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Thermo-Elastic Localization Relationships for
Multi-Phase Composites
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Abstract: In this paper, we present a computationally efficient multi-scale frame-
work for predicting the local fields in the representative volume element of a mul-
tiphase material system subjected to thermo-mechanical loading conditions. This
framework for localization relationships is a natural extension of our recent work
on two-phase composites subjected to purely mechanical loading. In this novel
approach, the localization relationships take on a simple structure expressed as a
series sum, where each term in the series is a convolution product of local structure
and the governing physics expressed in the form of influence coefficients. Another
salient feature of this approach is its exploitation of discrete Fourier transforms
(DFTs) in calibrating the localization relationships to numerical datasets produced
by finite element models. In this paper, we extend and validate this new framework
for localization relationships in two important ways: (i) application to thermo-
mechanical loading conditions, and (ii) application to multi-phase composites.
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1 Introduction

Building on established statistical continuum theories (Beran 1968; Kroner 1986;
Adams and Olson 1998; Garmestani, Lin and Adams 1998; Mason and Adams
1999; Lin and Garmestani 2000; Garmestani, Lin, Adams and Ahzi 2001; Saheli,
Garmestani and Adams 2004), we have recently presented a novel approach (Ka-
lidindi, Niezgoda, Landi, Vachhani and Fast 2009; Landi, Niezgoda and Kalidindi
2009) for predicting the elastic fields in three-dimensional (3-D) voxel-based mi-
crostructure datasets subjected to uniform periodic boundary conditions. At the
core of this new framework are computationally efficient localization relationships
that relate the imposed macroscale strain (or stress) tensor to its spatial distribution
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at the microscale, while accounting for the topological details of the microstructure
(Duvvuru, Wu and Kalidindi 2007; Binci, Fullwood and Kalidindi 2008; Kalidindi,
Landi and Fullwood 2008; Fullwood, Kalidindi, Adams and Ahmadi 2009). These
localization relationships are expressed as a polynomial series sum, where each
successive term captures the contribution from a higher-order spatial correlation in
the microstructure. In the approach originally described by Kroner (Kröner 1977;
Kroner 1986), the values of the terms in the kernel function were established by
selecting a reference medium and numerically evaluating a complex series of inte-
grals. This approach leads to the principal value problem (the integrand exhibits a
singularity in the domain of integration) and exhibits high sensitivity to the prop-
erties of the selected reference medium (Kalidindi, Binci, Fullwood and Adams
2006). In the improved framework presented recently by the authors (Kalidindi,
Niezgoda et al. 2009; Landi, Niezgoda et al. 2009), the same series expressions
were recast into much more computationally efficient representations using discrete
Fourier transforms (DFTs) (Briggs and Henson 1995). The main advantage of us-
ing the DFT representations is that it allows easy calibration of the localization
relationships to results from established numerical approaches such as the finite
element methods. This novel approach circumvents all of the main obstacles as-
sociated with the principal value problem, precludes the need to select a reference
medium, and produces much more accurate predictions.

In our recent work (Landi, Niezgoda et al. 2009), we have demonstrated the accu-
racy of the novel framework described above for a two-phase composite material
system subjected to mechanical loading conditions. More specifically, we focused
only on the first-order terms in the expansion and demonstrated that they provide
highly accurate localization relationships for two-phase composite systems with
up to moderate contrast in the properties of the constituent phases. It was also
shown that the higher-order terms in the expansion are essential for composite sys-
tems with higher contrasts. These localization relationships are expected to serve as
computationally efficient scale-bridging relationships in multi-scale materials mod-
eling and design efforts. The overall approach can be seen as an efficient procedure
for data-mining the results from computationally expensive numerical models, and
establishing the underlying knowledge systems at a selected length scale in multi-
scale modeling problems (Kalidindi, Niezgoda et al. 2009). The main advantage
of building these knowledge systems is that they allow for compact representation
of the knowledge extracted from the numerical simulations, and easy retrieval of
the same knowledge as and when needed in a multi-scale modeling effort. They
are also particularly well-suited for facilitating extremely fast explorations of the
effects of changes in microstructure topology on the local fields of interest in the
microstructure.
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In this paper, we present the extension of the framework described above in two
important directions. First, we undertake an extension of our recently developed
localization relationships to include thermo-elastic response of composite material
systems. After developing and presenting the needed enhancements to the frame-
work, we demonstrate the accuracy of the framework for predicting local fields in
example two-phase composite systems by comparing the predictions with the re-
sults from finite element models. Second, we present and validate a new scheme
for applying the localization linkages to composite systems with more than two
constituent phases.

2 Thermo-Elastic Localization Relationships

The macroscale (effective) thermo-elastic behavior of a composite can be expressed
as

σσσ = C̃
(
εεε−α̃ααθ

)
, (1)

where σσσ is the macroscale symmetric second-rank Cauchy stress tensor, εεε is the
macroscale symmetric total strain tensor (including both elastic and thermal com-
ponents), C̃ is the symmetric fourth-rank effective stiffness tensor, α̃αα is the sym-
metric second-rank effective thermal expansion coefficients tensor, and θ is the
imposed temperature change. Note that the effective stress and strain tensors are
shown with a bar on the top to indicate that these are also the volume averaged
quantities from the microscale (Hill 1952). On the other hand, the effective stiff-
ness and thermal expansion tensors are generally not equal to the volume averaged
values from the microscale. For purely thermal loading of the composite, we expect
εεε = α̃ααθ and σσσ = 0. Therefore, it is convenient to decompose the overall macroscale
strain on the composite into two components: (i) εεε

m =
(
εεε−α̃ααθ

)
can be visualized

as the effective mechanical component, and (ii) εεε
th = α̃ααθ as the effective thermal

component. However, it is important to recognize that neither the local elastic strain
nor the local stress tensor fields at the microscale are generally zero-valued tensor
fields for the purely thermal loading condition.

For considerations at the microscale, we start with a discrete representation of the
microstructure consistent with the datasets produced by modern materials charac-
terization equipment. We assume that the representative volume element (RVE)
of the composite’s internal structure is binned into a uniform grid of spatial cells
(or voxels) that are enumerated by a three-dimensional vector s whose components
take only integer values. Let S and |S| represent the complete set of all spatial
cells and the total number of spatial cells, respectively, in the given dataset. The
microstructure datasets typically identify the local state in each cell. The set of all
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Figure 1: The microstructure variable, mh
s , identifies the volume fraction of material

associated with the local state h in the spatial bin s. In the simple two-dimensional
microstructure shown here, the spatial cells are enumerated by a two-component
vector as shown. The composite is comprised of two phases that are denoted as
gray and white (H=2). h=1 identifies the gray colored phase, and h=2 the white
colored phase in the figure above. The values of the microstructure variable in
spatial cells (3,5) and (4,5) take the values shown on the right.

distinct local states that are possible in a given material system is referred to as the
local state space. In this work, the local state space of interest is also assumed to
be tessellated into individual bins and enumerated by h=1,2,. . . ,H. For example,
in a three-phase composite, H = 3. The variable mh

s then defines the volume frac-
tion of local state h in the spatial cell s. Figure 1 further clarifies the definition of
the microstructure variable. Based on this definition of the microstructure variable
(Adams, Gao and Kalidindi 2005; Fullwood, Niezgoda and Kalidindi 2008; Niez-
goda, Fullwood and Kalidindi 2008; Fullwood, Niezgoda, Adams and Kalidindi
2009), it is easy to establish the following properties:∫ H

h=1
mh

s = 1, mh
s ≥ 0,

1
|S|∑s∈S

mh
s = V h (2)

where V h denotes the volume fraction of local state h in the microstructure dataset
being studied.

Building on the pioneering work of Kroner (Kroner 1986), we have recently for-
mulated and validated a new framework for expressing the localization relationship
for the spatial distribution of the elastic strain at the microscale in the case of a
composite subjected to purely mechanical loading condition (Kalidindi, Niezgoda
et al. 2009; Landi, Niezgoda et al. 2009). For the thermo-mechanical loading con-
ditions considered here, this localization relationship expressed as a series can be
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exercised directly for the mechanical component as

εεε
m
s =

(
H

∑
h=1

∑
t∈S

ααα
h
t m

h
s+t +

H

∑
h=1

H

∑
h′=1

∑
t∈S

∑
t′∈S

ααα
hh′
tt ′ mh

s+tm
h′
s+t+t′ + . . .

)
εεε

m (3)

where εεεm
s denotes the local elastic strain tensor due to the overall imposed me-

chanical strain component, αααh
t and αααhh′

tt′ are fourth-rank tensors that are completely
independent of mh

s , and are referred to as influence coefficients (Kalidindi, Niez-
goda et al. 2009; Landi, Niezgoda et al. 2009). The αααh

t coefficients capture the
first-order contribution to εεεm

s from the presence of local state h in a spatial bin that
is vector t away from the spatial bin of interest, s. In a similar manner, αααhh′

tt′ coef-
ficients capture the second-order contribution to εεεm

s from simultaneous presence of
local states h and h′ in spatial cells t and t + t′ from the spatial bin of interest, s,
respectively.

As demonstrated in our recent work (Binci, Fullwood et al. 2008; Kalidindi, Landi
et al. 2008; Fullwood, Kalidindi et al. 2009; Landi, Niezgoda et al. 2009), the most
accurate values of the influence coefficients are established by calibrating Eq. (3)
to numerical results obtained from finite element models. In order to accomplish
this calibration, it is highly advantageous to recast Eq. (3) using discrete Fourier
transform (DFT) representations as

Ik (εεεm
s ) =[(
H

∑
h=1

(
βββ

h
k

)∗
Mh

k

)
+

(
H

∑
h=1

H

∑
h′=1

(
βββ

h
k

)∗
∑
r∈S

(
βββ
′h′
r

)∗
Mh′

r Mh
k−r

)
+ . . .

]
εεε

m (4)

βββ
h
k = Ik

(
ααα

h
t

)
, Mh

k = Ik

(
mh

s

)
(5)

where Ik() represents the DFT operation with respect to the spatial variables s
or t, and the star in the superscript denotes the complex conjugate. As a further
clarification, Ik( ) acts on all s or t in the RVE. Since the spatial bins are defined
here in three-dimensions, the DFT operator defined in Eq. (5) acts on the 3-D
arrays. Although the total number of influence coefficients in Eq. (3) and in Eq.
(4) remains the same, Eq. (4) allows us to establish their values in smaller sets
by standard linear regression analyses methods. For example, in the first-order
term, indices t and h are completely coupled to each other in Eq. (3), while the
summation on k vanishes in Eq. (4). This is extremely beneficial in performing
regression analysis because it is much easier to establish H coefficients at a time
and repeat the procedure |S| times, than it is to establish |S|H coefficients all at
once. Noting that |S| is typically a very large number, it is easy to see the benefits
of using the DFT representations.
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We confine our interest here to only the first-order influence coefficients in the lo-
calization relationships. As noted in our prior work (Kalidindi, Niezgoda et al.
2009; Landi, Niezgoda et al. 2009), this is adequate for low and moderate con-
trast composites. The effort involved in establishing the higher-order terms is sub-
stantially larger, and is out of the scope of the present work (note the number of
influence coefficients in the second-order terms is (|S| H)2).

The constraints implicit in the definition of the microstructure function (see Eq.
(2)) translate to the following requirements in DFT space:

2

∑
h=1

Mh
0 = |S| ,

2

∑
h=1

Mh
k 6=0 = 0. (6)

Introducing Eq. (6) into Eq. (4) removes the redundancies implicit in Eq. (4) and
yields the following expression (considering only the first-order terms):

Ik6=0 (εεεm
s ) =

[(
β̂ββ

1
k

)∗
M1

k

]
(εεεm) , I0 (εεεm

s ) = |S|εεεm, β̂ββ
1
k =

(
βββ

1
k−βββ

2
k

)
. (7)

The expression for I0 (εεεm
s ) in Eq. (7) simply imposes the requirement that the

volume average of εεεm
s over the microscale should be equal to the εεε

m imposed at the
macroscale.

For the macroscale imposed thermal component, εεε
th = α̃ααθ , we develop here a lo-

calization relationship using the same approach as described above. However, since
we do not know the macroscale thermal component of the strain a priori (since α̃αα

is expected to be a strong function of the microstructure, it is not generally already
known) and we do know that the volume averaged stress tensor arising from this
component of the macroscale strain is expected to be equal to zero (see Eq. (1)),
it is advantageous to cast this localization relationship in terms of the stress tensor
instead of the strain tensor. The localization relationship for the stress field arising
from the thermal component is therefore expressed as

σσσ
th
s =

(
H

∑
h=1

∑
t∈S

ξξξ
h
t m

h
s+t +

H

∑
h=1

H

∑
h′=1

∑
t∈S

∑
t′∈S

ξξξ
hh′
tt′ m

h

s+tm
h′
s+t+t′ + . . .

)
θ (8)

where σσσ th
s is the local stress tensor in spatial bin s caused by only the thermal com-

ponent of the imposed strain. ξξξ
h
t and ξξξ

hh′
tt′ are the corresponding first-order and

second-order influence coefficients that are now second-rank tensors. This rela-
tionship is in complete correspondence with the analytical expression derived from
Kroner’s theory for a similar problem (Gardner, Adams, Basinger and Fullwood
2009).
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Truncating the series in Eq. (8) to the first-order terms, transforming the equation
into DFT space, and making use of the constraints expressed in Eq. (6) results in
the following expression (derivation is very similar to that of Eq. (7)):

Ik6=0

(
σσσ

th
s

)
=
[(

ϕ̂ϕϕ
1
k

)∗
M1

k

]
θ , I0

(
σσσ

th
s

)
= 0, ϕ̂ϕϕ

1
k =

(
ϕϕϕ

1
k−ϕϕϕ

2
k
)
, ϕϕϕ

h
k = Ik

(
ξξξ

h
t

)
.

(9)

The expression for I0
(
σσσ th

s
)

in Eq. (9) simply imposes the requirement that the
volume average of σσσ th

s over the microscale should be zero. Once the local stress
tensor σσσ th

s is computed, it is easy to compute the corresponding local elastic strain
tensor (arising from the thermal component alone) and recover the effective thermal
expansion coefficients tensor (thermal strain per unit temperature change) in the
sample as

α̃αα =
1
|S|∑s∈S

{
1
θ

C
−1

s
σσσ

th
s +As

}
(10)

where Cs and As are the local fourth-rank elastic stiffness tensor and the local
second-rank thermal expansion coefficient tensor, respectively, in the spatial bin
s. These local descriptions may be expressed as volume-averaged values of the
microstructure in each bin as:

Cs =
H

∑
h=1

Chm
h
s , As =

H

∑
h=1

Ahm
h
s (11)

where Ch and Ah denote the respective stiffness and thermal expansion tensors of
phase h. Since in most experimental datasets, each spatial bin is typically occu-
pied by a single local state, Eq. (11) essentially amounts to assigning the values
corresponding to the local states to each spatial bin.

It is reiterated here that influence coefficients β̂ββ
1
k and ϕ̂ϕϕ

1
k need to be established only

once for a selected material system, because they are expected to be completely in-
dependent of the morphology of the microstructure (i.e. mh

s ). The influence coeffi-
cients αααh

t are related to Green’s functions used in mechanics (Kroner 1977; Kroner
1986). We expect αααh

t → 0 as t takes on large values. Once these coefficients are
known, they serve as convolution kernels in estimating the local thermo-elastic field
for any arbitrary microstructure (using Eqs. (7) and (9)). For the thermo-elastic re-
sponse studied here, we will also exploit the superposition principle to account for
arbitrary (but uniform) loading conditions at the macroscale. This basic concept
was previously validated for purely elastic deformation of two-phase composites
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(Landi, Niezgoda et al. 2009), where β̂ββ
1
k were established and validated for se-

lected two-phase composite material systems. In this paper, we critically evaluate
the extended framework presented here for thermo-elastic deformations in multi-
phase composites.

Case Study I: Thermo-Elastic Fields for a Two-Phase Composite
As the first case study, we will examine the thermo-elastic response of a class
of two-phase composites (H=2) subjected to a uniform temperature change, θ =
10 K. For simplicity, the two phases will be referred to as “white” and “black”.
These are both assumed to be isotropic, with Young moduli of E1 = 200 GPa and
E2 = 400 GPa, and thermal expansion coefficients of α1 = 20 ·10−6 [K−1] and
α2 = 10 ·10−6[K−1] respectively. Poisson’s ratio is assumed to be 0.3 for both
phases. The properties of the two phases with a contrast ratio of 2 in both Young’s
moduli ratio and the thermal expansion coefficients would classify this composite
as a moderate contrast composite. Based on our earlier work (Landi, Niezgoda et al.
2009), localization relationships with only the first-order influence coefficients are
expected to produce reasonably accurate predictions for this class of composites.

The procedures for establishing the influence coefficients β̂ββ
1
k were already dis-

cussed in our recent work. This was accomplished by calibrating Eq. (7) to results
from finite element simulations (Landi, Niezgoda et al. 2009). More specifically,
a set of six different periodic uniform boundary conditions were simulated on a
set of two “delta” microstructures using finite element models, producing a total of
twelve datasets for the calibration process. These delta microstructures consisted
of one element of “black” surrounded completely by “white”, and vice-versa (see
Figure 2). The six different sets of boundary conditions corresponded to three uni-
axial strains and three simple shears, respectively. In reality, for the composite with
isotropic constituents studied here, the three uniaxial strain datasets are related to
each other by simple rotations. The three simple shear datasets are also related to

each other in a similar way. The β̂ββ
1
k obtained by this procedure were previously

validated by comparing the predictions for a set of random microstructures (each
spatial location in the RVE randomly assigned to either the black or the white local
state) from Eq. (7) to the corresponding predictions for the same microstructures
from the finite element simulations (Landi, Niezgoda et al. 2009). Random mi-
crostructures were chosen for the validation part of the study because they present
a very rich diversity of local neighborhoods in the RVE, and therefore, the most
heterogeneous local strain (or stress) fields. The random microstructures represent
some of the most difficult validation examples for the proposed localization rela-
tionships.

In all the case studies presented in this paper, the FEM results are generated us-
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Figure 2: Delta microstructure used to establish the influence coefficients. In this
microstructure, a central “black” element is embedded in “white” elements. In a
two-phase material system, another delta microstructure can be defined, where a
central “white” element is completely surrounded by “black” elements.

ing the commercial software ABAQUSr, where each dataset consists of 9261
(21x21x21) cuboid-shaped three-dimensional eight-noded solid elements (C3D8).
The use of cube-shaped elements defines a regularly spaced grid, which is ideal
for the computation of DFTs. Additionally, the macroscale strain condition is im-
posed as a periodic uniform boundary condition on the RVE (Landi, Niezgoda et
al. 2009). In our prior experience, we found that the periodic boundary conditions
produce numerical datasets that are best suited for DFT representations.

Influence coefficients ϕ̂ϕϕ
1
k were established here using a very similar approach as

that described above for β̂ββ
1
k. The same two eigen microstructures described above

(see Figure 2) were used to generate the calibration datasets. These microstructures
were subjected to only a prescribed temperature change. Periodic boundary con-
ditions are imposed on the dataset by relating displacements of nodes on opposite
faces to each other (Landi, Niezgoda et al. 2009). The results from these two finite
element simulations were used to calibrate Eq. (9) and estimate ϕ̂ϕϕ

1
k. For validation

of these influence coefficients, we consider once again random microstructures.
Figure 3 shows an example random microstructure used here for validation. The
internal stress fields in this RVE when subjected to a purely thermal loading of 10
K were predicted using Eq. (9). This approach will hereafter be referred to as the
Spectral Method. The corresponding strain field in the RVE was recovered using
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Figure 3: Comparison of contour maps of the local εεε11 component of strain for the
mid-plane of a 3-D digitally created random microstructure (left), calculated using
the FEM analysis (center) and the proposed DFT-based localization relationships
referred as the Spectral Method (right). The 3-D dataset is subjected to a temper-
ature increase of temperature of 10 K without any additional mechanical loading.
The ratio of the Young’s moduli and the thermal expansion coefficients for the two
phases were both assumed to be 2 in this case study.

elastic stress-strain relationships for the material present in each spatial bin. The
predictions of the internal strain fields in the RVE from both the FE and the Spectral
methods are compared against each other in Figure 3.

In order to better quantify the accuracy of the predictions from the Spectral Method,
we define an error measure for each spatial bin of the RVE as

Errs =
((εεεs)11)FEM− ((εεεs)11)SM

εεε11
·100 (12)

where the subscripts FEM and SM indicate that the predictions were made using
FEM and Spectral Methods, respectively, while εεε11 corresponds to the volume aver-
aged strain experienced by the dataset. Based on the above definition, the maximum
value of Errs across the 3D dataset is only 0.1%. Also, the DFT-based predictions
for the random microstructure in Figure 3 took only 0.6 seconds on a typical desk-
top computer (2.00 GHz CPU and 4GB RAM), while the FEM method on the same
machine took 113 seconds.

The effective thermal expansion coefficients tensor for the random microstructure
shown in Figure 3 was computed using Eq. (10), and compared to the correspond-
ing predictions from the FE model in Table 1. It is seen that the predictions for all
components of the thermal expansion coefficients tensor from the Spectral Method
are in excellent agreement with those from the FE Model. It should also be noted
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that these predictions do not invoke any simplifying assumptions based on symme-
try at the macroscale.

Let us now consider a thermo-mechanical loading condition on the same RVE. Let
us assume that the total strain imposed on the RVE is a uniaxial strain tensor with
εεε11 = 0.0005 (all of the other components of the macroscale strain tensor being

Table 1: Comparison of the components of the effective thermal expansion coef-
ficient tensor α̃αα predicted by the FEM and the Spectral Method for the random
microstructure shown in Figure 3.

Spectral Method FEM
α̃11 = 14.067 ·10−6 [K−1] α̃11 = 14.03 ·10−6[K−1]
α̃22 = 14.046 ·10−6[K−1] α̃22 = 14.015 ·10−6[K−1]
α̃33 = 14.074 ·10−6[K−1] α̃33 = 14.045 ·10−6[K−1]
α̃12 = 14.993 ·10−9[K−1] α̃12 = 14.911 ·10−9[K−1]
α̃13 = 14.998 ·10−9[K−1] α̃13 = 14.952 ·10−9[K−1]
α̃23 = 14.992 ·10−9[K−1] α̃23 = 14.936 ·10−9[K−1]

 

Figure 4: Comparison of contour maps of the local εεε11 component of strain nor-
malized by the average strain applied (0.0005) for the mid-plane of the 3D digitally
created random microstructure presented in Figure 3, calculated using the FEM
analysis (left) and the Spectral Method (right). The RVE is subjected simulta-
neously to a temperature change of 10 K and a total uniaxial strain tensor with
εεε11 = 0.0005. The ratios of the Young’s moduli and the thermal expansion coeffi-
cients for the two phases were assumed to be 2 for this case study.
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Figure 5: Schematic representation of the grouping of the contributions to the local
strain in each spatial bin. In Table 2, the contributions are separated into three
groups: (i) self-contribution from the cell itself (shaded in black), (ii) contribution
from the first layer of neighbors (shaded in dark grey), and (iii) contribution from
the second layer of neighbors (shaded in lighter grey).

equal to zero) along with the simultaneous temperature increase of θ = 10K. For
this loading, we have to decompose the total strain into two components as de-
scribed earlier: (i) a mechanical component, and a (ii) thermal component. The
thermal component is essentially given by α̃ααθ , with α̃αα already computed in Table
1. This allows us to compute the mechanical component as εεε

m =
(
εεε−α̃ααθ

)
, and to

compute the corresponding local strain field using Eq. (7). The local total strain
field in the RVE is then computed by adding the mechanical component to the ther-
mal component shown in Figure 3. Figure 4 compares the prediction for the local
total strain field for this thermo-mechanical loading condition from the Spectral
Method with the corresponding prediction from the FE analysis. The maximum
value of Errs, as defined by Eq. (12), across the entire 3-D dataset was still only
about 0.1%, consistent with the error noted in the earlier example with only the
thermal loading.

An important feature of the localization relationships presented here is the ability to
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separately compute the individual contributions from all neighbors of a spatial bin
in the RVE. The neighbors for a spatial bin of interest can be conveniently grouped
by the number of layers that separate them from the spatial bin of interest. This
grouping is shown schematically for a 2-D microstructure in Figure 5. Although
the concept is described for the 2-D case in Figure 5, it is trivially extended and
applied to 3-D microstructures in this study.

Intuitively, we expect the influence of a given spatial bin to decrease as we move
away from the bin. We also expect the influence zone to be larger for higher contrast
composite systems. For the RVE shown in Figure 3, the contributions to the εεε11
component of the local strain in each spatial bin predicted by the Spectral Method
were analyzed, and the overall statistics are reported in Table 2. The contributions
are grouped into three parts depending on where they come from: (i) the spatial bin
of interest itself referred to as the “self contribution”, (ii) the first layer of neigh-
boring bins (a total of 26 bins), and (iii) the second layer of neighboring bins (a
total of 98 bins). The results are shown for two different values of contrast in the
properties of the constituents and two loading cases (a purely mechanical load and
a purely thermal load, respectively) on the random microstructure shown in Fig-
ure 3. The results shown in Table 2 clearly indicate that the influence zone around
a spatial bin of interest is largely confined to the first layer around it for the low
contrast composites. On the other hand, the influence zone is larger for composites
with a higher contrast. These observations indicate that it should be possible to get
reasonably accurate predictions for the local fields in low contrast composites by
just accounting for the first layer of neighbors. It is important to recognize that the
results presented in Table 2 are specifically for the microstructure shown in Fig-
ure 3. These results are expected to be strongly influenced by the details of the
microstructure.

The influence coefficients implicitly capture the underlying physics of spatial in-
teractions in the system for the prescribed boundary conditions. In the spectral
approach, the local response is strongly correlated to the spatial distribution of the
local states in the neighborhood of the spatial location of interest. These relation-
ships are cast in simple algebraic forms in Eqs. (3) and (8), and can be potentially
inverted to identify specific microstructures that meet certain selected design speci-
fications. Although, rigorous inverse methods of microstructure design are beyond
the scope of the present work, we explore here a simple example to illustrate the
advantages of the Spectral Method described in this paper in identifying optimal
microstructures.

Let us consider the two-phase material system already introduced (contrast ratio
of 2 for both the Youngs’ moduli and the thermal expansion coefficients of the
two phases), subjected to a purely thermal load (applied temperature change θ =
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Table 2: Average contributions from different layers of neighboring spatial bins to
the local εεε11component of strain for the RVE shown in Figure 3 in two loading
conditions: (i) a purely mechanical loading, and (ii) a purely thermal loading. The
results are shown for two different levels of contrasts in the local properties of the
constituents. SD in the table refers to standard deviation.

Pure Thermal Load
θ = 10 K

Pure Mechanical Load
εεε11 = 0.0005

Self-
Contri-
bution

1st
Layer
Contri-
bution

2nd
Layer
Contri-
bution

Self-
Contri-
bution

1st
Layer
Contri-
bution

2nd
Layer
Contri-
bution

E1
E2

=
2 α1

α2
=

2

83.3%
SD = 2.4

12.3%
SD = 2.9

3.8%
SD = 1.7

90.7%
SD = 3.0

6.2%
SD = 1.9

2.9%
SD = 1.1

E1
E2

=
2 α1

α2
=

5

62.5%
SD = 2.8

19.3%
SD = 3.9

12.7%
SD = 2.1

E1
E2

=
5 α1

α2
=

2

72.9%
SD = 5.0

20.3%
SD = 5.8

5.2%
SD = 2.7

74.9%
SD = 5.9

17.3%
SD = 3.1

4.2%
SD = 1.7

E1
E2

=
5 α1

α2
=

5

45.8%
SD = 4.5

34.0%
SD = 6.2

14.1%
SD = 2.9

10 K). As noted earlier, the influence coefficients reflect the contribution arising
from placement of a particular local state (“black” or “white”) in any spatial bin
of the microstructure on the response variable of interest (e.g. stress or strain) in
any other spatial bin in the microstructure. Accounting for the redundancies of Eq.
(6) in Eq. (8) (this is equivalent to performing an inverse DFT of Eq. (9)) allows
us to express the implicit first-order structure-response correlation for low contrast
composites as:

σσσ
th
s =

(
∑
t∈S

(
ξξξ

1
t −ξξξ

2
t

)
m

1

s+t
+ ∑

t∈S
ξξξ

2
t

)
θ (13)

In the examples explored in this paper, the microstructures are defined such that
each spatial bin is allowed to contain only one of the local states (i.e. eigen mi-
crostructures (Adams, Gao et al. 2005)). For such microstructures, the microstruc-
ture function mh

s is allowed to take only one of the two values: 0 or 1 (see Figure 1).
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Therefore, there is a contribution to the local stress only when m1
s+t = 1. Further-

more, a positive value of the influence coefficient
(

ξξξ
1
t −ξξξ

2
t

)
would indicate that

the contribution increases the local stress in spatial bin s when the local state 1 is
placed in bin s+t. Likewise, this contribution decreases the local stress if the in-
fluence coefficient

(
ξξξ

1
t −ξξξ

2
t

)
is negative valued. As a result, the maximum tensile

local stress is achieved by arranging the local states in such a way that the spatial
locations corresponding to positive values of

(
ξξξ

1
t −ξξξ

2
t

)
are filled with local state

1 (other spatial bins are automatically filled with the other local state). Figure 6
shows the values of the influence coefficients

(
ξξξ

1
t −ξξξ

2
t

)
for the spatial bins in the

first layer of neighbors for the σσσ11 stress component in a purely thermal loading
condition.

 

Figure 6: The values of the
(

ξξξ
1
t −ξξξ

2
t

)
influence coefficients for the spatial bins in

the first layer of neighbors for the σσσ11 stress component in a purely thermal loading
condition. This set of coefficients applies to a 2-phase isotropic material where the
ratio of Youngs’ moduli and the thermal expansion coefficients for the two phases
are both 2. The influence coefficients for the 27 first-neighbors are grouped into 6
different sets, numbered in decreasing order of magnitude. These account for the
major part of the total σσσ11 stress experienced by the central cell (see Table 2).

Six different values of the influence coefficients can be identified among the first
neighbors for the present problem, as depicted in Figure 6. For the two-phase com-
posite selected here, local state 1 corresponded to the black phase with the higher
modulus and the lower thermal expansion coefficient. The first-neighbor influence
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coefficients in Figure 6 indicate that a black element completely surrounded by
white first-neighbors will result in a tensile stress of 3.735 [MPa ·K−1] (for one
degree increase in temperature). This is because only the spatial bins occupied by
the black phase make a contribution to the computations in Eq. (13). Conversely,
a white element completely surrounded by black elements results in a compressive
stress of 0.8604 [MPa ·K−1] (here all elements except the central one contribute to
the computations in Eq. (13)). Figure 6 indicates that the highest tensile stress of
6.0746 [MPa ·K−1] occurs when a black phase is placed in locations identified by
1, 2, 3, and 4 in Figure 6 (all other locations being occupied by the white phase).
For the same configuration, inverting the locations of white and black phases results
in the highest compressive stress of 3.2 [MPa ·K−1] in the central cell.

 

Figure 7: Three different microstructures have been selected to study the effect of
morphology change on the stress field, for selected loading condition. The first mi-
crostructure is the random microstructure already introduced in Figure 3 (left) with
cube-shaped inclusions; the second one (center) has rods of dimensions 3x1x1 ori-
ented along the e1 direction; and the third one (left) has longer rods of dimensions
5x1x1, also oriented along the e1 direction. The volume fraction of both black and
white phases in each microstructure was kept constant at about 50%.

The influence coefficients therefore provide tremendous insights into how specific
topologies contribute to the microscale response fields of interest. Next, we exam-
ine critically the error introduced by ignoring the contributions from spatial bins be-
yond the first layer of neighbors. For this purpose, we plotted the stress distributions
in both constituent phases computed in three different ways for selected microstruc-
tures: (i) Finite element analyses, (ii) Spectral Method using all the contributions
from all spatial bins, and (iii) Spectral Method using only the self-contribution and
the contribution from the first layer of neighbors. Three different microstructures,
whose mid-sections are shown in Figure 7, were selected for this comparison. The
volume fraction of both black and white phases in each microstructure was kept
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about 50%, but their morphologies were altered substantially: the first microstruc-
ture being the random microstructure presented in Figure 3; the second one is made
of short rods oriented along the e1 direction; and the third is one made of longer
rods (or fibers), also oriented along the e1 direction.

Figure 8: σσσ11 stress distributions in both constituent phases for the three mi-
crostructures shown in Figure 7: (a) Cube shaped inclusions, (b) Short rod shaped
inclusions, and (c) Long rod shaped inclusions. The results are obtained using three
different methods: (i) FEM analyses (solid line), (ii) Spectral Method using all the
contributions from all spatial bins (dashed line), and (iii) Spectral Method using
only the self-contribution and the contribution from the first layer of neighbors
(dotted line).

It is seen from Figure 8 that the σσσ11 stress distributions in each phase get sharper
and move farther apart as the shape of the reinforcement phase is changed from a
cube to a short rod to a long rod. It is also seen that there is excellent agreement
between the predictions of the Spectral Method (with all neighbors included) and
the finite element results. Furthermore, there appears to be only a small error in
ignoring the contributions from spatial bins beyond the first layer of neighbors for
this low contrast composite.
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Case study II: Extension to Multi-Phase Composites
In the previous case study, we have demonstrated the accuracy of the localization
relationships in Eq. (7) and Eq. (9) for two-phase composites. We now consider an
example where these relationships are applied to a three-phase composite (which
can then be easily extended to a multi-phase composite). For a three-phase com-
posite, H=3. Eqs. (7) and (9) re-derived for this case take the following form:

Ik6=0 (εεεm
s ) =

[(
β̂ββ

1
k

)∗
M1

k +
(

β̂ββ
2
k

)∗
M2

k

]
(εεεm) , I0 (εεεm

s ) = |S|εεεm,

β̂ββ
1
k =

(
βββ

1
k−βββ

3
k

)
, β̂ββ

2
k =

(
βββ

2
k−βββ

3
k

)
.

(14)

Ik6=0
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=
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ϕ̂ϕϕ
1
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(

ϕ̂ϕϕ
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= 0,

ϕ̂ϕϕ
1
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(
ϕϕϕ

1
k−ϕϕϕ

3
k
)
, ϕ̂ϕϕ

2
k =

(
ϕϕϕ

2
k−ϕϕϕ

3
k
)
.

(15)

Following the methodology described earlier for establishing the values of the in-
fluence coefficients, we seek to calibrate Eqs. (14) and (15) to corresponding results
from FE analyses on delta microstructures (see Figure 2). For the three-phase com-
posite, we have six potential delta microstructures. However, the form of Eqs. (14)
and (15) suggests that the influence coefficients can be established by considering
two phases at a time. In other words, it should be possible to consider two-phase

composites comprising phases 1 and 3 to evaluate β̂ββ
1
k and ϕ̂ϕϕ

1
k likewise, and then

subsequently consider two-phase composites comprising phases 2 and 3 to evalu-

ate β̂ββ
2
k and ϕ̂ϕϕ

2
k. If this uncoupling provides reasonably accurate estimates of the

influence coefficients, it will dramatically reduce the computational effort involved
in establishing the influence coefficients for multi-phase composites.

In order to validate the above approach, we consider a composite comprising three
isotropic phases with Young moduli of 200, 300 and 400 GPa, respectively. The
Poisson’s ratio is assumed to be 0.3 for all phases. The thermal expansion coeffi-
cients are assumed to be 20 ·10−6, 15 ·10−6 and 10 ·10−6 [K−1] respectively. For

this three-phase composite, we have established the influence coefficients β̂ββ
1
k, β̂ββ

2
k,

ϕ̂ϕϕ
1
k, and ϕ̂ϕϕ

2
k using only four of the six delta microstructures that allow us to decouple

these sets of coefficients in the calibration process as described above.

The predictions from influence coefficients established using this method were
compared against corresponding predictions from FE analyses for a thermo-mechanical
loading condition involving a macroscale uniaxial total strain tensor with εεε11 =
0.0005 and a simultaneous temperature increase of 10 K. These results are summa-
rized in Figure 9.



Thermo-Elastic Localization Relationships for Multi-Phase Composites 291

i 

 

Figure 9: Comparison of contour maps of the local εεε11 component of strain (nor-
malized by the average strain applied) for the mid-plane of a 3D three-phase ran-
dom microstructure (left), calculated using the FEM analysis (center) and the Spec-
tral Method (right). The three phases were assumed to be isotropic, with Young
moduli of 200, 300 and 400 GPa, respectively, while Poisson ratio is assumed to be
0.3 for all phases. The thermal expansion coefficients are assumed to be 20 ·10−6,
15 ·10−6 and 10 ·10−6 [K−1] respectively. The dataset is subjected simultaneously
to a temperature change of 10 K and an uniaxial macroscopic strain εεε11 = 0.0005.

Based on the definition of error in Eq. (12), the average value of Err in the results
shown in Figure 9 was about 2.4%. Furthermore, only 0.7 seconds of CPU time
was necessary for the Spectral Method on a standard desktop computer, while the
FEM analysis on the same machine required 119 seconds.

3 Conclusions

A novel framework has been presented for predicting the response fields in multi-
phase composites subjected to thermo-mechanical loading conditions. In this novel
approach, the localization relationships take on a simple structure expressed as a
series sum, where each term in the series is a convolution product of local struc-
ture and the governing physics expressed in the form of influence coefficients. In
particular, it was noted that the self-contribution and the contribution from the first
layer of neighbors accounted for the major component of the local response for low
contrast composites. The influence coefficients were shown to provide important
insights into the influence of microstructure topology on the microscale response
field.
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