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Abstract:  This paper presents a novel mathematical framework for building a
comprehensive materials knowledge system (MKS) to extract, store and recall hi-
erarchical structure-property-processing linkages for a broad range of material sys-
tems. This new framework relies heavily on the use of computationally efficient
FFT (Fast Fourier Transforms)-based algorithms for data-mining local structure-
response-structure evolution linkages from large numerical datasets produced by
established modelling strategies for microscale phenomena. Another salient fea-
ture of this new framework is that it facilitates flow of high fidelity information
in both directions between the constituent length scales, and thereby offers a new
strategy for concurrent multi-scale modelling of materials phenomena. The via-
bility of this new approach is demonstrated in this paper with two selected case
studies: (i) rigid-plastic deformation of a two-phase composite material, and (ii)
spinodal decomposition of a binary alloy.

1 Introduction

The core activity in the field of Materials Science and Engineering is the establish-
ment of robust microstructure-property-processing relationships for a broad range
of materials systems. These relationships are central to the design and develop-
ment of new materials with enhanced properties or performance characteristics.
However, the pace at which such relationships are being established currently by
the experts in this field is exceedingly slow. For example, it is often reported that
it takes about twenty years [Schafrik (2003)] to design, process, and insert a new
material in an advanced technology application. This is largely attributed to the
fact that the current process of new materials development relies heavily on ex-
perimental discovery, which is often slow and very expensive. Furthermore, the
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practitioners in this relatively young field have not yet adopted a mathematically
rigorous framework for the description of the microstructure (i.e. internal structure)
of the material. The internal structure of most material systems spans a multitude
of length scales, from the atomistic to the macroscale. However, the general prac-
tice for microstructure quantification is to define and extract physically meaningful,
statistically based (stereological), metrics to capture the salient features of the mi-
crostructure, and use them to formulate structure-property relationships of interest.
In reality, these metrics tend to be highly simplified and include parameters such as
average crystal size and texture [Bunge (1993)] for single-phase polycrystalline
materials, and phase volume fractions and their average shape and spacing for
multi-phase composites. These grossly simplified intuitive measures of microstruc-
ture are typically inadequate for establishing reliable structure-property-processing
relationships.

In the opinion of the authors, another major deficiency of the approach used cur-
rently by materials scientists and engineers is the fact that their efforts are fo-
cused largely on establishing the correlations between macroscale (effective) prop-
erties and the ensemble averaged statistical measures of the microstructure. As
such, these correlations do not provide any insight into how the imposed load at
the macroscale is distributed at the microscale (also called localization). In other
words, the information flow in these correlations is primarily from the microscale
to the macroscale, with no feedback in the opposite direction. As an example, let
us consider the well-known Hall-Petch relation [Hall (1951); Petch (1953)] that
correlates the macroscale yield strength in a polycrystalline sample to the aver-
age grain size associated with the microstructure. Although this correlation helps
us establish the macroscale property of interest based on a simple microstructure
parameter, it says nothing about how the imposed stress (or strain) is distributed
among the constituent grains of different sizes. The information on how the im-
posed stress (or strain) is localized at the microscale is expected to play a key role
in many of the defect-sensitive properties of interest in the material (e.g. the fatigue
strength).

The authors assert that several recent advances in microstructure quantification and
multi-scale modeling have now set the stage for a new, transformative, approach
to establishing the essential knowledge systems that lie at the core of the activi-
ties in the Materials Science and Engineering. It is now possible to capture the
rich three-dimensional details of the material structure at various length scales (e.g.
X-ray micro-tomography [Flannery et al. (1987); Maire et al. (2001)] automated
serial sectioning [Alkemper and Voorhees (2001); Sivel et al. (2004)], 3-D atom
probe [Blavette et al. (1993); Seidman (2007)]). Methods for rigorous quantifi-
cation of the microstructure statistics are gaining wider acceptance in the materials
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community [Adams and Olson (1998); Torquato (2002); Adams et al. (2005);
Mason and Adams (1999); Fullwood et al. (2009); Saheli et al. (2004); Beran et
al. (1996); Zeman and Ejnoha (2007); Sankaran and Zabaras (2006); Tewari et al.
(2004); Gusev et al. (2000)]. Major strides are being made in the development of
multi-scale materials modelling strategies spanning atomistic simulations [Li et al.
(2002); Yamakov et al. (2004)], dislocation dynamics [Zbib et al. (1998); Amodeo
and Ghoniem (1990)], finite element models [Zienkiewicz and Taylor (2005)] and
phase-field models [Wheeler et al. (1992); Li et al. (2005); Kazaryan et al. (2000);
Shen and Wang (2003)]. It is now possible to incorporate very complex physics
in numerical models to accurately simulate local behavior at any selected length
scale, including details of the inherent anisotropy. In order to exploit these recent
advances, it behooves us to establish computationally efficient materials knowl-
edge systems (MKS), where information flows in both directions with minimal loss
between any selected hierarchical length scales of interest. A major goal of MKS
is to facilitate computationally efficient concurrent multi-scale materials modelling
strategies that are also aimed at solving inverse problems of materials design (i.e.
optimizing material microstructure to meet or exceed designer specified combi-
nation of macroscale properties or performance criteria [Fullwood et al. (2009);
Adams et al. (2001); Kalidindi et al. (2004); Houskamp et al. (2007); Knezevic
and Kalidindi (2007); Knezevic et al. (2008)]).

The critical need to couple physical phenomena occurring over several length scales
demands concurrent execution of sophisticated numerical models within other so-
phisticated numerical models in a hierarchical manner. Computationally efficient
strategies to accomplish this arduous task do not exist currently. Moreover, the
need for potential inversion of information flow in these models to address materi-
als design problems demands a completely new approach to establishing the MKS.
High performance data-mining tools are critically needed for harvesting efficiently
the essential knowledge contained in the very large experimental and modeling
datasets being produced by experts in the materials related fields. There should be
tremendous benefits to treating the very large datasets produced by materials re-
searchers as digital signals, and applying established methods in Signal Processing
and Systems Engineering to extract the underlying MKS. It is noteworthy that mod-
ern approaches to understanding structure-property-processing relationships have
strong analogues in non-linear system theory and informatics.

The central tenet of the novel approach suggested here by the authors is that MKS
should necessarily capture the localization information at the lower length scale,
as opposed to just establishing the correlations between the macroscale properties
and ensemble averaged microstructure statistics. Note that the later constitute only
a small subset of the former. In other words, MKS should constitute the local
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structure-response-structure evolution correlations. Local response refers to the
localization of the imposed loading conditions. For example, in mechanical design
problems, the essential knowledge systems we seek should describe how the im-
posed loading at the higher length scale is distributed at the lower length scale. This
localization is expected to be strongly correlated to the details of the local structure
in the material. MKS should also capture the details of the associated changes
in the local structure (referred to as the local structure evolution) which are again
expected to be strongly correlated to the details of the local structure.

The main purpose of this paper is to introduce a novel computationally efficient
framework for building MKS that is largely based on established concepts in sys-
tems theory. After introducing the framework in Section 2, we demonstrate its
viability in Section 3 through two selected example case studies involving very dif-
ferent nonlinear physical phenomena: (i) rigid-plastic deformation of a two-phase
composite, and (ii) spinodal decomposition of a binary alloy. We present conclud-
ing remarks in Section 4.

2 Novel Framework for Materials Knowledge Systems

We start with a discrete representation of the microstructure consistent with the
datasets produced by modern materials characterization equipment. We assume
that the spatial domain of the material internal structure is binned into a uniform
grid of spatial cells (or voxels) that are enumerated by a three-dimensional vector
s whose components take only integer values. Let S and |s| represent the complete
set of all spatial cells and the total number of spatial cells, respectively, in the given
dataset. The microstructure datasets typically identify the local state in each cell.
The set of all distinct local states that are possible in a given material system is
referred to as the local state space. In this work, the local state space of interest is
also assumed to be tessellated into individual bins and enumerated by h=1,2,... H.
The variable m/ then defines the volume fraction of local state / in the spatial cell
s. Based on this definition of the discretized microstructure variable, it is easy to
establish the following properties [Adams et al. (2005)]:
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where V" denotes the volume fraction of local state / in the complete microstructure
dataset.
Let ps denote the local response variable in the spatial bin of interest, s. This could

represent any local response of interest such as stress, strain, or strain rate. Let p
represent the volume averaged value of the response for the entire microstructure.
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Drawing on analogues in systems theory [Tong (1995); Boyd and Chua (1985);
Nikias and Petropulu (1993)], the localization of the response variable in the mi-
crostructure can be expressed as a series of higher-order convolutions involving the
microstructure signal and the response signal as
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Note that in writing Eq. (2) we are treating the spatial distributions of both the
microstructure variable and the response variable as digital signals. For example,
when we subject a representative volume element (RVE) of a material structure to a
specific macroscale loading condition (say tensile stress) and simulate the internal
stress field in the RVE using a finite element model, we obtain a very large dataset
that can be treated as a digital signal. In current practice, we do not utilize these
datasets very efficiently. Often, we extract only a limited number of predictions
(e.g. effective macroscale properties, hot spots in stress fields) and throw away
much of the rest of the information contained in the dataset. However, there exist
underlying correlations (i.e. knowledge) implicit in these datasets that would effi-
ciently capture the underlying physics in the system. Such correlations should be
local for a given boundary condition. In other words, for a given loading condition,
the stress at a selected spatial point should depend primarily on the details of the
structure in a certain neighbourhood of that point — let us call this neighbourhood
as the influence zone. Eq. (2) expresses the local interactions in the influence zone
as a series sum. Although Eq. (2) was established based on analogues in systems
theory, it is gratifying to note that the exact same expression can be derived fol-
lowing the statistical continuum mechanics theories developed by Kroner [Kroner
(1986); Binci et al. (2008); Kalidindi et al. (2008)].

In Eq. (2), (xth and ocf;f" are referred to as the first-order and second-order influence
coefficients, respectively, and constitute the materials knowledge system (MKS)
described earlier. The values of these coefficients are expected to be completely
independent of the microstructure coefficients m!. o' captures the influence of the
placement of the local state / in a spatial location that is t away from the spatial cell
of interest denoted by s. In this notation, the components of t, like s, are also inte-
gers. The microstructure description m/ is assumed to be periodic. Consequently,
spatial locations s + t that lie outside the given microstructure dataset have equiva-
lent identical locations within the given dataset. Figure 1 further clarifies the phys-
ical interpretation of the influence coefﬁcients defined in Eq. (2). By extension, the
second-order influence coefficient att’ captures the additional contribution (over
the first-order contribution) with the simultaneous placement of local state /' in
spatial cell s+ t+t', in addition to placing % in spatial cell s +t.
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Figure 1: The first-order influence coefficients @/ capture the contribution to the
field variable of interest in spatial cell s from the placement of local state % in
spatial bin s 4-t. Likewise, ai‘t’,’/ captures the contribution from placement of /& and
K in spatial bins s +t and s +t +t', respectively. The shaded region schematically
depicts the influence zone, i.e. microstructure details of the spatial cells outside the
influence zone are not expected to influence the localization of the imposed variable
in the spatial bin of interest, s.

In many ways, the influence coefficients ¢ are analogous to Green’s functions used
in mechanics [Roach (1982)]. Green’s functions capture the displacement caused
by a unit load placed at a certain distance from the location of interest. In the same
way, the influence coefficients Otth capture the contribution to the field variable of
interest arising from placement of local state, A, at a spatial location t away from
the point of interest in the microstructure. Just like the Green’s functions, we ex-
pect aft — 0 as t takes on large values (larger than the size of the influence zone).
This feature will be of tremendous value in analyzing the very large microstructure
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datasets produced by modern materials characterization equipment. For example,
Synchrotron radiation micro-tomography routinely yields microstructure datasets
containing 2000 X 2000 X 2000 voxels [Breidenbach (2009)]. These large mi-
crostructure datasets are not amenable to analyses using voxel-based finite element
meshes, because of the excess demands they place on computational resources.
However, because of the finite size of the influence zone, it becomes feasible to ap-
ply Eq. (2) on very large microstructure datasets (details of the computations will
become apparent later).

The main challenge with Eq. (2) is the estimation of the numerical values of the
influence coefficients Octh. The traditional approach for establishing the values of
influence coefficients in the framework of the statistical continuum theories is to
derive analytical expressions for the series expansion [Adams and Olson (1998);
Kroner (1986); Binci et al. (2008); Kalidindi et al. (2008); Garmestani et al.
(1998, 2001); Beran (1968)]. This is accomplished by invoking a hypothetical ref-
erence medium and transforming the governing equations to an equivalent problem
in a homogeneous reference medium subjected to a fictitious loading condition.
The main drawbacks of this approach have been the following: (i) the accuracy
of the predictions is very sensitive to the choice of a reference medium that is
often restricted to an isotropic reference due to complexity of the computations
involved, and (ii) the high complexity associated with numerical evaluation of the
convolution integrals involved (the integrand exhibits a singularity in the domain of
integration; also called principal value problem). Although a number of advances
have been made in addressing these complex issues [Kalidindi et al. (2006); Full-
wood et al. (2008); Torquato (1997)], these theories have not yet attained the
desired accuracy in predicting the internal stress and strain fields in the composite
microstructures.

In recent work, the authors and their collaborators have demonstrated that it might
be possible to establish much more accurate localization relationships by calibrat-
ing the series expansions of Eq. (2) to results obtained from finite element (FE)
models [Binci et al. (2008); Kalidindi et al. (2008)]. The main difficulty with Eq.
(2) is that all of the influence coefficients are fully coupled. A logical approach
to establishing the influence coefficients in Eq. (2) is to consider one set of terms
at a time. In other words, we could consider initially only the first-order terms,
develop a scheme to establish all of the first-order coefficients ¢!, define a residual
error field that persists after accounting for the first-order terms, use the residual
error field to calibrate all of the second-order coefficients, and so on. It should
be noted that the calibration task gets progressively more difficult. Based on Eq.
(2), the total number of first-order influence coefficients is |S|H, while the total
number of second-order influence coefficients is (|S|H)?. It is seen that the num-
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ber of influence coefficients increases dramatically with the higher-order terms. It
should be noted that the number of first-order influence coefficients is itself quite
substantial for most microstructure datasets, because |S| is typically very large. The
focus in this work will be mainly on the first-order terms, although we will present
the framework in the most generalized form and hint at some future strategies for
estimating the higher-order influence coefficients.

Even considering only the first-order coefficients, their numbers are extremely large
to allow calibration with FE results using any of the standard linear regression
analyses methods. Therefore, in prior work [Binci et al. (2008); Kalidindi et al.
(2008)], we were forced to restrict our considerations to only the first-neighbours
in calibrating the influence coefficients to FE results. The main contribution of
the present work is the recognition that Eq. (2) takes a much simpler form when
transformed into the discrete Fourier transform (DFT) space, where it can be recast
as

o H H W
_ [(ZBFMﬁ)JF(ZZZ hi'* MrMﬁr>+~- 3)
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where Jx( ) denotes the multi-dimensional DFT operation (three-dimensional for
3-D datasets with the DFT taken in each dimension separately) with respect to the
spatial variables s or t, and the star in the superscript denotes the complex conju-
gate. The simplification in Eq. (3) compared to Eq. (2) is a direct consequence of
well-known convolution properties of DFTs [Oppenheim et al. (1999)]. Note that
the number of coupled first-order coefficients in Eq. (3) is only H, although the
total number of first-order coefficients still remains as |S|H. Because of this dra-
matic uncoupling of first-order coefficients into smaller sets, it becomes fairly easy
to estimate the values of influence coefficients [31? by calibrating them to results
from FE models.

It is emphasized here that establishing B]i’ is a one-time computational task for a
selected composite material system, because these coefficients are expected to be
independent of the morphology of the microstructure (defined by m”). As such,
they offer a compact representation of the underlying knowledge regarding the lo-
calization of the selected response variable for all possible topologies that could
be defined in the given composite material system. The simplicity of Eq. (3) also
presents a computationally efficient procedure for computing the spatial distribu-
tion of the selected response variable for any microstructure dataset, after the cor-
responding influence coefficients are established and stored. However, it should
be noted that the influence coefficients are expected to be strongly dependent on
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the imposed boundary conditions, i.e. they need to be established separately for
all boundary conditions of interest. Strategies for expressing the functional de-
pendence of the influence coefficients on the imposed boundary conditions will be
discussed in the context of the specific case studies selected later.

The estimation of the second-order influence coefficients is beyond the scope of the
present work. However, it is pointed out that there exist several established methods
in digital signal processing for estimating these influence coefficients (e.g. Volterra
series [Ogunfunmi (2007)]). All of the discussion above was focused on the local
structure-response correlations. For local structure-structure evolution correlations,
we essentially use the same approach (i.e. Eqs. (2)-(4)) and simply replace the
local response variable, ps, with the appropriate local structure evolution variable.
This will be exemplified later with a specific case study.

Before closing this section, we bring to the reader’s attention the fact that the re-
dundancies expressed in Eq. (1) make it impossible to establish independently all
of the values of the influence coefficients, o'. In fact the |S| redundancies in Eq.
(1), reduce the number of independent influence coefficients from |S|H to |S|(H-1).
So it becomes necessary to either recast Eqs. (2)—(4)) in terms of the independent
influence coefficients or to utilize reduced-rank methods based on singular value
decomposition (SVD) or principal component analysis [Izenman (1975); Davies
and Tso (1982)]. In our work, we have applied both strategies and obtained iden-
tical results.

3 Case Study I: Rigid-Plastic Deformation of a Two-Phase Composite
3.1 Physics of the Phenomenon

In this example, we present the application of the framework described above to the
rate-independent rigid-plastic deformation of a two-phase representative volume
element (RVE), with no strain hardening. The two phases are assumed to exhibit
isotropic plasticity with yield strengths of 200 MPa and 250 MPa, respectively.
The stress-strain relationships for both phases are assumed to be described by the
Levy-Mises equations [Khan and Huang (1995)] as

e=21o' 5)

where € is the symmetric strain rate tensor, ¢’ is the symmetric deviatoric Cauchy
stress tensor, and A is a proportionality parameter that can be related to the yield
strength of the material, the equivalent plastic strain rate and the equivalent stress.
Although it is not directly apparent from Eq. (5), the constitutive relation described
implies a rate-independent plastic response. The goal of the localization expression
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in this example is to compute the local strain rate field in the RVE of the two-
phase composite. For simplicity, we initially demonstrate the establishment of the
localization relationship for the case of an applied isochoric simple compression
strain rate tensor on the RVE at the macroscale, with equal extension in lateral
directions, expressed as

' € 0 0
€=10 -058 0 (©6)
0 0 —05¢

We will subsequently discuss the extension of this localization relationship for other
imposed strain rate tensors.

3.2 Microstructure Variables and Local State Space

For this example, the local state space is comprised of two isotropic phases (H=2),
where h=1 identifies the first local state (phase) and h=2 the second one. We as-
sume each cell of the tessellated spatial domain to be completely filled with either
of the two local states (see Figure 1). Thus, the microstructure variable m” takes on
values of zeros or ones. For instance, if a given cell s is occupied by the first phase,
then m! =1 and m2 = 0.

3.3 First-Order Localization Relationship

Based on Egs. (3) and (4), the first-order localization linkage for the present prob-
lem can be expressed in the DFT space as

H=2 .
Sk(&s) = [Z ﬁﬁ*M{z] g, (7)
h=1

where & represents the local strain rate tensor in the spatial bin s, and € = 0.02s~!
is the macroscopically imposed strain rate in the e; direction on the RVE (see Eq.
(6)). It is also important to note that in the notation used in Eq. 11, both &g and B ﬁ*
are second-rank tensors. Introducing the constraints of Eq. (1) into Eq. 6 results in

1] . .
Tz0 (€s) = [( K- i*) MJSZ [’YII( MHE ®)
Jo (&) = |s| (éel R e1—0.5¢;, (R e2—0.58¢;3 ®e3> )

Eq. (9) simply indicates that the macroscopic strain rate on the RVE is the same
as volume averaged strain rate from the microscale. This happens to be true for
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the case study selected here. For other phenomena where this requirement does not
hold, additional attention needs to be paid in setting up Eq. (9) and may need s to
be modified appropriately with the use of higher-order terms in the series.

It is also important to recognize that if the 'yli are known, the local strain rate field
for any given microstructure dataset m/ subjected to the simple compression load-
ing condition selected here can be computed by applying Egs. (8) and (9) and
performing a simple inverse DFT.

3.4 Calibration of Influence Coefficients

As described earlier, the values of 71%: are established by regression analysis us-
ing datasets produced by FE models on selected microstructures. In our work, we
discovered that “delta” microstructures, consisting of one element of one phase
surrounded completely by another phase, are very convenient for the calibration
process and produce the best estimates for ¥j.. In a two-phase composite, it is pos-
sible to define only two distinct delta microstructures, and both of these were used
in the calibration process for this problem. This selection is also motivated by the
recognition that Egs. (8) and (9) represent a linear and space-invariant causal sys-
tem. For such systems, when the output for an impulse (i.e. delta microstructure)
is known, thean the output for any other microstructure input can be described as a
convolution of the input with the impulse response [Oppenheim et al. (1999)]. All
of the FEM results used in this study were generated using the commercial soft-
ware ABAQUS®), where each RVE contained 804,357 (93x93x93) cuboid-shaped
three-dimensional eight-noded solid elements. The use of cube-shaped elements
naturally defines a regularly spaced grid, conducive to the computation of the DFTs.
The macroscale simple compression strain rate was imposed on the finite element
mesh as a periodic uniform boundary condition. The values of 711( were estab-
lished as the best-fit values for the FE results on the two delta microstructures de-
scribed above, using standard linear regression analyses methods [Montgomery et
al. (2006)].

3.5 Validation of the MKS

The established 711( coefficients constitute the materials knowledge systems (MKS)
for the case study presented. In fact, the strain rate field for any other RVE compris-
ing any spatial arrangements of the same constituent phases, subjected to the same
simple compression loading condition, can be easily computed using Egs. (8) and
(9). As a critical validation of this concept, we explore the application of the MKS
established here to a random microstructure of the selected two phases. We selected
a random microstructure for our validation here because their rich diversity of local
neighbourhoods produce the most heterogeneous microscale strain rate fields in the
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composite, and therefore offer an excellent opportunity to evaluate the localization
relationships most critically. We note that we have successfully applied the MKS
developed here to a large number of microstructures, although only one example is
described here in detail. Figure 2 compares the local € component of the strain
rate field for the selected random microstructure using both the FE analysis and the
MKS approach developed in this work.

Figure 2: Comparison of the contour maps of the local € ;component of the strain
rate tensor for a 3-D microstructure. The middle section of the 3-D RVE used
in the calculation is shown at the top (a), while the predicted strain rate contours
by the FE method (b) and the MKS established in this work (c) are shown below.
Both phases are assumed to exhibit isotropic plasticity with yield strengths of 200
MPa and 250 MPa, respectively. The macroscopic simple compression strain rate
applied is 0.02 s~

The error between the predictions shown in Figure 2 from the MKS approach de-
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scribed here and the FEM analysis can be quantified in each spatial bin as

((&n )s)FEM — ((&n1 )S)MKS
€1

Errg = x 100 (10)
where the subscripts FEM and MKS indicate that the predictions were made using
FEM and MKS Methods, respectively. Based on the above definition, the average
value of Errg over all of the spatial bins for the microstructure shown in Figure
2 is only 2.2%. The FE analyses could not be performed on a regular desktop
PC. It was executed on an IBM e1350 supercomputing system (part of The Ohio
Supercomputer Center), and required 94 processor hours. In contrast, the MKS
method took only 32 seconds on a regular laptop (2GHz CPU and 2GB RAM).

3.6 Other Considerations

In the present case study, MKS was developed for a very specific loading condition
(i.e. simple compression strain rate tensor). In order to extend the MKS presented
here to general loading conditions, we need substantially more effort. Although
such an extension is beyond the scope of the present study, we outline below a
strategy to address this challenge. Towards this end, Eq. (11) could be generalized
as

H=2
mathfrakF(és) = Y By (€)mj: (11)
h=1

where the dependence of Bﬁ on the macroscale imposed strain rate tensor, €, is
explicitly noted. We therefore need to establish the functional dependence of ﬁﬁ
in the space of symmetric second rank tensors, which is a six-dimensional space.
However, if we elect to solve the problem in the principal frame of € (i.e. the
microstructure signal needs to be appropriately rotated), then the domain of interest
for describing ﬁﬁ reduces to a three-dimensional space. If we further exploit the
fact that the magnitude of € has no effect on the localization (a consequence of
the rate-independence of the plastic response) and we require € to be traceless (to
reflect volume conservation during plastic deformation), then the domain of interest
for describing ﬁﬁ can be expressed using a single angular variable [Van Houtte
(1994); Knezevic et al. (2009)]. The functional dependence of ﬁﬁ on this single
angular variable can be expressed conveniently using DFTs following the approach
outlined in our earlier work [Knezevic et al. (2009)].

As a final comment on this case study, we point out that the composite material
studied here had only a low contrast (yield strength ratio 1.25) in the properties
of the constituent phases (i.e. the yield strengths were 200 MPa and 250 MPa,
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respectively). Based on the various case studies we have successfully completed,
it is clear that the first-order influence coefficients provide good predictions for
composites with low and moderate contrasts. With moderatre (yield strength ratio
>3-5) or even higher contrasts (yield strength ratio >10) in the properties of the
constituents, it is imperative to include the second-order term shown in Eq. (3).

4 Case Study II: Spinodal Decomposition of a Binary Alloy
4.1 Physics of the Phenomenon

Spinodal decomposition [Cahn (1961)] is a phase transformation where a homoge-
nous mixture separates into regions of distinct chemical composition or phase.
Unlike most phase transformations in solids there is no thermodynamic barrier to
the separation, spinodal decomposition occurs completely by a diffusion clustering
mechanism, assisted by a negative energy gradient in free energy. This driving force
is modulated by the energy cost of creating an interface between the phase sepa-
rated regions. Phase separation by spinodal decomposition of a binary alloy into
two phases, denoted a and b, can be described by the well known Cahn-Hilliard
equation as [Cahn and Hilliard (1958); Novick-Cohen and Segel (1984)]

¢=V?D(c) <df(c) — KV2c> , (12)
dc

where c is a conserved order parameter describing the atomic fraction of phase b
at a given spatial point. f(c) is the free energy as a function of ¢, D is a diffusion
coefficient, and K is a property of the interface created by the phase separation.
The functional dependence of free energy on c is generally assumed to be a classic
double-well potential [Cahn (1961)], and is often approximated with a 4th-order
polynomial as

fle)=4F(*—1)%, (13)

where F is the height of the energy barrier between the two minima. Note that
f () has global minima at c =0 and ¢ = 1.

4.2 Microstructure Variables and Local State Space

For this example, the local state is in actuality adequately described by a single
variable, c. However, in developing the MKS, we found it much more convenient
to include Z—{ as an additional local state variable. Although ¢ and % are related to

each other by Eq. (13), the mapping from % to ¢ is not unique. Since the details of
structure evolution in this case study are strongly dependent on the spatial variation
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of %, we found it advantageous to include it in the description of the local state
as an additional parameter. Consequently, unlike the plasticity example where the
local state space was discrete, the local state space here is continuous and two-
dimensional (in the shape of a rectangle).

Our strategy in developing MKS for this case study would be to seek an appropriate
binning of the local state space. In the simple demonstration of our framework
presented here, we have defined four local states, indexed 1 thru 4, corresponding
to the corners of the rectangular-shaped local state space (i.e. the space identifying
all of the feasible combinations of ¢ and %). Any feasible local state can then
be thought of as a linear weighted combination of the local states 7 = 1 through
h = 4. Thus the microstructure variable m! takes continuous values between 0 and
1, reflecting the volume fraction of each of the selected corner local states. Also
note that H = 4 for the selected idealization.

It is possible to frame this problem using only c as the local state of interest. Note
however that Eq. 13 is nonlinear in ¢ with explicit dependence on both ¢ and %.
By defining the local state over both parameters, we are reducing the problem to a
linear system. It is expected (and will be demonstrated below) that the first order
terms in the MKS will fully capture the resulting local structure-structure evolution
linkages.

4.3 First-Order Localization Relationship

Following the same approach presented earlier for the plasticity case study, the
reduced first-order microstructure evolution linkage can be expressed in the DFT
space as (see Egs. (8) and (9))

3
~ . * h ~ .
Jk#0 (¢s) = Z ’VI}(’ My, TJo(é)=0 (14)
h=1

where ¢ is the time rate of change in ¢ in spatial bin s. Note that the order parame-
ter ¢ is conserved, and that the average of ¢; over the RVE is identically zero. Thus
the form of Eq. (14) is slightly different than Eqs. (8) and (9) in that there is no
macroscopically applied term. Also in this case both ¢, and the coefficients %" are
scalars. As in the previous example, once the y{(’ are known, ¢, can be readily com-
puted for any microstructure, m!, using Eq. (14) and performing the inverse DFT.
The microstructure can then be evolved by any suitable time integration method. In
this work, we used a simple Euler forward scheme.

4.4 Calibration of Influence Coelfficients

In the previous example, the materials knowledge system was calibrated to FE mod-
els. For the present case study, we established the MKS by calibrating Eq. (14) to
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results from a phase field model (Courtesy of Yunzi Wang, The Ohio State Univer-
sity) that has been previously demonstrated to successfully simulate the separation
of a binary alloy via spinodal decomposition. Generally, the initial conditions for
the phase field simulations are a uniform field perturbed from equilibrium by a
Langevin Noise [Lax (1966)], and the boundary conditions are prescribed to main-
tain the assumed periodicity of the structure. One such simulation was performed
on a 1000x1000 grid with a time step of /Ar = 0.2s until a final time of 400s, at

which time the system is completely phase separated. The fields ¢; , (Z—f) , and ¢
)

were stored at the initial, final and two intermediate time steps as shown in Figure
3. These datasets were used to calibrate the influence coefficients in Eq. (14) using
standard linear regression analysis methods [Montgomery et al. (2006)].
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Figure 3: Datasets obtained at selected times in the evolution of a specific phase
field simulation that were used in the calibration of the influence coefficients.



A Novel Framework for Building Materials Knowledge Systems 119

4.5 Time Integration

Since MKS described above produces a linkage between the time rate of change
in the structure variable (see Eq. (14)), we need to select an appropriate time inte-
gration scheme to update the structure at the end of a given time step, so that we
can effectively march forward in time. In the present work, we employed a simple
Euler forward scheme expressed as

s (t+ At) = ¢ (1) + Atés. (15)

Once the microstructure is updated, time is reset to t = ¢ + /At, and this process is
repeated until the desired final time is reached. The same time step that was used
in the phase field model was used with the MKS method.

4.6 Validation of the MKS

For validation of the MKS developed here, we simulated spinodal decomposition
in the same material system (i.e. same values of materials parameters D, K, and F;
see Eqgs. (12) and (13)) with different initial microstructures (i.e. different perturba-
tions from equilibrium by a Langevin Noise [Lax (1966)]). In all of the examples
we tested, the predictions from MKS matched exactly with the corresponding pre-
dictions from Phase-field models, keeping errors within machine precision levels.
Figure 4 shows a comparison for one such validation example, where we directly
compare the conserved field predicted by MKS with the corresponding prediction
from phase-field models. The local error in the predicted conserved field variable
at any spatial point in the RVE in the entire simulation was on the order of machine
precision (less than 1 x 107'2). The computational time savings for this class of
problems was observed to be about a factor of two in favour of the MKS method.

4.7 Other Considerations

The MKS system developed for the spinodal decomposition case study produced
significantly lower level of computational savings compared to the earlier case
study on plastic deformation. This is mainly because the governing equations in
this case study are relatively simple. We should see significant savings in the MKS
method when the governing equations are complex and require a large number
of computations at each time step (solving a set of stiff nonlinear equations as in
the case of plasticity case study). Even though we attained only a modest com-
putational advantage for this case study, it is worth remembering that the MKS
approach can be applied to much larger datasets compared to the phase-field ap-
proach. This is mainly because of the localization relationship in the MKS that
only extends the influence at any spatial location to a finite neighbourhood. Also



120 Copyright © 2010 Tech Science Press CMC, vol.17, no.2, pp.103-125, 2010

Ci‘vﬁ' K5
100 100 1
a0 a0
+—0s B0 B
A0 40
20 20
50100

100 100
80 a0
+ =045 B0 B0
40 40

20 20

¢ SPFM
50 100
50 100

al 100

100 100 ms
a0 a0
] -
40 [ 40 - v
20 20
50 100 50 100
100 mRy 100 wRmy 1
a0 D a0 Ao
t =405 B0
40 40
20 20

a0 100 a0 100

Figure 4: A comparison between the predicted conserved fields from the MKS
approach and the phase-field model. The initial field as well as its evolution at
various intermediate stages during the spinodal decomposition process are captured
in these plots. The maximum discrepancy at any spatial location between the two
predictions is less than 1 x 10712,
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since the localization relationship can be applied to each spatial bin independently,
the MKS approach is much more amenable to parallel computations.

5 Conclusions

We have presented a novel mathematical framework for building a comprehen-
sive materials knowledge system (MKS) to extract, store and recall hierarchical
structure-property-processing linkages. The framework is very general and can be
applied to a broad range of physical phenomena in a broad range of material sys-
tems. We have presented novel FFT (Fast Fourier Transforms)-based algorithms
for data-mining local structure-response-structure evolution linkages from large nu-
merical datasets produced by established modelling strategies for microscale phe-
nomena. The viability of this new approach was demonstrated with two selected
case studies whose governing field equations exhibit a high degree of non-linearity.
In both cases, it was noted that the first-order influence coefficients adequately
captured the localization relationships in spite of the non-linearity inherent to the
phenomena. It was generally observed that the higher-order coefficients are needed
with higher contrast in the local response of the constituent local states.
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