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Evaluation of the Toupin-Mindlin Theory for Predicting
the Size Effects in the Buckling of the Carbon Nanotubes
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Abstract: Conventional continuum theories are unable to capture the observed
indentation size effects, due to the lack of intrinsic length scales that represent the
measures of nanostructure in the constitutive relations. In order to overcome this
deficiency, the Toupin-Mindlin strain gradient theory of nanoindentation is formu-
lated in this paper and the size dependence of the hardness with respect to the depth
and the radius of the indenter for multiple walled carbon nanotubes is investigated.
Results show a peculiar size influence on the hardness, which is explained via the
shear resistance between the neighboring walls during the buckling of the multi-
walled nanotubes.
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1 Introduction

Nanoindentation is a testing method which received considerable recent interest in
the mechanical characterization of materials [Tabor (1951); Johnson (1985); Oliver
and Pharr (1992); Collin et al. (2008); Dumitriu and Chiroiu (2006, 2008); Du-
mitriu et al. (2008); Misra and Huang (2009; Keerthika et al. (2009)]. The goal
of such testing is to extract elastic modulus and hardness of the specimen material
from readings of indenter load and depth of penetration [Qian et al. (2008)]. The
forces involved are usually of the order of mN (1mN = 10−3N) range and are mea-
sured with a resolution of the order of nN (1nN =10−9N). The depths of penetration
are of the order of microns with a resolution of less than a nanometre (10−9N).

The size dependence of the nanoindentation is an open problem. There are nu-
merous indentation tests at scales on the order of a micron or a submicron which
have shown that the hardness increases significantly with decreasing the indenter
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size [Abu (2007)]. This can be attributed to the evolution of the so-called geo-
metrically necessary dislocations beneath the indenter, which gives rise to strain
gradients. On the micron or nanometer scale, the size effect of the deformation
is inherent [Hutchinson (2000); Evans and Hutchinson 2009]. Similarly indenta-
tion on the nano/microscale also displays a strong size effect. For example, the
spreading of intershell distances and the inlayer van der Waals interactions in car-
bon nanotubes depend on the size of the tube [Brenner et al. (2002); Srivastava and
Atluri (2002); Nair et al. (2008); Cheng et al. (2009)]. We add the dependency on
the size of the tube of the dispersive characteristics, group velocities of multiwalled
carbon nanotubes [Xie et al. (2007)].The mechanical properties are size dependent
with respect to different dimensions and geometries of the carbon nanotubes [Theo-
dosiou and Saravanos (2007); Chen et al. (2007); Solano et al. (2008); Chiroiu et
al. (2006): Munteanu and Chiroiu (2009); Jeng et al. (2009); Giannopoulos et al.
(2010)]. The indentation hardness of metals and ceramics increases with respect to
decreasing the indenter size below 10 micron-size indents [Ma and Clarke (1995);
Poole et al. (1996); Begley and Hutchinson (1998)].

The necessity for higher-order continuum theories originates from the inability of
the classical theories to account for observed the size effects on the micro and
nanoscales [Toupin (1962); Mindlin (1964)]. These effects usually manifest them-
selves as an increase in the strength with respect to decreasing the size of the struc-
ture when the length scale is of the order of microns.

Principal methods of the theoretic study on carbon nanotubes are atomistic sim-
ulation, continuum model and multi-scale simulation methods. Atomistic tech-
niques are defective for simulation of phenomena occurring on a vast range of
length scales. So far, a few continuum mechanics methods have been adopted for
studying the carbon nanotubes [Ru (2001); Li and Chou (2003); Nasdala et al.
(2005)]. Multi-scale simulation methods in nanomechanics are used by Gumbsch
(1996); Hiroshi Kadowaki and Wing Kam Liu (2005) and Shen and Atluri (2004).
The results obtained by Xie and Long (2006) show that micropolar theory which
takes into account the microdeformation, can also be employed to analyze the me-
chanics behaviors of nanostructure. The micropolar mechanics demand the fewer
elements than the molecular structural mechanics, and its computational time is
shorter than the molecular structural mechanics. Computational homogenisation
can be also used to couple two different continuum at macro scale, classical and
gradient [Kaczmarczyk {2006)].

The necessity for higher-order continuum theories originates from the inability of
the classical theories to account for observed the size effects on the micro and
nanoscales [Toupin (1962); Mindlin (1964)]. These effects usually manifest them-
selves as an increase in the strength with respect to decreasing the size of the struc-
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ture when the length scale is of the order of microns.

The lack of intrinsic length scales that represent the measures of microstructure in
their constitutive relations in conventional continuum theories is very well known
[Kikuchi et al. (1985): Fleck and Hutchinson (1993, 1997, 2001); Chambon et
al. (1996, 1998, 2001, 2004); Georgiadis et al. (2000); Kaczmarczyk (2005);
Georgiadis and Grentzelou (2006); Zhao et al., 2005, 2006, 2007a,b; Zhao and
Sheng (2006)]. The importance of a potential function relies on simplification of
the quantum mechanics and ab initio complexity. These simplifications are very im-
portant once it can provide analytical solutions of materials properties [Chakrabarty
and Cagin (2008); Rino et al (2009)]. The multiscale nonlinear tensorial constitu-
tive modeling of carbon nanostructures is based on the interatomic potentials. Us-
ing a constitutive model written as a tensorial equation relating the second Piola-
Kirchhoff stress tensor to Green-Lagrange strain tensor, the elastic behavior of
the graphene sheet and carbon nanotube are studied by Ghanbari and Naghdabadi
(2009).

Some new and recent results for 3D solid mechanics problems involving the strain-
gradient theories of material inelasticity are obtained by Tang, Shen and Atluri
(2003). The novel use of the Meshless Local Petrov Galerkin Method (MLPG) is
generating a variety of meshless methods and algorithms for molecular dynamics,
and for multiple-length&-time scale simulations [Atluri and Zhu (1998); Atluri
and Shen (2002 a,b); Han and Atluri (2003); Atluri, Han and Shen (2003): Li et al.
(2003)].

In parallel with Mindlin’s (1965) second-order strain gradient theory (or grade-
three elasticity), the Toupin-Mindlin theory which is sometimes also called the first
strain gradient theory in elasticity or the linear theory of solids of grade two [Toupin
(1964); Mindlin and Eshel (1968); Eshel and Rosenfeld (1970, 1975)], where the
term grade indicates the order of the space gradients operating on the displacement.

The original Toupin–Mindlin strain gradient theory has been formulated in general
tensor forms. The general formulations of this theory for the cases of cylindrical
coordinates and spherical coordinates are derived by Zhao and Pedroso in 2008,
following the approach and notation used by Eringen (1967) for the translation of
conventional elasticity theories from rectangular coordinates to orthogonal curvi-
linear coordinates.

In the viscoeplasticity range, a strain-gradient theory for isotropic viscoplastic ma-
terials was also proposed [Lele and Anand (2009)]. Lele and Anand have applied
their gradient viscoplasticity theory to simulate the size-effect regarding hardness
versus the indentation depth in nano/micro-indentation experiments.

Very few experimental results exist for the shell buckling of nanotubes. A remark-
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able work in this direction is due to Waters et al. (2005). They measured the critical
shell-buckling load by an experimental technique in which individual multiwalled
carbon nanotubes are axially compressed using a nanoindenter.

The objective of this paper is to investigate the size dependence of the hardness with
respect to the depth and the indenter radius for the shell buckling of multiwalled
carbon nanotubes. The Toupin-Mindlin strain gradient theory is used to explain the
size influence on the hardness, by taking account on the higher-order stress gradient
contribution in the shear resistance of the neighboring walls during buckling of the
multiwalled nanotubes.

2 Toupin-Mindlin strain gradient theory of nanoindentation

The indentation test consists of measuring simultaneously the indentation load P
and indentation depth h during the normal penetration of an indenter into a sample
of volume V and surfaceS. The scheme of the indentation with a flat-ended cylin-
drical punch, a conical indenter with the apex angle2α , and a spherical indenter
with a diameter 2R are shown in Figs.1(a)-(c), respectively. The in-plane dimen-
sions and the thickness of the indented material, normal to the indented surface, are
much larger than the diameter 2a of the largest imprint made on it by the indenter.
In the rectangular coordinate system, the in-plane is denoted by(x,y) and the radial
direction is denoted byr, while the out-of-plane direction is denoted byz. At the
indented surface we have z = 0. The process modeled here represents quasi-static,
frictionless, normal indentation of a transversely isotropic material by an axisym-
metric rigid indenter.

The hardness H is given by the following relationship, where A is the contact area

H =
P
A

(2.1)

Many studies have been elaborated in order to determine the contact area [Hernot
et al. (2006); Li et al. (1997)]. Hill et al. (1989)] have introduced a factor C2 to
quantify the degree of piling-up (C2 > 1) or sinking-in (C2 < 1) during the inden-
tation test. Li et al. (1997) suggested the determination of a relationship between
the indentation load P and depth h in the elastic regime using the results deduced
from the Hertz elastic

P =
4
3

E
1−ν2 h

√
hR, (2.2)

where E is the Young’s modulus and ν is the Poisson ratio. In the Hertz theory, the
contact radius a is

√
Rh and therefore Eq. (2.2) becomes

P =
4
3

Eah
1−ν2 . (2.3)
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Figure 1: Scheme of the indentation with a flat-ended cylindrical punch (a), a con-
ical indenter (b) and a spherical indenter (c).

The initial unloading stiffness for every kind of axisymmetric indenters, can be
defined as follows [Galin (1946); Sneddon (1965); Bulychev et al. (1975, 1976);
Shorshorov et al. (1981); Wolff (2001)]

Now, let us consider a gradient-dependent material body with volume V and surface
S, which is normally indented by an axisymmetric indenter.

Let us consider the Toupin-Mindlin strain gradient theory in the rectangular coor-
dinate system. We assume that the strain gradient tensor ηi jk and the double stress
tensor τi jk with dimensions force per unit length, are present in the material body
together with the conventional Eulerian strain tensor εi j and Cauchy stress tensor
σi j. The components of the strain and strain gradient tensors are defined by

εi j =
1
2
(ui, j +u j,i), ηi jk = ε jk,i = uk,i j = ηik j, i, j,k = 1,2,3, (2.4)

where ui, i = 1,2,3 are displacements. εi j and ηi jk are symmetric with respect to
the indices i and j, and accordingly, the Cauchy stress tensor σi j and the double
stress tensor τi jk are also symmetric with respect to i and j. Consequently, under
any small perturbations of the strains and strain gradients, δεi j and δηi jk, the work
deviation may be obtained by the two pairs of work-conjugates

δW = σi jδεi j + τi jkδηi jk.

In addition, within the framework of linear elasticity, the following generalized
Hooke’s law between σi j and εi j, and τi jk and ηi jk, respectively, is assumed

σi j = λεkkδi j +2µεi j,
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τi jk =ξ1l2(ηippδ jk +η jppδik)+ξ2l2(ηppiδ jk +2ηkppδi j +ηpp jδik)+

+ξ3l2
ηppkδi j +ξ4l2

ηi jk +ξ5l2(ηk ji +ηki j),
(2.5)

where λ and µ are the conventional Lamé constants, ξi, i = 1,2, ...,5, are the elastic
constants associated with the gradient terms, while l denotes an internal length scale
resulted by the introduction of the strain gradients. It is related to the dimension of
microstructure in the material. The positive definiteness of the strain energy density
requires

µ > 0, 3λ +2µ > 0, ξ̄2 > 0, 5ξ̄1 +2ξ̄2 > 0,

−d̄1 < d̄2 < d̄1, 5 f̄ 2 < 6(d̄1− d̄2)(5ξ̄1 +2ξ̄2),

18d̄1 =−2ξ1 +4ξ2 +ξ3 +6ξ4−3ξ5,

18d̄2 = 2ξ1−4ξ2−ξ3, 3ξ̄1 = 2(ξ1 +ξ2 +ξ3),

ξ̄2 = ξ4 +ξ5, 3 f̄ = ξ1 +4ξ2−2ξ3.

In the absence of body and inertia forces, the equilibrium equations written in terms
of Cauchy stress σi j and the higher-order stress τi jk are

σik,i− τi jk, ji = 0. (2.6)

Substituting Eqs. (2.4) and (2.5) into Eq. (2.6), the equilibrium equations can be
written with respect to displacements

λup,piδik + µ(ui,ki +uk,ii)−ξ1l2(up,ip jiδ jk +up, jp jiδik)−
−ξ2l2(ui,pp jiδ jk +2up,kp jiδi j +u j,pp jiδik)−ξ3l2uk,pp jiδi j−
−ξ4l2uk,i j ji−ξ5l2(ui,k j ji +u j,ki ji) = 0,

(2.7)

To write the boundary conditions, the external surface S may be divided into two
parts: the surface boundary Sσ for static forces, and the surface boundary Su for
displacements. On Sσ , the boundary conditions read as

Tk = ni(σik−∂ jτi jk), Rk = nin jτi jk,

where Tk and Rk are the surface tractions and higher-order surface tractions, re-
spectively. The above boundary conditions represent the conventional traction and
higher-order traction conditions for a gradient-dependent material body. In the fol-
lowing we suppose that the contribution of τi jk is zero. So, Tk and Rk become

Tk = niσik, Rk = 0. (2.8)
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On Su the boundary conditions are given by

uk = ūk, nl∂luk = ēk, (2.9)

where ūk denotes the known displacements and ēk represent the known normal
gradient of ūk. A rigorous derivation of the kinematic conditions in Eq.(2.9b) was
given by Georgiadis and Grentzelou (2006) using the principle of complementary
virtual work and a Hellinger–Reissner-type variational principle.

2.1 Spherical nanoindentation

In order to study the buckling of multiple walled carbon nanotubes, the spherical
indentation is used. In conjunction with the strain gradient theory of nanoindenta-
tion, the spherical coordinate description is necessary. The in-plane radial direction
is denoted by r, the in-plane angular position is denoted by θ , while the out-of-
plane angular position is denoted by ϕ . The indenter is a rigid sphere of radius R
as shown in Fig. 1c. The indenter is loaded with a normal forceP, and the hardness
H is given by Eq. (2.1).

 
Figure 2: Spherical coordinates

The spherical coordinates (r,θ ,ϕ) are related to the rectangular coordinates (x,y,z)
by (see also Fig. 2)

x = r sinθ cosϕ, y = r sinθ sinϕ, z = r cosθ .
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In the absence of body forces, the gradient-dependent equilibrium equations (2.6),
written in spherical coordinates are given by [Volokh (2006); Zhao and Pedroso
(2008)]

σ
∗
rr,r +

1
r

σ
∗
θr,θ +

1
r sinθ

σ
∗
ϕr,ϕ +

1
r
(2σ

∗
rr−σ

∗
θθ −σ

∗
ϕϕ +σ

∗
θr cotθ) = 0,

σ
∗
rθ ,r +

1
r

σ
∗
θθ ,θ +

1
r sinθ

σ
∗
ϕθ ,ϕ +

1
r
(2σ

∗
rθ +σ

∗
θr +(σ∗θθ +σ

∗
ϕϕ)cotθ) = 0,

σ
∗
rϕ,r +

1
r

σ
∗
θϕ,θ +

1
r sinθ

σ
∗
ϕϕ,ϕ +

1
r
(2σ

∗
rϕ +σ

∗
ϕr +2σ

∗
ϕθ cotθ) = 0.

(2.10)

where σ∗i j is the generalized stress components given by

σ
∗
rr = σrr− (τrrr,r + r−1

τrθr,θ + r−1
τrϕr,ϕ sin−1

θ

+ r−1(2τrrr− τθθr− τrθθ − τϕϕr− τrϕϕ + τrθr cotθ)),

σ
∗
θr = σθr−−(τθrr,r + r−1

τθθr,θ + r−1
τθϕr,ϕ sin−1

θ

+ r−1(2τθrr + τrθr− τθθθ − τθϕϕ − τrϕϕ +(τθθr− τϕϕr)cotθ)),

σ
∗
ϕr = σϕr− (τϕrr,r + r−1

τϕθr,θ + r−1
τϕϕr,ϕ sin−1

θ

+ r−1(3τϕrr− τϕθθ − τϕϕϕ + 2τϕθr cotθ)),

σ
∗
θθ = σθθ − (τθrθ ,r + r−1

τθθθ ,θ + r−1
τθϕθ ,ϕ sin−1

θ

+ r−1(3τrθθ + τθθr +(τθθθ − τϕϕθ − τθϕϕ)cotθ)),

σ
∗
rθ = σrθ −−(τrrθ ,r + r−1

τrθθ ,θ + r−1
τrϕθ ,ϕ sin−1

θ

+ r−1(2τrrθ + τrθr− τθθθ − τϕϕθ − τrϕϕ +(τrθθ − τrϕϕ)cotθ)), (2.11)

σ
∗
ϕθ = σϕθ −−(τϕrθ ,r + r−1

τϕθθ ,θ + r−1
τϕϕθ ,ϕ sin−1

θ

+ r−1(3τrϕθ + τϕθr +(τθϕθ + τϕθθ − τϕϕϕ)cotθ)),

σ
∗
ϕϕ = σϕϕ − (τϕrϕ,r + r−1

τϕθϕ,θ + r−1
τϕϕϕ,ϕ sin−1

θ

+ r−1(3τrϕϕ + τϕϕr +(2τθϕϕ + τϕϕθ )cotθ)),
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σ
∗
rϕ = σrϕ −−(τrrϕ,r + r−1

τrθϕ,θ + r−1
τrϕϕ,ϕ sin−1

θ

+ r−1(2τrrϕ + τrϕr− τθθϕ − τϕϕϕ +(τrθϕ + τrϕθ )cotθ)),

σ
∗
θϕ = σθϕ − (τθrϕ,r + r−1

τθθϕ,θ + r−1
τθϕϕ,ϕ sin−1

θ

+ r−1(3τrθϕ + τθϕr +(τθϕθ + τθθϕ − τϕϕϕ)cotθ))

The physical components for strains are given by

εrr = ur,r, εθθ = r−1(uθ ,r +ur), εϕϕ = r−1(uϕ,ϕ sin−1
θ +ur +uθ cotθ),

2εrϕ = 2εϕr = r−1(ur,ϕ sin−1
θ +uϕ,r−uϕ), (2.12)

2εθϕ = 2εϕθ = r−1(uϕ,θ +uθ ,ϕ sin−1
θ −uϕ cotθ).

The physical components for strain gradients in spherical coordinates are given by

ηrrr = ur,rr, ηθθr = r−2(ur,θθ + rur,r−2uθ ,θ −ur),

ηϕϕr = r−2ur,ϕϕ sin−2
θ + r−1ur,r

+ r−2ur,θ cotθ −2r−2uϕ,ϕ sin−1
θ − r−2ur−2r−2uθ cotθ),

ηθrr = ηrθr = r−1(ur,rϕ − r−1ur,θ −uθ ,r +3r−1uθ ),

ηϕrr = ηrϕr = r−1 sin−1
θ(ur,rϕ − r−1ur,ϕ −uϕ,r sinθ +1.5r−1uϕ sin−1

θ),

ηϕθr = ηθϕr = r−2 sin−1
θ(ur,θϕ −ur,ϕ cotθ −uϕ,r sinθ −uθ ,ϕ +2uϕ cosθ),

ηrrθ = uθ ,rr + r−2uθ , ηθθθ = r−1(r−1uθ ,θθ +2r−1ur,θ +uθ ,r− r−1uθ ), (2.13)

ηϕϕθ = r−2uθ ,ϕϕ sin−2
θ − r−2uϕ,ϕ cotθ sin−1

θ

+ r−2uθ ,θ cotθ + r−1uθ ,r− r−2uθ cot2 θ),

ηθrθ = ηrθθ = r−1(uθ ,rθ +ur,r− r−1uθ ,θ −0.5r−1ur),

ηϕrθ = ηrϕθ = r−1 sin−1
θ(uθ ,rϕ − r−1uθ ,ϕ − (uϕ,r−0.5r1uϕ)cosθ),

ηϕθθ = ηθϕθ = r−2 sin−1
θ(uθ ,θϕ +ur,ϕ

−uθ ,ϕ cotθ −uϕ,θ cosθ +0.5uϕ(3cotθ cosθ − sinθ),

ηrrϕ = uϕ,rr, ηθθϕ = r−1(r−1uϕ,θθ +uϕ,r + r−1uφ sin−2
θ),
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ηϕϕϕ = r−1 sin−1
θ(r−1uϕ,ϕϕ sin−1

θ +2r−1ur,ϕ

+2r−1uθ ,ϕ cotθ +uϕ,r sinθ ++r−1uϕ,θ cosθ − r−1uϕ sin−1
θ),

ηθrϕ = ηrθϕ = r−1(uϕ,rθ sin−1
θ − r−1uϕ,θ ),

ηϕrϕ = ηrϕϕ = r−1(uϕ,rϕ sin−1
θ

− r−1uϕ,ϕ sin−1
θ +ur,r +(uθ ,r− r−1uθ )cotθ −0.5r−1ur).

ηϕθϕ = ηθϕϕ = r−2(uϕ,θϕ sin−1
θ

−ur,ϕ sin−1
θ cotθ +ur,θ +uθ ,θ cotθ −0.5uθ sin−2

θ).

The boundary conditions (2.8) and (2.9) become

Tr = npσ
∗
pr, Tθ = npσ

∗
pθ , Tϕ = npσ

∗
pϕ , (2.14)

on Sσ , and

ur = ūr, uθ = ūθ , uϕ = ūϕ , (2.15)

nrur,r + rnθ (ur,θ −uθ )+ rnϕ sinθ(ur,ϕ −uϕ sinθ) = ēr,

nruθ ,r + rnθ (uθ ,θ +ur)+ rnϕ sinθ(uθ ,ϕ −uϕ cosθ) = ēϑ ,

nruϕ,r + rnθ uϕ,θ + rnϕ sinθ(uϕ,ϕ +ur sinθ +uθ cosθ) = ēϕ ,

on Su.

2.2 Nanoindentation simulation

The aim of this study is to simulate the nanoindentation test for multiple walled
carbon nanotubes inspired from the papers of Munteanu and Chiroiu (2009) and
Waters et al. (2005). Waters et al. (2005) have used a 10µm radius sphere indenting
the nanotubes, with an extremely fine force and displacement resolution (≈300nm
and ≈1 nm, respectively).

In our paper we consider the axially compressed multiple walled carbon nanotube
(MWCN) of diameter d =50nm, and length L =100nm, by a nanoindentation tech-
nique. The nanotubes used in our study have 15 walls with an interwall spacing of
0.34nm, the outer radius is Router =25 nm, and the inner radius is Rinner =20 nm.

In order to study the buckling of multiple walled carbon nanotubes, different radii
of the spherical indenter are considered. The indenting surface is practically flat
and all the nanotubes located near the center of the indent undergo shell buckling.
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The contact area used in the calculation is very closed to the cross-sectional area of
the MWCN [Li and Chou 2003]

A = πα[(Router +0.17)2− (Rinner−0.17)2], (2.16)

where 0≤α ≤ 1 and the half layered thickness of the nanotube is 0.17. The scheme
of the indentation of carbon nanotubes and shell buckling is presented in Fig.3.

 

Figure 3: Scheme of the indentation and shell buckling

The load-unloaded-displacement curve is presented in Fig.4. This curve was the-
oretically obtained by Munteanu and Chiroiu (2009), by applying a method that
combines the features of nonlocal theory and molecular mechanics. The deforma-
tion of compressed multiple walled carbon nanotubes was investigated, with the
emphasis on the simulation of the nanoindentation technique in order to compare
the proposed method to available experimental results. The performance of the
method was carefully verified by numerical experiments. The theoretical results
obtained by Munteanu and Chiroiu (2009) were found to be in very good agree-
ment with the experimental data reported by Waters, Gudury, Jouzi and Xu (2005).

In Fig. 4, as the experiments report, the loading portion consists of three stages: an
initial linear increase, then a sudden drop in the slope with the curve becoming flat,
and a third stage comprising and increasing load.

The sudden decrease in the slope is the signature CNT buckling, which indicates
the collapse process.

After buckling, the neighbouring nanotubes come into contact with the indenter tip,
which results in an increase in the load, as can be seen from Fig. 4 in the third stage.
The position of the zero displacement corresponds to a nonzero load. According to
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Figure 4: Scheme of the load-unloaded-displacement curve

this simulation, the critical buckling is obtained as 2.18µN, which is very close to
the experimental result (in the range 2.0-2.5µN).

3 General solutions for the boundary value problem

By substituting Eqs. (2.11), (2.12) and (2.13) into Eq. (2.10), the equilibrium
equations can be written with respect to the displacements ur,uθ and uϕ . In the dis-
placement form, the equilibrium equations (2.10) along with the boundary condi-
tions (2.14) and (2.15) can be analytically solved by using the cnoidal method. The
equilibrium equations written with respect to a new variable ζ = krr + kθ θ + kϕϕ ,
with the unknown wave numbers kr,kθ and kϕ can be reduced to the Weierstrass
equations with polynomials of higher-order, similar to

u2
,ζ =

n

∑
j=0

A j(ζ )u j. (3.1)

The cnoidal method was proposed by Munteanu and Donescu (2004) for solving
nonlinear equations, as a further extension of the Osborne method (1995). The
general solutions of the equilibrium equations can be written in the form [Munteanu
and Chiroiu (2010)]

ui = uilin +uinonlin, i = r,θ ,ϕ, (3.2)

where the linear and nonlinear terms express the linear and nonlinear superposition
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respectively, of cnoidal functions

ulin = 2
n

∑
k=0

αkcn2 (ωkζ ;mk),

unonlin =

n
∑

k=0
βkcn2(ωkζ ;mk)

1+
n
∑

k=0
γkcn2(ωkζ ;mk)

. (3.3)

In Eq. (3.3), the unknown cnoidal moduli verify the condition 0 ≤ mk ≤ 1, while
the unknown quantities ωk, αk, βk and γk depend on λ , µ , ξ and l and also on
the boundary conditions (2.14) and (2.15). The theta-function representation of
the solutions is used for deriving Eq. (3.3) [Data and Tanaka (1976); Dubrovin,
Matseev and Novikov (1976)]. The derivation is a complicated affair drawing on
many beautiful results in the theory of Hill’s equation and Riemann’s solution of
the Jacob’s inversion problem. Let us introduce the following dependent-variable
transformation

u = 2
d2

dζ 2 logΘn(ζ ). (3.4)

Introducing Eq. (3.4) into Eq. (3.1), the following bilinear differential equation is
obtained

D2
ζ
(1+D2

ζ
)Θn ·Θn = 0, (3.5)

where the operator Dζ is defined as Dm
ζ

a ·b = (∂ζ −∂ ′
ζ
)ma(ζ )b(ζ ′)|ζ=ζ ′ . The func-

tion Θn is given in terms of an asymptotic expansion of the following type (near-
identity)

Θn = 1+ εΘ
(1)
n + ε

2
Θ

(2)
n + ... , (3.6)

with Θ
(1)
n =

n
∑

i=1
exp(iωiζ ). For n = 1 one obtains

Θ1 = 1+ exp(iω1ζ +B11),

Θ2 = 1+ exp(iω1ζ +B11)+ exp(iω2ζ +B22)+ exp(ω1 +ω2 +B12),

Θ3 =1+ exp(iω1ζ +B11)+ exp(iω2ζ +B22)+ exp(iω3ζ +B33)
+ exp(ω1 +ω2 +B12)++exp(ω1 +ω3 +B13)+ exp(ω2 +ω3

+B23)+ exp(ω1 +ω2 +ω3 +B12 +B13 +B23).
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For an arbitrary n, the following expression is obtained

Θn = ∑
M=0,1

exp(i
n

∑
i=1

Miωiζ +
1
2

n

∑
i< j

Bi jMiM j), (3.7)

where expBi j =
(

ωi−ω j
ωi+ω j

)2
, expBii = ω2

i . In Eq. (3.7) M = [M1,M2] is the vector
of integer indices (0 and 1), ω = [ω1,ω2, ...,ωn] is the frequency vector, and is the
finite number of degrees of freedom for a particular solution. The matrixB is written
as a sum of a diagonal matrix and an off-diagonal matrix. The solution (3.4) can be
written in the form

u = 2
d2

dt2 logΘn(ζ ) = 2
d2

dt2 logG(ζ )+2
d2

dt2 log
(

1+
F(ζ )
G(ζ )

)
,

G(t) = ∑
M

exp
(

iMωt +
1
2

MT DM
)

,

F(ζ ) = ∑
M

(
expMT OM−1

)
exp
(

iMωζ +
1
2

MT DM
)

.

Consider now the linear part of the solution only. The function G(ζ )can be written

in the product form G(ζ ) =
n
∏

k=1
Gk(ζ ), where is the classical theta function given

by the series [Magnus et al. (1966)]

Gk(ζ ) =
∞

∑
Mk=−∞

exp
(

iMkωknζ +
1
2

M2
k Dkk

)
.

Consequently, we obtain for the linear part of the solution

ulin =
n

∑
k=0

uklin, uklin = 2
d2

dζ 2 logGk(ζ ), (3.8)

ulin =
n

∑
l=1

αl

 2π

Kl
√

ml

∞

∑
k=0

(
qk+1/2

l

1+q2k+1
l

cos(2k +1)
πωlζ

2Kl

)2
 ,

where we recognize the linear expression (3.2) [Abramowitz and Stegun (1984)]

with K′(m1) = K(m), m+m1 = 1, K = K(m)+
π/2∫
0

du√
1−msin2 u

.
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The nonlinear term of the solution can be written in the form

2
d2

dζ 2 log
(

1+
F(ζ )
G(ζ )

)
≡

n
∑

k=0
βkcn2(ωkζ ;mk)

1+
n
∑

k=0
γkcn2(ωkζ ;mk)

, (3.9)

with 0 ≤ mk ≤ 1. Formk = 0 and mk = 1, Eq. (3.9) is satisfied. A numerical
verification of Eq. (3.9) was performed for different values of with a maximum
error of 5×10−7.

4 Results for the spherical nanoindentation

Recent studies [Ouyang et al. (2008)] have shown that for a spherical indentation
in a homogeneous material, the indentation size effect depends on the indenter
radius rather than penetration depth. In order to investigate these effects, we carried
our analyses of indentation with indenters of different radii, as well as different
penetration depth.

The comparison of our simulations against experiments is not the focus of the
present paper. Our intention is to explain via Toupin-Mindlin theory the well-
known size effect regarding hardness versus depth and hardness versus indenter
radius in nanoindentation experiments. Therefore, we will discuss the results with
experimental results if available or earlier similar results obtained by theories dif-
ferent from that presented here.

Let us consider the following values of the material parameters λ = 1.42TPa, µ =
2.31TPa, ξ1 = 0.5TPa ·m−2, ξ j = 0.1TPa ·m−2, j = 2, ...,5.

We consider three values for l= 0.5, 1 and 1.5µm, and l/R =0.1, 0.04 and 0.008,
where l denotes an internal length scale which appears in Eq. (2.7). These cases
corresponds to the indenter radii R =5, 10 and 15µm, R =12.5, 25 and 37.5µm,
and R =62.5, 125 and 187.5µm, respectively.

Fig.3 presents the dimensionless hardness (H̄ = H/H0) with H0 =1TPa, versus
the dimensionless indentation depth (h̄ = h/h0) with h0 =1nm, for l/R =0.1. The
baseline corresponds to no gradient effects. The hardness H̄ increases up to h̄ = 8
(corresponding to P =2.18µm) and after that we observe a falling hardness with
respect to increasing indentation depth (h̄ > 8), above the baseline case with no
gradient effects. The effect is weaker for smaller indenter radii.

The profile of the curve presented in Fig.3 is similar to those obtained by Lele
and Anand in 2009, by applying a theory of strain-gradient viscoplasticity with
finite deformations for isotropic materials. Another model with a similar profile
of the curve is based on a micromechanical model that assesses a nonlinear cou-
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Figure 5: The hardness versus various indentation depths in the case l/R =0.1.

pling between the statistically stored dislocations and the geometrically necessary
dislocations [Abu Al-Rub 2007].

While our theory of nanoindentation remains in the elastic range, the aforemen-
tioned theories’ attempt is to capture the micro and nano-indentation size effect via
the dependency on plastic strain gradients.

Plots of the ratios of the hardness H and the generalized stress components σ∗rr, σ∗rϕ

and σ∗rθ
, respectively as functions of a/R and l/R =0.1, 0.04 and 0.008, are pre-

sented in Fig.4. Similarly, the plots of ratios of the hardness H and the generalized
stress components σ∗

θθ
and σ∗ϕϕ , respectively as functions of a/R and l/R =0.1,

0.04 and 0.008, are presented in Fig.5.

Fig. 6 presents the dimensionless hardness H̄ with H0 =1TPa, versus the dimen-
sionless indentation depth (h̄ = h/h0) with h0 = 1nm, for l/R =0.008. The baseline
corresponds to no gradient effects. The hardness H̄ gradually slows up for h̄ ≤ 8
and rapidly increases with respect to increasing 8 < h̄ < 30. For h̄ >30, the increase
in H̄ becomes less sensitive to h̄. This type of behavior is similar to those obtained
by Ouyang et al. (2008).

The Toupin-Mindlin theory is evaluated in order to predict and explain this peculiar
behavior. The decrease or increase in H̄ is believed to be closely associated with
the loading P and the inner walls size in multiwalled nanotubes.
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Figure 6: Ratios between the hardness H and σ∗rr, σ∗rϕ and σ∗rθ
as functions of a/R.

 

Figure 7: Ratios between the hardness H and σ∗
θθ

and σ∗ϕϕ as functions of a/R.
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When the dimensions of the indenter radius are comparable to the intershell walls
size (fig.3), the indenter motion is easier for P >2.18µm, and difficult forP <2.18µm.
In the first case, the hardness is decreasing with respect to the indentation depth,
while in the second case, the effect is reversed.

When the dimensions of the indenter radius are larger than the intershell size (fig.6),
the walls are impenetrable and the indenter motion is difficult. This leads to a
strain hardening of the material, and the hardness is increasing with respect to the
indentation depth. For P <2.18µm the increase is slowly but becomes rapidly for
P >2.18µm.

By comparing Figs.3 and 6, we see that the hardness increases significantly with
respect to decreasing of the indenter size. For P >2.18µm, the intershell of the nan-
otubes come into contact with the indenter tip and the increase in load has different
actions depending on the indenter size.

The indenter penetrability into material depends on the shear resistance of the inter-
shell walls during the buckling of the multiwalled nanotubes. The shear resistance
is calculated by taking into account the higher-order stresses gradient contribution,
the latter is plotted in Fig.7. The value of the shear resistance is smaller for inden-
ter radii 5µm≤ R≤ 15µm than for larger indenter radii 62.5µm≤ R≤ 187.5µm.
The resistance keeps a constant value for R >120. This can explain the tendency of
the hardness to decrease with respect to the indentation depth for lower shear resis-
tance, and to increase for larger shear resistance. However, it should be noted that
the higher-order stresses τi jk play an important role in refining the elastic buckling
theory that account for additional physics. The results presented in this study show
that the size significantly affects the nanoindentation hardness.

5 Concluding remarks

It is well-known that the nanoindentation hardness displays strong indentation size
effects. In this paper, the size dependence of the hardness with respect to the depth
and the indenter radius for the buckling of multiwalled carbon nanotubes is investi-
gated using the Toupin-Mindlin strain gradient theory. As expected, the indentation
hardness is closely related to the depth and the indenter radius. Qualitatively, the
responses of the axially compressed multiple walled carbon nanotube agree re-
markable well with the experimental observations.

The tendency of the hardness to decrease with respect to the indentation depth
for lower shear resistance, and to increase for larger shear resistance, is a peculiar
behavior which reveals the indentation size effects. When the dimensions of the
indenter radius are comparable to the intershell size, the indenter motion is eas-
ier for P >2.18µm, and difficult for P <2.18µm. In the first case, the hardness
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Figure 8: The hardness versus indentation depth in the casel/R =0.008.

 

Figure 9: Shear resistance between the neighboring walls of the multiwalled nan-
otubes.
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is decreasing with respect to the indentation depth, while in the second case, the
effect is reversed. When the dimensions of the indenter radius are larger than the
intershell size, the walls are impenetrable and the indenter motion becomes diffi-
cult. Therefore, the hardness is increasing with respect to the indentation depth;
for P <2.18µm the increase is slowly but becomes rapidly for P >2.18µm. The
double stresses τi jk play an important role in refining the elastic buckling theory
that account for additional physics.
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