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Topology of Homophase Grain Boundaries in
Two-Dimensional Crystals: The Role of Grain Exchange

Symmetry

S. Patala1 and C.A. Schuh1

Abstract: Recent advances in microstructural characterization have made it pos-
sible to measure grain boundaries and their networks in full crystallographic de-
tail. Statistical studies of the complete boundary space using full crystallographic
parameters (misorientations and boundary plane inclinations) are limited because
the topology of the parameter space is not understood (especially for homophase
grain boundaries). This paper addresses some of the complexities associated with
the group space of grain boundaries, and resolves the topology of the complete
boundary space for systems of two-dimensional crystals. Although the space of
homophase boundaries is complicated by the existence of a ‘no-boundary’ singu-
larity, i.e., no boundary exists when the misorientation is zero, here it is shown
that this singularity can be removed owing to a second special symmetry. Specifi-
cally, “grain exchange symmetry” refers to the indistinguishability of the adjoining
grains at a homophase boundary, and results in symmetrically equivalent descrip-
tions of the boundary. This symmetry affects the topology of misorientation spaces,
removes the ‘no-boundary’ singularity, and permits the identification of the space
topology for two-dimensional crystals with various point symmetries. For crystals
of C1 and C3 point symmetry, the homophase grain boundary space is shown to be
D2, while for C2, C4, and C6 symmetries it is RP1.
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1 Introduction

Grain boundaries constitute an important component of structure in polycrystalline
materials, and have a profound influence on those properties that depend either
upon transgranular (Argon and Qiao 2002; Ju, Sun, and Li 2002; Kraft and Moli-
nari 2008) or intergranular phenomena (Lim and Watanabe 1990; Aust, Erb, and
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Palumbo 1994; Watanabe 1994; Kokawa, Shimada, Michiuchi, Wang, and Sato
2007). Grain boundaries are characterized by crystallographic parameters describ-
ing the rotational difference (misorientation) between adjoining grains, as well as
the boundary plane, or inclination. Advances in automated serial sectioning meth-
ods, combined with local crystallographic measurements by electron backscat-
ter diffraction, allow the measurement of these parameters for large numbers of
grain boundaries in three dimensions (Rowenhorst, Gupta, Feng, and Spanos 2006;
Uchic, Groeber, Dimiduk, and Simmons 2006; Groeber, Haley, Uchic, Dimiduk,
and Ghosh 2006; Spowart 2006). Studies investigating the relationship between
properties, energetics and structure of grain boundaries as a function these crystal-
lographic parameters are consequently on the rise (Kim, Rollett, and Rohrer 2006;
Rohrer, Saylor, El Dasher, Adams, Rollett, and Wynblatt 2004; Olmsted, Foiles,
and Holm 2009; Olmsted, Holm, and Foiles 2009).

Despite these remarkable characterization advances, our theoretical understand-
ing of the complete grain boundary space remains very limited. For a quantita-
tive analysis of statistics or dynamics of grain boundaries, it is necessary to un-
derstand the topology of the five-dimensional space in which the crystallographic
parameters describing the grain boundaries reside. The space of misorientations
(denoted as M) is the quotient space of rotations (SO(3)) obtained by applying
equivalence relations that arise due to underlying crystal symmetries. And simi-
larly the space of boundary inclinations (denoted as B) is the quotient space of unit
normal vectors (represented by points on the surface of a unit sphere S2). Since
the complete boundary inclination space

(
S2

)
is accessible for any given boundary

misorientation, the topology of the complete boundary space (denoted as M ) is
the product space of misorientations (SO(3)) and boundary inclinations

(
S2

)
, i.e.

M ≡M×B≡ SO(3)×S2, with proper symmetries applied (Morawiec 2009).

The product space SO(3)× S2 is well understood, and metrics and measures on
this space have been recently developed (Morawiec 2009). However, this product
space is not the complete picture for grain boundaries; it strictly applies only to
heterophase boundaries and not to homophase grain boundaries, which are distinct.
The distinction is due to the zero misorientation ( M = I, with I being the zero mis-
orientation) boundaries. For heterophase boundaries, at M = I there still exists a
physical boundary that separates the two phases, and thus different boundary incli-
nations are physically distinguishable. This makes the analysis of such boundaries
straightforward on the product space SO(3)× S2. In contrast, in the case of ho-
mophase boundaries, no misorientation implies that there is no grain boundary at
all; there are no additional inclination degrees of freedom for M = I. Therefore, the
topology of M for homophase boundaries is the product space SO(3)×S2 with the
significant added caveat that all the boundary inclinations at M = I are identified.
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Due to the equivalence of boundary inclinations for the zero misorientation case,
the topology of the homophase boundary space remains unclear. One possible ap-
proach to handling this difficulty is to employ the heterophase boundary space but
with warped product metrics that account for the singularity at M = I. However,
this approach has drawbacks arising from arbitrary choice of the scaling function
(Morawiec 2009). The ‘no-boundary’ (zero misorientation) region is important be-
cause it affects how the distance between low-angle grain boundaries is defined
(Olmsted 2009). As discussed by Cahn and Taylor (2006) the ‘no-boundary’ sin-
gularity in boundary description plays an important role in determining appropriate
metrics and topology for homophase systems.

In addition to the ‘no-boundary’ case in homophase boundaries, there exists a spe-
cial symmetry that distinguishes the description of homophase boundaries from the
heterophase case. Since the two adjoining grains that define a homophase interface
are not physically distinguishable, the crystallographic parameters measured with
respect to the reference frame of one grain are equivalent to those measured with
respect to the other grain. This equivalence relation, which we refer to as ‘grain
exchange symmetry’, is expressed mathematically as

(M,n)∼
(
M−1,M−1 (−n)

)
(1)

In this paper we demonstrate the importance of this equivalence relation in under-
standing the topology of homophase boundary space. As a means of highlighting
a variety of different implications of Equation 1, we limit our discussion to two-
dimensional systems, i.e., 1D linear boundaries between 2D crystals. This simple
problem has all of the critical features of the full 3D problem, but permits visualiza-
tion of the results in a far more transparent manner, and provides a useful first step
towards solution of the full 3D problem. First we consider the effect of the grain
exchange symmetry relation on the topology of misorientation space, and then de-
scribe how this relation helps identify the topology of the complete boundary space.

2 Two-dimensional rotation space

We first consider the effect of the grain exchange symmetry on connectivity in
two-dimensional rotation space. Two dimensional rotations correspond to rotations
around a fixed axis. Without loss of generality, we consider the axis of rotation to
be the z-axis and the crystals being rotated to reside in the x-y plane. There exist
various parameterizations of the 2D rotation space:

(i) Any rotation operation in two-dimensions can be specified by the angle of
rotation ω ∈ [0,2π) about the z-axis.
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(ii) There exists a one-to-one correspondence between 2D rotations and SO(2)
matrices (2×2 special orthogonal matrices), which can therefore also be used
to specify the rotation.

(iii) SO(2) is homeomorphic to S1 (one-sphere or a circle), and thus the coordi-
nates on the circle can represent 2D rotations.

Some topological properties of S1 (the 2D rotation space) include:

a) Embedding (Basener 2006, 82): Even though only one independent variable
is required to uniquely represent 2D rotations (ω as defined in (i) above), a
minimum of two variables (coordinates of the circle as in (iii) above) are re-
quired for a one-to-one and continuous representation. The bijective mapping
f : R2D→ [0,2π), where R2D represents the 2D rotation space, is not a contin-
uous mapping (Munkres 2000, 107). The discontinuity arises due to the equiv-
alence of the rotations ω and ω +2π . The bijective mappings f : R2D→ SO(2)
and f : R2D → S1 are continuous with a continuous inverse, which implies a
topological equivalence of the 2D rotation space, SO(2) and S1. f : R2D→ S1

represents an embedding in R2 because a circle resides in R2 (the two dimen-
sional Euclidean plane). S1 is the quotient space of a line segment with its end
points identified. If the domain ω = [0,2π) is used to represent rotations, the
rotations {0} and {2π} are equivalent (connected in a topological sense). The
minimum number of Euclidean dimensions required to establish this connectiv-
ity is two. Fig. 1(a) is a graphical representation of the rotation space using
colors; each color uniquely determines the rotation (one-to-one) and similar
colors represent similar rotations (continuity).

b) Fundamental Group (Munkres 2000, 322): The fundamental group represents
the classes of coterminous paths (those that originate and end at the same point).
The 2D rotation space has a non-trivial fundamental group, which is to say that
there exist coterminous paths that cannot be continuously deformed into a single
point. The 2D rotation space is homeomorphic to a circle and any coterminous
path on a circle covers the entire circle and cannot be deformed into a single
point without moving the path out of the circle. The fundamental group of S1

and hence the 2D rotation space is Z (the additive group of integers) (Munkres
2000, 368).

3 Misorientation Space

A misorientation is defined as the rotational difference between two adjoining
grains. Since rotations are always defined with respect to a reference coordinate
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frame, there are two descriptions of the same misorientation depending on the grain
chosen as the reference; for two grains A and B the relation MAB = M−1

BA holds, with
the misorientation with respect to grain A denoted as MAB and that with respect to
grain B as MBA. Equivalence relations arise if the adjoining grains A and B have
underlying point symmetries and if grains A and B are not physically distinguish-
able (as in the homophase case). Hence, the misorientation space is the quotient
space of the rotation space obtained by applying various equivalence relations. This
section deals with the equivalence relations and their effect on the topology of mis-
orientation space.

3.1 Heterophase Misorientation Space

If grains A and B belong to different point groups (for example at a phase boundary
in a multiphase alloy), it is necessary to distinguish whether the misorientation is
with respect to crystal A or with respect to crystal B (Heinz and Neumann 1991),
and by convention heterophase misorientation is defined with respect to the crystal
system of lower symmetry. The symmetrically equivalent descriptions for misori-
entations are obtained by considering all the symmetrically equivalent orientations
of crystals A and B. For example, if phase A is the crystal system with lower sym-
metry then the following equivalence relations hold:

MAB ∼
(
Si

A
)−1 (MAB)

(
S j

B

)
; ; i = 1, . . . ,n; j = 1, . . . ,m (2)

where SA,SB refer to the point symmetries and n,m refer to the order (number of
non-equivalent operations constituting a symmetry group) of the point groups of
crystals A and B respectively.

The above equivalence relations, when applied to the 2D rotation space and ex-
pressed using the ω parameterizations, take the form: ω ∼ ω + 2π/k where k =
lcm(m,n). This relation can be easily checked using the fact that the 2D rotation
group is Abelian. In this case the unique representatives of ω (fundamental zone)
belong to the interval [0, 2π/k). The quotient space of rotations obtained after ap-
plying this equivalence relation is equivalent to the rotation space with the same
connectivity, except that the domain is scaled by k. Thus, from a topological point
of view the heterophase misorientation space is equivalent to the 2D rotation space.
Fig. 1(b) shows a graphical representation of the heterophase misorientation space
of the C1−C2 system. It is color coded in a similar fashion to the rotation space in
Fig. 1a. The coloring represents the connectivity and the topological equivalence.
The topological equivalence implies that the minimum embedding dimension for
the heterophase misorientation space is two and the fundamental group is Z.
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Figure 1: The rotation and misorientation spaces represented on a circle and using
the ω parameterization, color coded to show the inherent connectivity of these
spaces. (a) The 2D rotation space: ω ∈ [0,2π) and the coloring indicates that ω ∼
2π + ω . (b) Misorientation space of C1−C2 system: ω ∈ [0,π) and ω ∼ π + ω .
(a) & (b) are topologically equivalent. (c) Misorientation space of C1−C1 system:
ω ∈ [0,π] and ω ∼ 2π −ω . The crucial difference is that the end points of the
domain 0 and π . (d) Misorientation space of C2−C2 system: ω ∈ [0,π/2].

3.2 Homophase Misorientation Space

In the case of homophase misorientations, the grain exchange symmetry (Eq. (1))
is added to the equivalence relations:

M∼M−1 ∼ SiMS j ∼ SiM−1S j; i, j = 1, . . . ,n. (3)

Since grains A and B are not physically distinguishable when they belong to the
same phase, the descriptions MAB and MBA are equivalent. We find that this addi-
tional equivalence relation reduces the embedding dimensions for the representa-
tion of homophase misorientations and also results in a trivial fundamental group
for homophase misorientation space. The above equivalence relations, when ex-
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pressed using the ω parameterization, take the following form:

(i)ω ∼ 2π−ω (ii)ω ∼ 2πi
n

+ω; i = 1, . . . ,n (4)

Since the domain for unique representation (the fundamental zone) of the rotation
space is [0,2π), if only the rotational symmetries are considered the fundamental
zone is [0,2π/n). But applying the additional grain exchange symmetry equiva-
lence relation reduces the fundamental zone to [0,π/n]. For any ω greater than
π/n there exists an equivalent misorientation (2π/n)−ω in the interval [0,π/n].
The connectivity in this case is very different from the case of heterophase misori-
entations. The end points of the fundamental zone ω= 0 and ω = π/n represent
distinct misorientations. Hence, the misorientation space represented using ω is a
one-to-one and continuous mapping with a continuous inverse. The misorientation
space can therefore be embedded in one-dimensional Euclidean space R1.

The homophase misorientation spaces for systems C1−C1 and C2−C2 are color
coded using only one variable (contrast) as shown in Fig. 1(c&d). The purpose
of this illustration is to point out the role of symmetry in the representations. For
homophase misorientations, the coloring indicates the presence of mirrors at the
boundaries (points in this case) of the fundamental zone. In contrast, for rotation
space and heterophase misorientations, the boundaries of the fundamental zone are
connected as indicated by the coloring scheme. The homophase misorientation
space is equivalent to a closed interval on the real line and admits a trivial funda-
mental group. Any coterminous path can be continuously deformed into a single
point. Hence the grain exchange symmetry leads to a simpler topology of the mis-
orientation space for homophase boundaries.

4 Complete Boundary Space

4.1 Product Space: S1×S1

As already discussed, the misorientation space for 2D grain boundaries defined
by ω ∈ [0,2π) is equivalent to S1 with additional symmetries from the underlying
crystals. The boundary inclinations for 2D boundaries are defined by the space
of unit vectors in the plane, which belong to the points on S1 (which can also be
represented using ω ∈ [0,2π)). Since the misorientations and inclinations of a
boundary are independent, the topology of 2D boundary information is the product
space S1×S1 (torus), as illustrated in Fig. 2, with appropriate equivalence relations
applied. In the case of homophase boundaries, because of the ‘no-boundary’ case at
zero misorientation, the topology is S1×S1 with the region {ω = 0}×S1 identified.
As it turns out, grain exchange symmetry plays a major role in determining the
topology of homophase boundary space, as developed in the following.
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Figure 2: The torus represents the product space S1×S1. Any point on the torus can
be defined using (ω,β ) parameters. Here ω represents the boundary misorientation
and β represents the boundary inclination and ω,β ∈ [0,2π).

4.2 Heterophase Boundaries

The heterophase boundary space is the quotient space of a torus and the equivalence
relations consisting of rotational (crystal) symmetry operations. The equivalence
relations for the heterophase case are (the same convention as heterophase misori-
entations is used here) (Morawiec 2004, 129):

(MAB,nAB)∼
((

Si
A
)−1MAB

(
S j

B

)
,
(
Si

A
)−1nAB

)
; i = 1, . . . ,n; j = 1, . . . ,m (5)

Expressed in terms of the angular parameters (ω,φ), the equivalence relations take
the form:

(ω,β )∼
(

ω− 2πi
n

+
2π j
m

,β − 2πi
n

)
; i = 1, . . . ,n; j = 1, . . . ,m (6)

Shown in Fig. 3 is the fundamental zone for complete boundary information for
the C1−C2 system. The torus is color coded to reflect the inherent symmetry and
connectivity of the heterophase boundary space. In terms of topological properties,
the heterophase boundary space can be embedded in R3 and has the non-trivial
fundamental group Z×Z of the torus (Munkres 2000, 372).
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Figure 3: The heterophase boundary space of C1−C2 system. The torus is col-
ored such that the symmetry of the system (ω,β ) ∼ (ω +π,β ) is reflected. The
symmetry is better captured when the system is projected onto a plane as shown in
(b). The domain between the dotted lines, ω ∈ [0,π) and β ∈ [0,2π), represents
the fundamental zone for this system.

4.3 Homophase Boundaries

The homophase boundary space is the quotient space of a torus with the following
equivalence relations:

(i)(I,n1)∼ (I,n2)

(ii)(M,n)∼
(
M−1,M−1 (−n)

)
(iii)(M,n)∼

(
S−1

i MS j,S−1
i n

)
; i, j = 1, . . . ,n

(7)

Here I refers to the zero misorientation. The equivalence relation 7(i) is referred to
as the ‘no-boundary’ equivalence, the relation 7(ii) is the ‘grain exchange symme-
try’ equivalence and the relations in 7(iii) arise due to the point symmetries of the



10 Copyright © 2010 Tech Science Press CMC, vol.17, no.1, pp.1-17, 2010

crystals. These equivalence relations expressed in terms of (ω,ω) take the form:

(i)(0,β1)∼ (0,β2)
(ii)(ω,β )∼ (2π−ω,π−ω +β )

(iii)(ω,β )∼
(

ω− 2πi
n

+
2π j
m

,β − 2πi
n

)
; i, j = 1, . . . ,n.

(8)

The no-boundary equivalence requires the collapse of the {ω = 0}× S1 region in
the torus to a single point, which can be achieved by shrinking the inner radius
of the torus to zero; see the difference between Fig. 4(a) and (b). This so-called
‘horned torus’ is equivalent to a 2-sphere with two antipodal points (the north and
south poles) identified. The horned torus is mapped to a 2-sphere by expressing the
polar coordinates in terms of the boundary parameters as (θ ,φ) = (ω/2,β ), which
applies for the homophase boundaries of crystals with C1 point symmetry. In the
case of boundaries of crystals with Cn symmetry, the polar coordinates are related
to the boundary parameters by the relation:

(θ ,φ) =
(

nβ

2
,nω

)
(9)

where ω and β are restricted to [0,2π/n]. This ensures that θ is confined to [0,π]
and φ is confined to [0,2π]. In the domain ω,ω ∈ [0,2π/n], the equivalence rela-
tions due to crystal symmetries need not be considered, which simplifies the sub-
sequent analysis.

In polar coordinates the no-boundary equivalence relation takes the form (0,φ) ∼
(π,φ). This equivalence implies that the two poles, (0,0,1) and (0,0,−1) are
identified. Even though the measure and metrics on a 2-sphere are familiar, the
identification of the two poles makes the topology more complicated, and hence
there is no immediately obvious method to define metrics. This singularity is a
result of the ‘no-boundary’ condition at zero misorientation. We find, however, that
this singularity can be removed by invoking grain exchange symmetry. Applying
the equivalence relation from Equation 8(ii) to the polar coordinates of the 2-sphere
results in the following equivalence relation:(

2θ

n
,
φ

n

)
∼

(
2π

n
− 2θ

n
,π− 2θ

n
+

φ

n

)
⇒

(
θ ,

φ

n

)
∼

(
π−θ ,

(π−2θ)
n

+
φ

n
+

(n−1)π

n

)
⇒ (θ ,φ)∼ (π−θ ,(π−2θ)+φ +(n−1)π)

(10)
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Figure 4: Colors are used to represents the connectivity of these spaces. (a) (i)
S1× S1 torus and its (ii) projection onto a plane. (b) (i) The horned-tours (inner
radius = 0) and its (ii) projection. As represented by the coloring scheme, the
points (ω = 0,β ) and (ω = 2π,β ) are equivalent. (c) The horned-tours is mapped
into a 2-sphere using the relation (θ ,φ) = (nω/2,nβ ).

This is a slightly complicated relation since the equivalence in the φ coordinate is
dependent on θ . This complication can be removed by using modified parameters

(
θ
′,φ ′

)
=

(
θ ,φ − (π−2θ)

2

)
(11)

which yields the following equivalence relation:(
θ
′,φ ′+

(π−2θ)
2

)
∼

(
π−θ

′,φ ′+
(π−2θ)

2
+(n−1)π

)
⇒

(
θ
′,φ ′

)
∼

(
π−θ

′,φ ′+(n−1)π
) (12)

Two situations arise when the boundary parameters are expressed in terms of (θ ′,φ ′).
First, if n is odd, then the equivalence relation shown in Equation (12) is equiva-
lent to (θ ′,φ ′)∼ (π−θ ′,φ ′) (since n−1 is even and a multiple of 2π). Second, if
n is even, then the equivalence relation is simplified to (θ ′,φ ′) ∼ (π−θ ′,φ ′+π)
(since n− 1 is an odd number). The advantage of using the modified parameters
in representing the boundary information is illustrated in Fig. 5 and Fig. 6 for
odd- and even-fold rotational symmetry systems respectively. Using the modified
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Figure 5: The equivalence relations corresponding to Equations (10) and (12) for
odd-fold rotational symmetry systems (a) Homophase boundary information using
(θ ,φ) parameters. The path ABC in the upper hemisphere is equivalent to the path
CDE in the lower hemisphere. This equivalence is better represented in its (ii)
projection. (b) Boundary information using (θ ′,φ ′) parameters. In this parameter-
ization the paths ABC and CDE are related through mirror symmetry.

parameters results in simple equivalence relations corresponding to either a mirror
symmetry or an inversion symmetry on the 2-sphere.

To summarize, modified parameters (θ ′,φ ′) are used to represent the homophase
boundary. They are related to boundary parameters by the following equation:

(
θ
′,φ ′

)
=

(
nω

2
,nβ − (π−nω)

2

)
(13)

where ω is restricted to [0,2π/n] and β is restricted to [0,2π/n ]. Any boundary
with parameters ω > 2π/n or β > 2π/n has a symmetrically equivalent descrip-
tion in the restricted domain, which is obtained by applying appropriate crystal
symmetries. Examining the above results, we observe that the homophase bound-
ary spaces of the C1 and C3 systems are topologically equivalent to that of a disc
in the two-dimensional Euclidean plane. This is a result of the equivalence relation
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(θ ′,φ ′)∼ (π−θ ′,φ ′). This relation expressed in terms of Cartesian coordinates is
of the form (x,y,z) ∼ (x,y,−z). Hence the topology of the homophase boundary
space for these systems is the quotient space of the 2-sphere with the equivalence
relation (x,y,z) ∼ (x,y,−z). This quotient space is equivalent to a disc

(
D2

)
in

two-dimensional Euclidean plane. The space is simply connected (admits a trivial
fundamental group) and can be embedded in R2.

Figure 6: The equivalence relations corresponding to Equations (10) and (12) for
even-fold rotational symmetry systems (a) Homophase boundary information us-
ing (θ ,φ) parameters. The path ABC1 in the upper hemisphere is equivalent to
the path C2DE in the lower hemisphere. This equivalence is better represented in
its (ii) projection. (b) Boundary information using (θ ′,φ ′) parameters. In this pa-
rameterization the paths ABC1 and C2DE and are related by an inversion about the
origin. The space is defined as the real projective plane

(
RP1

)
.

In the case of the C2, C4 and C6 systems (see Fig. 6) the boundary space is
equivalent to the real projective plane

(
RP2

)
. The equivalence relation (θ ′,φ ′) ∼

(π−θ ′,φ ′+π) expressed in terms of Cartesian coordinates is of the form (x,y,z)∼
(−x,−y,−z), i.e. a 2-sphere with all antipodal points identified, or the real projec-
tive plane. The topological properties of RP2 are well documented. The minimum
number of Euclidean dimensions in which it can be embedded is four (Kirby 2007).
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It has a non-trivial fundamental group Z2 (Munkres 2000, 372).
The parameterization in Equation (13) has several immediate practical consequences.
For example, the metrics on a 2-sphere can be used to express the “distance” be-
tween homophase boundaries. This helps achieve meaningful answers to the ques-
tion of how similar two boundaries are if they have different misorientations and
boundary planes. The distance between two points denoted by (θ ′1,φ

′
1) and (θ ′2,φ

′
2)

on a sphere is given by:

s = arccos
(
cosθ

′
1 cosθ

′
2 + sinθ

′
1 sinθ

′
2 cos

(
φ
′
1−φ

′
2
) )

(14)

where s ∈ [0,π].
The distance between two boundaries (ω1,β1) and (ω2,β2) is obtained in three
steps:

(i) The evaluation of symmetrically equivalent descriptions of (ω1,β1) and (ω2,β2)
that lie in the domain [0,2π/n].

(ii) Evaluation of symmetrically equivalent descriptions (mirror images for odd-
fold rotation symmetry systems and antipodal points for even-fold rotation
symmetry systems) of boundary parameters in the (θ ′,φ ′) parameterization
using Equation 12.

(iii) The distance between the two boundaries is finally obtained by taking the
minimum of the distances between the equivalent representations calculated
using Equation 14.

Since the modified homophase grain boundary parameters (θ ′,φ ′) reside on the
surface of a unit-sphere, functions describing distributions of these parameters can
be expanded as a linear combination of the Laplace spherical harmonics Y m

l (Niki-
forov, Uvarov, and Boas 1988, 76) which form a complete set of orthonormal func-
tions. Any square-integrable function can be expressed as a linear combination of
the spherical harmonics as:

f
(
θ
′,φ ′

)
=

∞

∑
l=0

l

∑
m=−l

Cm
l Y m

l
(
θ
′,φ ′

)
(15)

It is necessary that the function f inherit the symmetries of the boundary space.
This is achieved by using symmetrized spherical harmonics which are commonly
used in pole distributions in representing texture (Popa 1992). Symmetrized spher-
ical harmonics must reflect the mirror symmetry in the case of C1 and C3 boundary
systems and the inversion symmetry in the case of C2, C4 and C6 boundary systems.
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5 Conclusions

The grain exchange symmetry (M,n) ∼
(
M−1,M−1 (−n)

)
has profound implica-

tions for the topology of homophase misorientations and the complete homophase
grain boundary space. Here we have shown that for 2-D systems, this symmetry
simplifies the apparently complex topology of both of these spaces.

In the case of homophase misorientation spaces, the equivalence relation due to
grain exchange symmetry reduces the embedding dimensions of the misorientation
space; here we show a reduction from two for rotations, to one for misorientations.
When the grain exchange symmetry is applied to the complete homophase bound-
ary space in two-dimensional systems, the complication due to the ‘no-boundary’
singularity is removed. Parameters (θ ′,φ ′) are used to represent the homophase
boundary parameters and the topology of the boundary space expressed using this
parameterization is the quotient space of a 2-sphere

(
S2

)
. As a result of this finding,

the round metric on the sphere may be used to define distances between homophase
boundaries, and symmetrized hyperspherical harmonics can be used to express ho-
mophase boundary distributions.

Our analysis of two-dimensional systems reveals a critical and previously unap-
preciated role of grain exchange symmetry in understanding the topology of the
complete boundary space, and provides a basis for investigating the topology of
homophase boundaries for three-dimensional crystals.
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