)s-
Laminate under biaxial tensile loading with σy/σx = 2/1

in y-direction is slightly overestimated. This example demonstrates the necessity
for regarding the pre-failure nonlinearities illustrated in Fig. 1 in order to improve
the modelling approaches for fiber reinforced polymers.

3.2 Curved composite beam

In order to determine the delamination resistance of a layered composite beam, a
serial of 4-point bending tests was conducted at Airbus Germany [Airbus (2006)].
The experimental setup is depicted in Fig. 8. Out of plane normal tensile stresses
are crucial for the onset of delamination. Therefore, the test specimen is exposed
to a pure bending moment in a well defined area in order to determine the out-of-
plane normal allowable tension. The test specimen consist of 22 UD-layers. Each
layer has a thickness of t = 0.25mm, the thickness of the specimen is t = 5.5mm.
A sketch of the spar sample is depicted in Fig. 9. The FE model is discretized in
the commercial finite element code Abaqus. Linear 8-node continuum elements
(C3D8) are used to model the beam. The bending moment is applied on rigid
plates which are tied to the two ends of the beam. Displacement boundary condi-
tions are set to prevent rigid body translations and rotations of the whole system.
The number of elements in thickness direction is set to 30, with 60 elements in
circumferential direction of the curved segment and 10 elements in width. Only
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Figure 6: Load case 12: stress-strain curves for E-glass/MY750/HY917/DY063
(0°/90°)s-Laminate under uniaxial tensile loading with σx : σy = 1 : 0

Figure 7: Load case 14: stress-strain curves for E-glass/MY750/HY917/DY063
(±45°)s-Laminate under biaxial tensile loading with σy : σx = 1 :−1
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the curved region of the beam is modelled with the IQC material model, the legs
of the composite beam are modelled with an transversely-isotropic elasticity law
without damage. The reason therefore is, that in the region of load application
very high pressures occur, which causes premature failure in the contact layers. In
Fig. 9 on the right hand side an FE model of the curved composite beam is depicted.
Fig. 11 shows the simulated overall load-displacement curve compared to experi-
mental test data. Interestingly, edge delaminations occur just before delamination
in the middle layer starts, as marked in Fig. 11. Supposably, these edge delamina-
tions can be traced back to the the edge effect, e.g transverse shear stresses cause
peeling stresses which induce delamination at the edge of the laminate. Whether
these edge delaminations are observed in the experiments is not documented in the
technical report [Airbus (2006)]. The left hand side of Fig. 10 shows edge delam-
inations and delaminations in a medial layer shortly before final collapsing of the
beam. Fig. 10 on the left hand side shows the damage variable d, plotted in a ver-
tical cut through the beam. It can be seen, that delaminations occur shortly below
the middle plane of the test specimen which is in a good agreement with the experi-
ments, compare Fig. 8 on the left. These delaminations finally yield to a separation
of the composite beam. They are caused by out of plane normal tensile stresses
and in-plane shear stresses, but mainly the out of plane stresses contribute to de-
laminations. Considering the overall load displacement curves, depicted in Fig. 11,
the simulations tend to be slightly stiffer than the experimentally obtained curves,
whereas the ultimate load is predicted quite well. The oscillations in the simulated
load-displacement-curve are due to the contact formulation used in the model. In
summary, it can be stated, that the overall load displacement behavior as well as
the different failure mechanisms are predicted very well.

3.3 Simulation of the in-situ effect

As a further example, the in-situ effect is investigated, showing the degradation of
stiffness due to the characteristic damage state in the mid layer of a (0°90°)s lami-
nate. It is shown, that the experimentally observed stiffness degradation of an inside
90◦ layer can be recovered in numerical simulation by modelling the actual discon-
tinuous material behavior of the embedded laminae on sub-ply level. For reasons
of computational efficiency one eighth of the original test specimen is modelled
exploiting symmetry. Eight-node solid elements (Abaqus C3D8 elements) are used
in the fully three-dimensional model. In order to capture the in-situ effect on sub-
ply level, a discretization of at least 4 elements over the thickness of the embedded
layer proved to be necessary. Fig. 13 shows the saturated crack density in the in-
termediate layer. At first, several cracks evolve caused be inter-fiber failure in the
90◦ layer. In Fig. 13 on the right a cut between the 0◦-layer and the 90◦-layer
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(a) Experimental setup (b) Post failure state

Figure 8: Experimental setup of 4-point bending test of a curved composite beam

(a) Test specimen geometry (b) FE model

Figure 9: 4-point bending test, geometry and fe-model

(a) Transverse cut (b) Longitudinal cut

Figure 10: Delamination in curved composite beam: plot of damage variable d
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Figure 11: Load-displacement curves: Test results and simulation

is depicted, showing a plot of the scalar damage variable d. It can be seen, that
delamination is initiated by inter-fiber failure cracks in the 90◦-layer. In the red
colored region, the damage variable has reached the value 1, i.e. delamination has
occurred. In Fig. 14 the homogenized stress-strain relation of the whole laminate
is depicted and compared to the stress-strain relation of the 0◦ outside layers only.
Thus, the contribution of the intermediate layer to the overall load carrying capac-
ity can be evaluated. It should be noted, that this homogenized stress strain relation
is the result of simulating the actual discontinuous material of a ply embedded in
a laminate with the developed transversely-isotropic continuum damage approach.
Both the propagation of cracks due to inter-fiber failure and the saturated damage
state in the mid layer are recovered in the numerical simulations. As depicted in
Fig. 14 the onset of crack propagation starts at a strain level of 0.17 in the mid layer.
Than, a reduction of stiffness can be observed until the characteristic damage state
is achieved at a strain level of 0.22. In Fig. 15, experimentally obtained and simu-
lated degradation factors ηE for the elastic modulus of the embedded 90◦ layer are
plotted. Experimental data are taken from [Knops (2003)].

4 Conclusion

In the presented work, a sub-ply level continuum damage mechanics model for fiber
reinforced polymer laminates is proposed, covering shear nonlinearities, a novel in-
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Figure 12: (0°90°)s laminate: boundary conditions and loading

(a) Characteristic damage state (b) Cut between 0°90°-layer: Onset of delamina-
tion, caused by inter-fiber failure

Figure 13: Characteristic damage state: Damage variable d

Figure 14: Stiffness degradation of the laminate, caused by inter-fiber failure

variant based quadratic criterion for the onset of failure and a softening formulation
regarding different fracture energies in dependence of the failure mode. The appli-
cability of the novel material and failure model is shown on three examples. At first,
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Figure 15: Degradation factor ηE versus effort fE for E-modulus of the embedded
90◦ layer, simulation and test data [Knops (2003)]

different laminate configurations are simulated and compared to test data from the
WWFE. Both, the failure surface and the stress-displacement behavior under uni-
axial and biaxial loading are predicted. Furthermore, it is shown, that not only the
onset of failure, but also nonlinearities especially under shear are to be considered
in order to obtain a realistic experimentally observed stress-strain behavior. This is
shown on the WWFE load case 14. Secondly, a four point bending test of a curved
composite beam is simulated and compared to test data. The overall load displace-
ment behavior can be predicted as well as the delamination, caused by inter-fiber
failure. In a third example, the stiffness reduction of embedded 0◦ layer due to
inter-fiber failure can be simulated by modelling the actual discontinuous material
behavior on sub-ply level.
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