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Model of Random Spatial Packing of Rigid Spheres with
Controlled Macroscopic Homogenity
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Abstract: It has been shown that in particulate filled composites, a cross-property
relationship exists between various transport properties (e.g., electrical conductiv-
ity, mechanical reinforcement, gas permeation) of a macroscale composite. Thus,
knowledge of the effective mechanical properties of a composite immediately places
bounds on its electrical conductivity or gas permeation behavior. Using these
bounds allows us to predict the phase dispersion state that optimizes one or multiple
properties of the composite and, thus, the knowledge of how spatial arrangement
of filler particles at their given content affects physical properties of the composite
can be valuable. In this paper, a new numerical model is presented capable of gen-
erating 3D random spatial distribution of rigid monodisperse spherical particles.
The optimal number of particles inside a reference sphere and the macroscopically
homogenous distribution of particles were the two main aspects investigated. The
proposed model can be used to calculate inter particle distance, to predict particle
agglomeration and, finally, to predict macroscopic properties of particulate com-
posites. This can be of great interest, especially, when considering effects clustering
or self-assembly of nanoparticles have on the properties of polymer nanocompos-
ites.
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1 Introduction

It was suggested [Hyun and Torquato (2001); Torquato, Hyun, and Donev (2002);
Torquato, Hyun, and Donev (2003); Bansal, Yang, Li, Cho, Benicewicz, Kumar,
and Schadler (2005)], that there exist cross-property bounds between different trans-
port properties (e.g., electrical conductivity, mechanical reinforcement, gas perme-
ation) of a macroscale composite. Thus, knowledge of the effective mechanical
properties of a composite immediately places bounds on its electrical conductiv-
ity or gas permeation behavior. Using these bounds allows us to predict the phase
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dispersion state that optimizes one or multiple properties of the composite. Thus,
if one “phase”, say A, of a binary composite is both mechanically reinforcing and
electrically conducting (while the other, B phase, is not), then the macroscale me-
chanical and/or electrical conductivity is optimized if the A phase is percolating. In
contrast, if only the A phase were mechanically reinforcing, while only the B phase
were conducting, then, either property is optimized if the appropriate phase is per-
colating. However, to simultaneously optimize both the electrical and mechanical
properties of the composite requires that the two “phases” are connected in a triply
periodic fashion, i.e., both are simultaneously percolating. This immediately sug-
gests that optimizing one vs. two properties of a composite can require very differ-
ent morphologies. While this idea is new and unproven in the field of nanocompos-
ites, it suggests that the creation of multifunctional composites requires exquisite
control over nanoparticle spatial distribution [Wu, Hultman, O’Brien, and Kober-
stein (2008); Bansal, Yang, Li, Benicewicz, Kumar, and Schadler (2006); Harton
and Kumar (2008); Akcora, Liu, Kumar, Moll, Li, Benicewicz, Schadler, Acehin,
Panagiotopoulos, Pryamitsyn, Ganesan, Ilavsky, Thiyagarajan, Colby, and Dou-
glas (2009); Tuteja, Duxbury, and Mackay (2007)]. Such understanding, which is
currently only at a nascent stage, is crucial to the end use of these materials in a
variety of ubiquitous contexts, e.g., in strong, flame retardant fabrics; mechanically
sound gas and water purification membranes; and high refractive but transparent
polymers which are wear resistant. Making such connections between nanoparticle
dispersion and organization with macroscale properties is then a crucial aspect that
is only now beginning to be considered.

This paper describes a basic model for generation of random set of spherical het-
erogeneities in a box of continuous second phase. The mathematical model can be
built as a representation of different kinds of two-phase systems. The model was
originally built for the composites where the continuous phase is a polymer matrix
and spherical inclusions are some filler particles. But it can represent different ex-
amples of similar systems (for example foams where the continuum is a polymer
material and the gas bubbles are spherical inclusions). Its application is not lim-
ited only to solid state science; it can be used also as a model of different types of
suspensions, emulsions or aerosols.

Study of problems, which are related to presence of heterogeneous particles in con-
tinuum, has several levels. It can be demonstrated basic difference in the systems
with particles ordered to crystalline-like lattice and systems where the particles
are distributed irregularly and in an extreme case randomly. It was detected that
even the random distribution shows variation of density and leads to formation of
agglomerates. Nevertheless, the formation of agglomerates is observed in real het-
erogeneous particle structures and their study is a key factor for understanding of
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structure properties relations and prediction of them. For example the influence
of agglomeration is different in the case of nanocomposites and in the case of mi-
crocomposites. The agglomeration in nanocomposites decreases the stiffness of
nanocomposites [Chen, Justice, Schaefer, and Baur (2008); Wang and Pyrz (2004)
Part I; Wang and Pyrz (2004) Part II; Termonia Y 1994; Kashani and Padovan
(2007)], agglomeration in microcomposites increases stiffness of them. The modu-
lus is only one example of properties depending on agglomeration because the ag-
glomeration can influence for example viscoelastic properties [Heinrich and Klüp-
pel (2002)], light diffraction [Yanagioka and Frank (2008)] or electrical properties
[Wu, Lin, Zheng, and Zhang (2006)].

The aim of this work, that is supposed to be our initial study of the problematic
of heterogeneous systems, is application of the substantially improved procedure
[Tovmasjan, Topolkarev, Berlin, Zhurablev, and Enikolopjan (1986)] to the build-
ing of a model of randomly distributed spheres, and filling the space with given
volume fraction, where an analysis of space distribution and correction of macro-
scopic distribution was newly introduced.

2 Methods and model

The proposed model generates a finite set of particles of defined spheres that are
randomly distributed in a given space having some prescribed volume fraction.
In this section we introduce partly a basic idea of proposed model [Tovmasjan,
Topolkarev, Berlin, Zhurablev, and Enikolopjan (1986)] and some information which
seems to be necessary for justification of generated set of particles and which is
necessary for correction of original model. The model of randomly distributed par-
ticles is limited by the situation when particles are ordered into the crystallographic
lattice of the highest volume package ϕmax.

2.1 Binomial and hypergeometric distribution

The binomial distribution gives the discrete probability distribution to obtain ex-
actly successes out of trials, where the result of a trial is true with probability p
and false with probability (1-p) [Mason, Gunst, and Hess (2003)]. The probability
distribution function of cases when the number n of successful trials realized in the
whole set of N trials is given by the equation:

Pp (n|N) =
(

N
n

)
pn(1− p)N−n (1)
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Frequently CDF, the cumulative distribution function Fp(n|N), is defined:

Fp (n|N) = ∑
n
i=0

(
N
i

)
pi(1− p)N−i (2)

where n≤ N.

The random distribution of particles leads to definition of the task based on bino-
mial distribution. The limiting condition is that the volume fraction of particles is
very low or their radii are very small, respectively. It could be considered some situ-
ation when N particles are randomly spaced in volume V0 and the particles are only
points. Then the binomial distribution exactly describes the probability of found-
ing exactly n particles in selected sub volume V ≤V0 that is given by an expression
derived from binomial distribution.

Pp (n|N) =
(

N
n

)(
V
V0

)n(
1− V

V0

)(N−n)

(3)

In the case, when the volume fraction of N particles is not negligible, the situation is
more complicated and it is possible to describe it with certain approximation. The
approximation can be derived by the aid of hypergeometric distribution function.
Generally, this distribution gives a probability of the realization of k selections of
“success element” in n trials taken from the set of N elements where within the
N elements is a part of M elements marked as (+ ∼ success) and complementary
number (N−M) elements is marked as (- ∼ fails).

The probability of such situation is:

Pp (k,M,n |N ) =

(
M
k

)(
N−M
n− k

)
(

N
n

) (4)

The condition max(0,n-(N −M)) < k < min(M,n) has to be fulfilled, otherwise
Pp (k,M,n |N ) = 0.

Specifically in the case of particle set in a continuous phase the following mask to
the discretization of volume should be applied. M spherical particles (marked as +)
occupy in the reference space V0 a volume VS that constitutes a filling with volume
fraction ϕ = VS/V0. The maximal number of equivalent particles, which can be
placed into V0, is equal:

N = M
V0

VS
ϕmax = M

ϕmax

ϕ
, (5)
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where ϕmax is a volume fraction corresponding to closest packing of spheres (see
Section 2.2). In other words, it is a finite number of N positions, which are at
disposal in V0. When the volume V , as a part of the space V0, is investigated there
are

n = M
V
Vs

ϕmax (6)

disposal positions. The probability that in V can be find exactly k spheres is given
by above stated relation (4). We remind that the volume fraction of spheres in V ,
where exactly k spheres were found, is equal to:

ϕK =
k
M

V0

V
ϕ (7)

i.e. when k/M = V/V0 then ϕk = ϕ what is the average volume fraction of spheres
in V0.

It is must be also accented that the Eqs. 5-7 do not give generally integer numbers,
whereas the function of hypergeometric distribution (Eq. 4) requires integer num-
bers as input variables. Therefore, for the calculation of the distribution function, a
specific definition function was applied.

x! = Γ(x+1) (8)

where Γ is the gamma-function, which is from definition extension of factorials to
the real or complex numbers.

2.2 Ordered Lattices

The original models of heterogeneous systems were based on ordered lattices. The
closest packing is observed in two cases: the face-centered cubic lattice of spheres,
hexagonal close spaced lattice. Both the lattices have the highest packing density
equals to 0.7405 volume fraction. Topology, particle coordinates, volume fraction
and interparticle surface-to-surface distances are well known and for some simple
cases, often used in composites studies, are given in Tab. 1:

In reality the particles are not ordered into ideally packing geometry. The lower is
the volume fraction the more particles are distributed randomly. With increasing
volume fraction their random positions are more and more transformed to an or-
dered geometry up to the closest one. That means that at very low volume fractions
the distribution of particles in a given volume can be described by the binomial
distribution function and when the volume fraction is higher, that implies some
interparticle interactions, more ordered situation, described by hypergeometric dis-
tribution, should be considered. The very high volume fractions lead to creation of
ordered domains.
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Table 1: Examples of often used model cubic lattices for calculation of the particle
composite properties; a-length of cube side; d-particle diameter

Lattice
type

Num.of
parti-
cles per
unit a3

Distance
of closest
particles 1.
Centers 2.
Surfaces

Volume
Fraction

Max vol-
ume frac-
tion

Cubic 1 1. a
2. a−d

π

6

(d
a

)3
0.524

Body
Centered
Cubic
(BCC)

2 1. a
√

3
2 ,

2. a
√

3
2 - d

π

3

(d
a

)3
0.680

Face Cen-
tered Cu-
bic (FCC)

4 1. a
√

2
2 ,

2. a
√

2
2 - d

2π

3

(d
a

)3
0.740

2.3 Radial distribution function

An appropriate function for description of space distribution of points or spheres is
the radial distribution function (RDF). The value of RDF is the density ρ points(R)
of point particles in arbitrary selected sphere of given coordinates center and radius
R:

ρpoints (R) =
Np (Ri ≤ R)

VS (R)
, (9)

where VS ⊂V0 is a volume of sphere with radius R surrounding the selected central
point of RDF, Np is number of particles in distance equal or and lower than R from
the central point of RDF. ρ is used as a synonym of RDF in all equations and
formulas. It is because RDF as a name of function can be easily confused with a
power of some variables R•D•F.

RDF is constructed as a link between the model with finite number of particles and
real systems with number of particles approaching infinity. For infinite, homoge-
neous and isotropic system the RDF must be independent on selected central point
and converges to the average density of the system. The convergence is realized in
an envelope given by the binomial distribution. The homogeneity and isotropy of
a model system can be checked in the same way. It is necessary to show that the
RDF of such system is center-independent and the deviation from mean density is
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based on binomial distribution, too.

It is advantageous to define "relative RDF" (rRDF) related to the model mean points
density because it is independent on volume fraction of particles. The synonym of
rRDF - ρrel was used in equations again. The rRDF is defined by the following
equation:

ρpoints,rel (R) =
Np (Ri ≤ R)

VS (R)
· V0

N
. (10)

The situation with non-zero volume particles is slightly different, the RDF, or rRDF
respectively, is defined for analysis of distribution of particles in a studied sphere. It
is related to the average density of particles what is a volume of all particles related
to volume of the sphere V0. Function rRDF in case of non-zero volume particles is:

ρrel (R) =
Np (Ri ≤ R) · Vp

VS (R) ·ϕ
, (11)

where Vp is volume of one particle and ϕ is the average volume fraction of the
model.

For checking of the macroscopic homogeneity of our models were the limit en-
velope curves calculated for 95% reliability applied. The envelope curves were
derived for the given reliability from binomial distribution (that means that 95%
of random particle generations will generate RDF inside the interval delimited by
envelope curves) or similarly from hypergeometric distribution for finite particle
volume.

2.4 Modeling of composite structure

The main idea of the modeling was proposed by Tovmasjan [Tovmasjan, Topolka-
rev, Berlin, Zhurablev, and Enikolopjan (1986)]. The first step was a generation
of given number of randomly distributed particle centers in a given sphere space.
Two next operations were then performed. First, it was an inflation of particles.
The inflation of particles led to an increase of the particles volume. It was simply
possible at low volume fractions. When the volume fraction grew the intersections
of particles occurred. The second operation then consisted in an elimination of par-
ticle intersections. The procedure was progressing from the center of the sphere
to its boundary. In the case that the intersecting particles were detected, the outer
particle (of greater distance R to the center of the sphere) was pushed out by the
inner particle. The pushing was performed in the direction of a vector given by
central points of both particles until the intersection was eliminated. However, the
pushing out of one particle can lead to intersections with other particles not real-
ized before pushing out of this particle. Hence, the procedure had to be repeated
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until all the intersections are eliminated. The model was applied to the organization
of structure of aluminum oxide composite in polypropylene [Topolkarev, Tovmas-
jan, Dubnikova, Petrosjan, Meshkova, Berlin, Gomza, and Shilov, (1987)]. The
effect of Al2O3particle size and its volume fraction was investigated. The organi-
zation of particles was depended on the volume fraction and the agglomeration was
found. Relation between structure and mechanical properties of composites was in-
terpreted. The influence of agglomeration on creep and failure properties [Michler,
Tovmasyan, Topolkaraev, Dubnikova, and Shmidt (1988)] was analyzed.

2.5 Random Mersenne twister

One aspect of successful model constitution is the quality of random generation of
many numbers. Using of basic random generators, implemented for example in
common programming languages, lead to slight inhomogeneity of a random num-
ber generation. The results derived from such non-random model can be disrupted
and the effect of the random generator can be misinterpreted as a result of the in-
herent model property.

A pseudorandom number generator generally is an algorithm for generating a se-
quence of numbers that approximates the properties of random numbers. The se-
quence depends on a seed state which depends on time when the seed was gen-
erated. Therefore, each run of software in different series will produce unique
sequence of random numbers. An example of well worked pseudo random number
generator is a Mersenne Twister [Matsumoto and Nishimura (1998)] that was used
in our present work. The new and more commonly used version of the Mersenne
Twister MT19937 with 32-bit word length was applied.

3 Results and Discussion

The aim of the work was to generate a random system of particles in a reference
sphere when the volume fraction of particles is prescribed. The solution must fulfill
following conditions:

• The particles dispersion must provide the prescribed volume fraction in a
predefined volume element (sphere, cubic box) of the composite

• The particles must not intersect each other

• The macroscopic distribution of particles must be homogenous

• The particles are taken in this paper to have uniform size (radii) and den-
sity. (Further versions of models will enable user-defined size distributions
of particles.)
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The set of particles was generated by in house software based on above described
Tovmasjan approach [Tovmasjan, Topolkarev, Berlin, Zhurablev, and Enikolopjan
(1986)]. In this paper a set of spherical particles placed in a reference sphere is
always considered. Variable R in majuscules always marks a distance of the men-
tioned point from the center of the reference sphere. In most cases, the center of
main rRDF is aligned with the center of the model. Rarely, the center of rRDF is
placed in an arbitrary point (x,y,z) of the model and the distance is marked Rx,y,z.

3.1 Generation of randomly distributed particles

The generation of random distribution of points was tested for compliance with
binomial distribution (the test of Mersenne twister). Random situated points were
generated in unite cubic box. The sets of thousand independent generations of the
same number of points were performed. Each set of generation consisted of 1, 5, 10,
50, 100, 500, 1000, 5000, 10000, 50000 points, respectively. Each generated box of
points was divided into 2, 4, 8, 16, 32, 64, 128 equivolume layers. The distribution
of points number in the layers should correspond to the binomial function that can
be taken as an evidence of random numerical distribution. It was proved (Fig. 1)
that the used random generation of particles is in compliance with the theoretical
model.

Figure 1: Cumulative probability distribution of total set of particles into sub-set
of particles. x axis is a number of particles in subset related to maximum number
of particles in subset; y-axis is a probability that x particles and less is present
in interval. (�) - distribution as an output from random number generator; lines-
analytical form of binomial distribution.
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The binomial distribution function can also be applied to calculation of the optimal
number of points. That is the crucial input value of our model. Low number of
particles causes low reliability of the model and, on the other hand, high number of
particles leads to an extreme consumption of the computer time. The criterion for
optimum number of particles was defined in our case as follows. If it is considered
a generation of N particles in the reference volume V0 then the number of particles
found in the volume 0.5·V0 with the probability of 95 % will be grater than Nmin

and less than Nmax. And it is demanded to use such N for that the relative difference
(Nmax−Nmin)/N (precision) is less than 2 % (±1 %). The dependence of this value
is given in Tab. 2. It was concluded that our condition is fulfilled for N ≥ 10000
and then the number of particles taken into account in our model will be at least of
10000.

Table 2: Precision of random generation as a function of number of generated
particles; N - number of all generated particles, Nmin, Nmax borders of tolerance
interval with 95% reliability from binomial distribution.

N Nmin Nmax Precision
10 2 8 0.600
100 40 60 0.200
1000 469 531 0.062
10000 4900 5100 0.020
100000 49700 50300 0.006
1000000 499000 501000 0.002
10000000 5000000 5000000 0.000

3.2 Model of particle distribution

The model whose properties are further described and investigated is built by fol-
lowing way. A unite cube was taken as a basic geometry. A sphere of unity diameter
was inscribed into the basic box. Very small random particles (radius 10−6, vol-
ume fraction ϕ= 2.5·10−4) were generated into the cube by the aid of Mersenne
Random generator. Only the particles inside the inscribed sphere were taken as
a relevant. Each generation ran until inside the sphere was required number of
particles (N = 10000, see Section 3.1). The test of spheres intersection was then
performed. If an intersection of particles was detected the generation was canceled
and repeated. If the intersection was not detected the inflation procedure could be
applied (see Section 2.4).
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3.3 Borders of radial distribution fuction

The borders of the radial distribution function were calculated for two cases. The
first case is the simple binomial distribution that can be applied for very small par-
ticles. There is supposed the purely random distribution. The second case is for
particles when their volume cannot be neglected. Then the hypergeometric distri-
bution is to be applied instead of binomial. As it was stated above all particles
are placed in the reference sphere (radius Rre f ). Inside the reference sphere a con-
centric sphere (radius R ≤ Rre f ) can be defined. The rRDF can be calculated as a
function of R and it is possible to draw the borders between the 95 % of rRDF(R),
calculated for randomly distributed particles, lie (see Fig. 2).

Figure 2: Borders of rRDF for 10000 particles and 95% probability level. Random
distributed particles (Binomial and Hypergeometric distributions); Constant func-
tion rRDF = 1.0 is macroscopically homogenous rRDF; black solid - border curves
for binomial distribution; dotted and dashed - border curves for hypergeometric
distributions for different volume fractions of particles.

3.4 Filling of referencece sphere by particles with given volume fraction

A set of 10000 very small uniform particles according to the Section 3.2 was gener-
ated. The generation was repeated 5 times. The rRDF was calculated and compared
to limits given for binomial distribution (Fig. 3). The position of rRDF is used for
checking the macroscopic homogeneity of the particle distribution and it is seen
that all generations lie into the defined interval.
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Figure 3: Relative Radial Distribution Functions (rRDFs) of randomly generated
set of 10000 very small spherical particles; Thin lines + symbols 5 rRDFs calcu-
lated from the 5 sets of particles. Thick solid line - envelope function calculated
analytically from binomial distribution; dashed - calculation of Rmax.

The distortion is observed in the case of substantially inflated particles. At first
the value of Rre f is lost and instead of this the value of Rn (the distance of the
farthest particle of the set) is used. Secondly a problem of some surface effect
was recognized after the inflation procedure. It is demonstrated at the example of
rRDF computed for five particle sets inflated to the volume fraction 0.1 (Fig. 4).
During the inflation procedure a big number of particle collisions were registered,
it is generally strongly dependent on the required volume fraction of particles (see
Tab. 3).

As a logical consequence of collisions the surface of system is surely not an ideal
sphere (there can be slight cavities and hills at the surface) and some drop of rRDF

Table 3: Number of collisions Nc occurring in particle generation until reaching
given volume fraction ϕ .

ϕ 0.001 0.002 0.005 0.01 0.02
Nc 71 160 374 797 10822
ϕ 0.05 0.1 0.2 0.3 -
Nc 46442 107470 269358 521681 -
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Figure 4: Relative Radial Distribution Functions (rRDFs) of spherical particles
inflated to volume fraction 0.1; Thin lines + symbols 5 rRDFs calculated from the
5 sets of particles. Thick solid line - envelope function calculated analytically from
hypergeometric distribution.

for R approaching Rn was registered.

Therefore the maximum limit Rmax should be considered. From the course of rRDF
can be seen that the value Rmax = 0.9·Rn is sufficiently correct to reach the homoge-
nous space. However, because the model must show good functionality and safe
results, we consider Rmax = 0.8·Rn as an optimal solution. Such sphere represents
0.51 volume of the original sphere. Hence, it contains approximately a set of 5100
valid particles from the set of 10000 initial particles.

Similarly the value of Rmin was defined from the envelope of RDF. It is a radius
when the rRDF is calculated with deviation ± 5% from central value. Under Rmin,
the rRDF has high deviation and it could lead to misinterpretation of macroscopic
homogeneity.

The positions of rRDF functions were compared to the borders of corresponding
hypergeometric distribution (Fig. 4). It is possible to conclude that they are inside
of them and they can be considered as well randomly placed population of particles.

The third problem occurred when the volume fraction of particles became relative
high. The number of collisions (Tab. 3) rapidly increased and the predominantly
tangential directions with relatively only small radial shift of particle pushing outs
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lead to an inappropriate shape of increase of rRDF (see Fig. 5). Therefore some
correction procedure is necessary to apply. It is derived in following Section 3.5.

Figure 5: Relative Radial Distribution Functions (rRDFs) of spherical particles in-
flated to volume fraction 0.3; Thin lines + symbols three rRDFs calculated from the
three sets of particles. Thick solid line - envelope function calculated analytically
from hypergeometric distribution.

3.5 Correction procedure

The inappropriate increase of density can occur in the radial direction during the
inflation procedure (see Section 3.4) and a correction function must be found. The
idea of the correction procedure is to find an appropriate function of (R/Rn) for an
increase of particle distances from the center of the sphere to receive homogenous
density. The actual density ρA(R) of particles is a density of particles in the shell
between radii R and R+dR. The volume of the shell is 4πR2dR. The cumulative
density corresponding to the rRDF can be defined:

ρ (R) =
3

4πR3

R∫
0

4π x2
ρA (x) dx. (12)

Then:

ρA (R) = ρ (R)+
R
3

dρ (R)
dR

. (13)
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The actual density was prerequisite to calculation of correction function q(R). When
the function is applied, arbitrary particle (i) with distance Ri from center of the sys-
tem shifts to new position with distance R f ,i from the center of system:

Rf,i = Ri · q(Ri) (14)

The correction is realized by shift of layer boundaries. The mass of particles in the
layer must be equal before and after the shift:

4πρA (R)R2dR = 4πρ0R2
f dR f (15)

where ρ0 = ρ(Rmin) is the desired homogenous density calculated in these step as
the mean density inside Rmin.

Substituting Eqs. (14) and (15) to (13) the equation for correction function can be
derived:

q3 (R) + R q2 (R) q′ (R) =
ρA (R)

ρ0
. (16)

This equation can be numerically solved by fourth order Runge Kutta method
[Teukolsky, Vetterling, and Flannery (1992)] (see Appendix B).

The correction procedure was applied when the difference [ρ(Rmax)−ρRmin)] was
greater than 0.05·ρ(Rmin). It was applied to the particles in the interval <Rmin, Rn>.
When the R ≤ Rmin the correction function q(R) = 1. The result of the calculation
of q(R) for rRDF dependence in Fig. 5 is shown in Fig. 6.

And the example of the rRDF change before and after correction is shown in Fig.
7. It was noticed that after the described correction the volume fraction of particles
in the whole system ρ(Rmax) is changed and of course is decreased. Hence the
particles should be inflated again to reach the final desired volume fraction. Thus,
repeated series of inflations and corrections will lead to the homogenously filled
space.

3.6 Some properties of final homogenously filled space by random set of parti-
cles

Five homogeneously filled spheres with uniform particles were built by repeated
cycles inflation and correction. The positions of particles at volume fractions of φ

= 0.01, 0.02, 0.05, 0.10, 0.20 and 0.30 were recorded. The corresponding rRDF
functions were calculated, some examples are presented in Figs. 3, 4 and 8.

The homogeneity of some final set of particles can be tested by a modified calcu-
lation of rRDF. It is presumed that in the case of homogenous systems, the rRDF
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Figure 6: Correction function. Particle coordinates of all particles in interval <
Rmin,Rn > are to be multiplied by the functional value of q.

Figure 7: Relative Radial Distribution Function (rRDF) normalized to the value
RDF (Rmin/Rn) for volume fraction 0.3, Solid line, + symbols are example of RDF
before correction; dashed line, x symbols: RDF after correction.
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Figure 8: Relative Radial Distribution Functions (rRDFs) of spherical particles
inflated to volume fraction 0.3, when the correction procedure is applied; Thin
lines, + symbols: five rRDFs calculated from the five sets of particles. Thick solid
line: envelope function calculated analytically from hypergeometric distribution.

Figure 9: Testing of representativeness of different selections from one set of par-
ticles with volume fraction 0.3. Thin lines + symbols: 5 rRDFs of different sets
selected from one set of 10000 central particles with center C in 5 different points
in the system. Thick solid line - envelope function calculated analytically from
hypergeometric distribution for 1250 particles.
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functions are independent on the choice of RDF center. Until now it was presumed
that the center of RDF and the center of the reference sphere were identical. The
RDF having the center in a arbitrary deep point C in the reference sphere should be
the same course. It was proved for the cases mentioned above and an example is
presented in Fig. 9.

Figure 10: Randomly generated particles occupying 1% volume of spherical space;
(Selected 500 particles from 10000 particle set).

Two examples of filled spheres of radius Rmax are presented in 3D projection in
Figs. 10 and 11. The first sphere is filled with the volume fraction 1% the second
one up to the volume fraction 30%. A small selected part is enlarged to demonstrate
more clear the density of the space filling.

4 Conclusions

The space distribution of spherical inclusions is frequently discussed problem. It
can be applied to a prediction of properties of selected heterogeneous systems for
example to the prediction of stiffness of polymer composites or for prediction of
some viscoelastic properties of them. The Tovmasjan approach, based on random
distribution, inflation and self-organization, was a starting point of the model pre-
sented here. The model described in this paper contains statistically significant set
of particles for analysis of particles distribution. Thus, the resulting set is suitable
for performing statistical processing of the result. When some large volume frac-
tion of particles was approached, the original Tovmasjan model showed an inho-
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Figure 11: Randomly generated particles occupying 30 volume percent of spherical
space; (500 particles selected from10000 particle set).

mogeneous mass distribution. Therefore some correction step was proposed in this
paper. After application of this step, the mass distribution got homogenous. The
particle coordinates and radii of statistically significant sets of particles were cal-
culated. Such sets of particles can serve for a calculation of interparticle distances
distribution or an agglomerate detection.
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Appendix A List of symbols

Lower case

a Length of cube side in ordered lattices
d Particle diameter
k Number of successful trials from selection of n trials
m Number of successful trials in the set of N all trials
n Number of selected trials from the set N of all trials
n Number of particles in a set
p Probability of successful trial (presence particle in the selected volume Vs)
q Correction function of particle homogenity
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Upper case

F Cumulative analytical probability distribution function ofP
N Number of trials of finding particle in selected volume Vs

N Number of all particles
Nmin Minimum number of particles inside interval RDF
Nmax Maximum number of particles inside interval RDF
NP Number of particles inside interval RDF
Nc Number of collisions
P Analytical probability distribution function
R Distance from center of RDF
R General distance of arbitrary point from mass center of particles;
Ri Distance of ith particle center
R0, Rn The nearest and farthest particle from the center of mass
Rmin, Rmax Interval where the central RDF was considered reliable
Rx,y,z Distance in the RDF whose center is not aligned with model center
RDF Numerical value of radial distribution function
rRDF RDF related to the macroscopic value of RDF
V Volume
V0 Volume of all particles set
Vs Arbitrary volume selected inside volume of all particles model

Greek symbols

ϕ Volume fraction of arbitrary subset, selected from main set
ϕmax Volume fraction corresponding to closest package volume
ϕP Volume fraction of particles in the set
ρ Symbol for RDF used in equations, where the using RDF could be confusing
Γ Gamma function

Appendix B Runge Kutta method of Ordinary Differential Equations solutions

The method of homogenization is described in the Section 3.5. For the solution
a method for ordinary differential equations (ODE) is necessary. The solution
of ODE leads to the fourth order Runge Kutta ODE solution. A Runge Kutta
is a method for the approximation of solutions of ordinary differential equations
(ODE). A method was designed to solution of Eq. 16 in form:

y′ = f (t, y(t) ) (B1)
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with boundary condition:

y(t0) = y0 (B2)

where y0 is a given numerical value. It is a constant which should be set as a
parameter of the system.

The Fourth-order Runge-Kutta method is based on four estimations of tangents of
functions in interval h. The tn is variable in beginning of interval and tn +h is a
variable at the end of interval. One estimation of tangent function is in initial point
(k1) two in mid-points of interval (k2 and k3) and fourth in end point (k4). The
calculation of functions is given by a set of recurrent equations:

k1 = f (tn, yn) (B3)

k2 = f (tn +h/2, yn +hk1/2) (B4)

k3 = f (tn +h/2, yn +hk2/2) (B5)

k4 = f (tn +h, yn +hk2) (B6)

The tangents are applied to estimation of slope. The result is calculated by recurrent
function:

yn+1 = y(tn +h) = y(tn)+h(k1 +2k2 +2k3 + k4) (B7)




