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Stress Field Effects on Phonon Properties in Spatially
Confined Semiconductor Nanostructures

L.L. Zhu1,2,3 and X.J. Zheng1,2

Abstract: The phonon properties of spatially confined nanofilms under the pre-
existing stress fields are investigated theoretically by accounting for the confine-
ment effects and acoustoelastic effects. Due to the spatial confinement in low-
dimensional structures, the phonon dispersion relations, phonon group velocities
as well as the phonon density of states are of significant difference with the ones
in bulk structures. Here, the continuum elasticity theory is made use of to deter-
mine the phonon dispersion relations of shear modes (SH), dilatational modes (SA)
and the flexural modes (AS), thus to analyze the contribution of stress fields on the
phonon performance of confined nanofilms. Our numerical calculations indicate
that the phonon properties can be modified by the preexisting stress fields signifi-
cantly. The influence of the stress field on the phonon energy, phonon group veloc-
ity and the phonon density of states are sensitive to the strength and the direction
of stress fields. The results in this paper can offer an alternative and applicable ap-
proach for phonon engineering to control the phonon properties in semiconductor
nanostructures.

Keywords: spatially confined nanofilms, phonon engineering, continuum elas-
ticity theory, acoustoelastic effects, phonon dispersion relation, phonon group ve-
locity, phonon density of states.

1 Introduction

In recent decades, rapid progress in the area of scientific and technical research
has created promising the great potential applications in modern industry for the
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nanostructures due to their novel or enhanced electric, magnetic, optical and me-
chanical properties with respect to the corresponding bulk materials [Wharam et al
(1988); Lee et al (1995); Huang et al (2001); Gudikson, Wang and Lieber (2002);
Bauer, Birenhaum and Meyer(2004); McGary et al (2006)]. The semiconductor
nanostructures have been playing a vital role in the potential future devices such
as the nanoelectronic or nanomechanical devices. Many of the current research ef-
forts identified that the acoustic phonon properties of such nanostructures exhibit
great contributions on the electronic, thermal and optical performance of materi-
als. For example, the confined phonon properties of nanostructures lead to the
modification of the phonon-electron interaction in nanodevices [Banov, Aristov
and Mitin (1995); Grosse and Zimmermann (2007)], and the phonon properties
of nanostructures can alter the thermal transport in thermoelectric materials sig-
nificantly [Balandin, Pokatilov and Nika (2007); Cahill et al (2003)]. Therefore,
the phonon engineering in the semiconductor nanostructures, including the control
and manipulation of acoustic reflectivity, phonon group velocity, density of states,
polarization, etc., has been providing the effective method in the control of the
electric, thermal and optical properties in nanodevices [Balandin (2005); Balandin,
Pokatilov and Nika (2007); Hepplestone and Srivastava (2010)].

For the sake of better application of the phonons in nanostructures, researchers have
been focusing on seeking the effective ways, such as designing different struc-
tural geometric size or components, to tailor the properties of phonons such as
the phonon dispersion relations, the phonon density of states and the group veloc-
ity etc [Balandin, Pokatilov and Nika (2007); Lanzillotti-Kimura et al (2007a,b)].
Pokaitilov et al. (2004) made use of the continuum model to study the modification
of the acoustic phonon spectrum in the cladding and core layers of semiconductor
herostructures, and demonstrated the phonon quantization by tuning the thickness
of the structures. Moreover, the influence of the elastically dissimilar barriers was
also investigated on the acoustic phonon spectra and phonon propagation in rect-
angular coated nanowires, which could be used for reengineering the properties
of phonons in nanodevices [Pakatilov, Nika and Baladin (2005a,b)]. Based on
the point of view of phonon engineering, the thermal properties of semiconduc-
tor nanostructures are theoretically studied by considering the spatial confinement,
which can be modified by tuning the phonon dispersion relations [Zincenco et al
(2007); Zou, Lang and Richadson (2006)]. For the impact of the phonon engi-
neering on electric properties, Nika et al (2008) revealed that the phonon spectrum
modification in the silicon/diamond heterostructure can enhance the electron mo-
bility in the ultrathin Si layer which is benefited in the applications of electronic
nanodevices. Simultaneously, the phonon engineering through tailoring phonons
properties has been extensively used in the design of the THZ phonon devices, the
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creation and control of the phononic band gaps and the adjustment of the electron-
phonon interaction. For instance, the properties of the acoustic phonons such as the
phonon dispersion and spectra were investigated in theory and in experiments for
the nanocavities and the multilayer acoustic nanowave devices [Lanzillotti-Kimura
et al (2006); Lanzillotti-Kimura et al (2007a,b)].

On account of the existence of the surface/interface scattering and the spatial con-
finement of the phonons, the properties of the phonon in nanostructures such as
the phonon dispersion relations are distinct to the one of the corresponding bulk
materials remarkably. Thereby, the comprehensive knowledge of the phonon per-
formance in nanostructures is required to provide a useful favor for the wide use
of semiconductor nanostructures in nanodevices. The phonon properties in the
low-dimensional semiconductors, e.g., semiconductor superlattice films, quantum
wells, quantum wires and nanowires, have been studied using several different
methods in the last decade [Kanellis, Morhange and Balkanski (1980); Stroscio
and Dutta (2001); Mingo and Yang (2003); Hepplestone and Srivastava (2006);
Balandin, Pokatilov and Nika (2007); Saib et al (2009); Lang et al (2009); Rino et
al (2009)]. In general, the elastic continuum models are employed to investigate the
effects of space confinement on the properties of phonons in nanostructures [Ban-
nov, Aristov and Mitin (1995); Pokatilov, Nika and Balandin (2003); Zou, Lang
and Richadson (2006); Peng, Chen and Zou (2007); Saib et al (2009); Lang et al
(2009)]. This approach provides an adequate description of the properties of acous-
tic phonons in nanostructures. Besides, the lattice dynamical models with different
forms are always utilized to discuss the acoustic phonon dispersion relations of
nanostructures [Hu and Zi (2002); Ming and Yang (2003); Hepplestone and Sri-
vastava (2006)]. Moreover, scalar model based on elasticity theory was adopted to
study the ballistic thermal transport in nanostructures with low temperature [Santa-
more and Cross (2001); Li et al (2004)].

Despite some efforts being carried out to understand the interaction between the
phonons and the strain/stress fields [Bhowmick and Shenoy (2006); Trubitsin and
Dolgusheva (2007); Saib et al (2008); Pham and Cagin (2010)], it is still very
scarce to give an insight into the influence of the stress field on the properties of
phonons in nanostructures. Rouvaen et al (1977) analyzed the nonlinear elastic in-
teraction between acoustic bulk and surface wave when the thin film is subjected
to the surface stress with possible applications in the nonlinear scanning and signal
processing. Osetrov et al (2000) studied the acoustoelastic effects for the layered
heterostructures by the transfer-matrix method and suggested that the acoustic wave
propagation could be modified notably by the residual stress and third-order stiff-
ness constants. Gross and Zimmermann (2007) investigated the electron-phonon
interaction in embedded semiconductor nanostructures by accounting for the strain
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within the continuum elasticity, which can change the phonon characteristics in the
structures. Motivated by this point, the analysis of the relationship between the
stress fields and the properties of phonons can provide an alternative approach for
the phonon engineering in semiconductor nanostructures. In addition, it is worth to
notice that the considerably higher stresses can occur in the practical applications
of nanodevices and the preparation process for the nanostructures. Consequently,
the theoretical study for the performance of phonons in stressed nanostructures is
essential and of significant importance not only in the fabrication and design of
nanodevices but also in the measurement of physical properties of semiconductor
nanostructures.

This work employs the continuum elastic model to describe the properties of phonons
in nanostructures, which involves the effects of the strain/stress fields on the phonon
characteristics such as the phonon dispersion relation, group velocity and the state
density in semiconductor nanofilms. The quantitative results are addressed to illu-
minate the fact that the stress fields can impact the phonon performance of different
phonon modes in nanofilms significantly. The effects of the stress fields on phonon
properties are associated with the direction of the stress and the type of phonon
modes. Following this introduction, section 2 presents the theoretical description
of the phonons in stressed nanofilms. In section 3, the analytical expressions of
the phonon dispersion, group velocity and the state density are addressed. The nu-
merical results for the properties of phonons with three different modes in stressed
nanofilms and the conclusions are drawn respectively in section 4 and section 5.

2 Elastic continuum model for acoustic phonons

The continuum elasticity theory has been, in general, utilized to characterize the
acoustic phonon properties of spatially confined nanostructures. The acoustic phonon
of free-standing nanofilms is often given as an example to monitor the features of
phonon modes in confined nanostructures. In the acoustoelastic theory, the acoustic
propagation under residual stresses is commonly explored in a prestressed body, in
which the original state free of stress and strain is denoted to the natural state. Af-
ter the wave motion superposed to the initial state, the structure is deformed to the
final state. In the following, the continuum description of the acoustoelastic effects
is addressed for the semiconductor nanofilm with the existence of prestress fields.

Consider a nanofilm subjected to the lateral stress, which is biaxial and equal in
both directions. Suppose the film as the isotropic material in the natural state, the
initial stress of the nanofilm can follow

σ
0
11 = σ

0
22 = σ0,σ

0
3i = 0. (1)

Here, σ0
i j is the static stress tensor, the subscript 1 and 2 denotes the in-plane direc-
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tions, and subscript 3 is the transverse direction. Based on the stress-strain consti-
tutive in elasticity theory, the initial strain can be yielded as

u0
11 =

s22− s12

s11s22− s2
12

σ
0,u0

22 =
s11− s12

s11s22− s2
12

σ
0,u0

33 =−c13

c33
u0

11−
c23

c33
u0

22, (2)

in which s11 = c11− c2
13/c33,s12 = c12− c13c23/c33,s22 = c22− c2

23/c33, u0
i j is the

static strain tensor, ci j is the elastic modulus tensor. Because of the existence of
the biaxial stress in the nanofilm, the second elastic modulus is modified as well
as the equation of motion for elastic vibration, which is addressed to describe the
phonons in nanostructures as follow

ρ
new ∂ 2ui

∂ t2 =
∂

∂x j
(C̄i jkl

∂uk

∂xl
)+σ0

∂ 2ui

∂x2
1

. (3)

Here, ui is the displacement vector, ρnew ≈ ρ(1−∆u0) is the density after static
strains, in which ρ is the density of the natural state and ∆u0 = u0

11 +u0
22 +u0

33. The
effective elastic modulus C̄i jkl is expressed as

C̄i jkl = ci jkl(1+u0
ii +u0

j j +u0
kk +u0

ll−u0
11−u0

22−u0
33)+ ci jklmnu0

mn, (4)

where ci jkland ci jklmn are the natural second- and third-order elastic modulus ten-
sors. The non-zeroed components of the effective elastic modulus can be written
explicitly as

C̄11 = c11(1+2u0
11−u0

33)+(c111 + c112)u0
11 + c112u0

33

C̄33 = c11(1+2u0
11−u0

33)+2c112u0
11 + c111u0

33

C̄13 = c12(1+u0
33)+(c123 + c112)u0

11 + c112u0
33

C̄12 = c12(1+u0
33)+2c112u0

11 + c123u0
33

C̄44 = c44(1+u0
33)+(c144 + c155)u0

11 + c155u0
33

, (5)

in which C̄11 = C̄22,C̄23 = C̄13,C̄55 = C̄44,C̄66 = (C̄11−C̄12)/2. Consequently, the
equation of motion for elastic vibration in nanofilms with biaxial stresses can be
given by

(C̄11 +σ0)u1,11 +C̄66u1,22 +C̄44u1,33 +(C̄12 +C̄66)u2,12 +(C̄13 +C̄44)u3,13

= ρnew ∂ 2u1
∂ t2

(C̄66 +σ0)u1,11 +C̄11u1,22 +C̄44u1,33 +(C̄12 +C̄66)u1,12 +(C̄13 +C̄44)u3,23

= ρnew ∂ 2u2
∂ t2

(C̄44 +σ0)u3,11 +C̄44u3,22 +C̄33u3,33 +(C̄13 +C̄44)u1,13 +(C̄13 +C̄44)u2,32

= ρnew ∂ 2u3
∂ t2
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(6)

Here, ui, jk = ∂ 2ui/∂x j∂xk. When the thermal energy or the acoustic waves prop-
agate along the x1 direction, the displacements of the nanofilms are the functions
of x1 and x3 and one can look for the solution of the Eq.(6) in the form of u =
ū(x3)exp[i(ωt−q0 ·x1)], in which ω is the frequency and q0 is the wave vector. By
substituting these forms into the equation of motion, the eigenvalue equation can
be obtained as

Dū(x3) =−ρ
new

ω
2ū(x3), (7)

where

D =


C̄44

d2

dx2
3
− (C̄11 +σ0)q2

0 0 −iq0(C̄13 +C̄44) d
dx3

0 C̄44
∂ 2

∂x2
3
− (C̄66 +σ0)q2

0 0

−iq0(C̄13 +C̄44) d
dx3

0 C̄33
d2

dx2
3
− (C̄44 +σ0)q2

0

 .

(8)

(a) For the shear modes (SH) in nanofilms, one can get u = (0,u2,0). Substituting
it into Eq.(7), the eigenvalue equation is simplified as

C̄44
d2ū2

dx2
3

+[ρnew
ω

2− (C̄66 +σ
0)q2

0]ū2 = 0 (9)

Then, the dispersion relation of SH mode can be obtained as

ρ
new

ω
2 = C̄44q2

x3 +(C̄66 +σ
0)q2

0. (10)

(b) For dilatational modes (SA) and the flexural modes(AS), the solutions of the
displacement in x2direction is disappeared, resulting in the eigenvalue equation
given asC̄44

d2ū1
dx2

3
− iq0(C̄13 +C̄44)dū3

dx3
+[ρnewω2− (C̄11 +σ0)q2

0]ū1 = 0

C̄33
d2ū3
dx2

3
− iq0(C̄13 +C̄44)dū1

dx3
+[ρnewω2− (C̄44 +σ0)q2

0]ū3 = 0
(11)

In this case, the dispersion relation of SA mode and AS mode must be solved by
the numerical method. Combining with the boundary condition of nanofilm,

σ33 =−iq0C̄13ū1 +C̄33
∂ ū3

∂x3
= 0;σ13 =

∂ ū1

∂x3
− iq0ū = 0;σ23 =

∂ ū2

∂x3
= 0, (12)
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three independent vibrational polarizations can be turned out by using numerical
method, leading to the determination of the phonon dispersion relations with the
shear modes(SH), dilatational modes(SA) and the flexural modes(AS) of nanofilms
[Bannov, Aristov and Mitin (1995)]. It is worth to note that the dispersion relations
of these modes are all relevant to the stress field because of the presence of the ini-
tial stress in the effective elastic modulus and vibrational equations of the acoustic
phonons.

3 The dispersion relations of confined phonons in prestressed nanofilms

For the macroscopic characteristics of semiconductor nanostructures, such as ther-
mal conductivity, heat capacity etc., it is required to determine the phonon proper-
ties, e.g., the phonon group velocity, the phonon density of states etc. Based on the
derivation in Sect.2, the phonon dispersion relation of SA and AS modes are solved
by using the finite difference method with the phonon wave vector q0 from interval
q0 ∈ (0,π/ã) in which ã is the lattice constant. Since this work basically focuses on
the impact of the stress fields on the phonon properties of spatial confined nanos-
tructures, we suppose the nanofilm with smooth surfaces in which the boundary
scattering does not contribute to the phonon performance. From the determined
vibrational spectrum of nanofilms, the phonon group velocity of three modes can
be given by a numerical differentiation

vSA,AS,SH
n (q) = dω

SA,AS,SH
n (q)/dq, (13)

in which q and ω are the phonon wave vector and the honon frequency, respec-
tively. Herein, the subscript n is the quantum number of the modes. With a given
polarization, n equals to the ratio H/2ã, where H is the thickness of the film. The
average phonon group velocity thus can be reached by the following formula

V̄ = {
M(ω)

∑
N=1

[vSA,AS,SH
s (ω)]−1/M(ω)}−1. (14)

in which M is the total number of phonon branches. In a 2D nanostructure [Zou,
Lang and Richadson (2006)], the phonon density of states of each branch can be
defined by

f SA,AS,SH
n (ω) = [qSA,AS,SH

n (ω)/vSA,AS,SH
n (ω)]/2πH. (15)

where qn is the wave vector of the phonon branch n. Thus, the total density of states
for all polarizations is obtained by a summation over all n,

FSA,AS,SH(ω) = ∑ f SA,AS,SH
n (ω). (16)
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Note that due to the presence of stress which alters the effective elastic modulus and
the density of deformed state, the phonon dispersion relations for SH, SA and AS
modes will depend on the stress field, leading to the change of the phonon group
velocity and the total density of states.

4 Numerical results and discussion

In order to quantitatively characterize the phonon of confined semiconductor nanofilms
in the stress fields, we perform numerical calculation based on silicon nanofilms
with the thickness as 5.42nm to study the corresponding properties of phonons.
The bulk elastic parameters ci jkl and ci jklmn of semiconductors are obtained from
Ref. [Hearmon (1979)]. First, we consider phonon models of the shear polariza-
tion for which the effects of quantization and the stress field are performed in more
pronounced way than those in SA and SA polarizations. Figure 1 shows the dis-
persion relation with the presence of positive and negative stress for a set of shear
modes. One can see from the figure that the phonon modes are quantized in the
region nearby the Brillouin zone center for spatially confined nanofilm and the cut-
off phonon energy (q=0) is independent on the preexisting stress field. However,
the slope of each dispersion curve for shear modes is sensitive to the stress field
as well as the characteristic line L which is approximately equal to the transverse
wave velocity of the film. The results display that the negative stress makes the
phonon energy increased whereas the positive one weakens the phonon energy. It
must be pointed out that the influence of the negative stress on the phonon energy
of shear modes is more significant than the one of positive stress.

Figure 2 depicts the group velocity of SH modes varied with wave vector under
stress fields. Note that the preexisting stress can alter the group velocity remark-
ably. In the Brillouin zone center the slope of the linear phonon group velocity
with respect to the wave vector is changed on account of the existence of the stress
fields, that is, the positive stress makes the slope lower down and the negative one
enhances the slope of the phonon group velocity. With increasing the wave vector
the slopes of all curves of phonon group velocity decrease and then reach a limit as
the transverse wave velocity of the film, which is associated with the magnitudes
and direction of the stress field. We also present the phonon density of states as a
function of the phonon energy (seen in figure 3). It can be noticeable to find that
there exists the oscillatory behavior of the density of states which can be interpreted
by the manifestation of the phonon mode quantization in the confined nanofilms.
Each step in the density of states refers to the onsets of new phonon branches when
their cut-off energy is approached. It is interesting to note that the preexisting stress
fields have no contributions on the range of phonon energy for the oscillatory be-
havior. This is because of the fact that the cut-off energy is independent on the
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Figure 1: Phonon energy of SH modes as a function of the wave vector with the
positive and negative stresses
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Figure 2: The phonon group velocity varied with the wave vector under positive
and negative stress field
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stress fields as shown in figure 1. In addition, we can also observe that the positive
stress increases the density of states while the negative stress makes the decrement
of the density. The trend of the density of states varied with stress field is contrary
with the ones of the phonon energy or the group velocity as the functions of stress
fields, that is because the phonon density of states is inversely proportional to the
phonon velocity as shown in Eq.(15).
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Figure 3: The phonon density of states as a function of phonon energy with different
stress fields

Owing to the presence of the stress fields in spatially confined nanofilms, the an-
alytical expressions of the dispersion relations for SA modes and AS modes can
not be addressed exactly, resulting in that the numerical method must be adopted
to solve Eq.(11) combing with the boundary conditions in Eq.(12). Through nu-
merical calculation, the curves of phonon energy for SA modes and AS modes are
given in figure 4 as the functions of wave vector under different stress fields. One
can see from the figure that the cut-off energy for the lower-order modes is irre-
spective to the stress fields, while with increasing the orders of modes, the corre-
sponding cut-off energy are relevant to the preexisting stresses. Similarly, the neg-
ative/positive stress can induce the phonon energy increase/decrease for SA modes
and AS modes, but the effects of stress fields on the phonon energy for SA modes
and AS modes are weaker than the ones for SH modes. It also can be found that the
stress field can modify the slope of the characteristic line L which is the velocity of
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Figure 4: The phonon energy of SA modes and AS modes varied with wave vectors
under different stress fields. a)SA modes with positive stress; b)SA modes with
negative stress; c)AS modes with positive stress and d) AS modes with negative
stress.



Stress Field Effects on Phonon Properties 313

0 5 10 15 20 25 30 35

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Solid: No stress 
Dotted: -20GPa   
Dashdot:20GPa    

(a) 

Phonon Energy (meV)

A
ve

ra
ge

 G
ro

up
 V

el
oc

ity
 (m

/s)

 

Solid: No stress 
Dotted: -20GPa   
Dashdot:20GPa    

Phonon Energy (meV)

A
ve

ra
ge

 G
ro

up
 V

el
oc

ity
 (m

/s)

0 5 10 15 20 25 30 35
1000

2000

3000

4000

5000

6000

7000

8000
(b)  

 

Figure 5: The average phonon group velocity of SA modes and AS modes as the
functions of phonon energy with different stress fields

longitudinal wave in films. The velocity becomes greater when the nanofilm is un-
der negative stress and it is fallen down for the positive stress. Moreover, the slopes
of energy curves for high-orders modes under stress fields are all greater than the
ones without preexisting stress field in the range of the large value of wave vector.

With the aid of the determined dispersion relations of SA modes and AS modes,
the consequent average phonon group velocity and average phonon density of states
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Figure 6: The average phonon density of states of SA modes and AS modes varied
with phonon energy under different stress fields. a)SA modes with positive stress;
b)SA modes with negative stress; c)AS modes with positive stress and d) AS modes
with negative stress.
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can be scraped according to Eqs.(14) and (16), as shown in figures 5 and 6 respec-
tively. It can be noticed from figure 5 that the group velocities of SA modes and
AS modes exhibit the oscillatory behaviors with variation of phonon energy. In the
limit of the phonon energy with oscillatory, the negative stress leads to increasing
the average group velocities and the positive one decreases the average group ve-
locities. Whereas, in the range of the large phonon energy, e.g. greater than 20
meV, the group velocities with the preexisting stress fields are greater than the ones
in the absence of the stresses, which are independent on the direction of the stress
fields. This can be explained by the fact that, in the case of the existence of stress
fields, the slopes of curves for the phonon energy in dispersion relation (seen in
figure 4) are all greater than the ones without stress fields in the limit of the large
phonon energy. Figure 6 shows the phonon density of states for SA modes and
AS modes varied with the phonon energy. Similarly, the effects of stress on the
density of states for SA modes and AS modes are in accordance with the ones for
SH modes when the density of states increases with the increment of the phonon
energy. However, when the density of states decreases with increasing the phonon
energy, the negative stress enhances the densities and the positive one makes the
densities decrease. On the other hand, one can notice from figures 3 and 6 that the
influences of stress fields on the density of states for SH modes are more apparent
than the ones for AS modes and SA modes. In addition, it is valuable to point out
from figure 1 to figure 6 that the positive stress influences the phonon properties of
nanofilms more remarkably than the negative one does.

5 Conclusion

In summary, the phonon properties of spatially confined semiconductor nanostruc-
tures have been studied under the preexisting stress fields with the aid of the contin-
uum elasticity theory which are usually utilized to describe the confinement effects
of the semiconductor nanostructures. Taken into account the acoustoelastic effects
stemmed from the presence of stress fields, the phonon dispersion relations for SH
modes, SA modes and AS modes in semiconductor nanofilms are calculated to
investigate the impacts of the stress fields on the phonon energy, phonon group ve-
locity as well as the density of states in different modes. Numerical results reveal
that, for these three polarization modes in nanofilms, the stress field effects on the
phonon properties are related to the strength and the direction of stress fields. The
negative stress enhances the phonon energy and the phonon group velocity while
weakens the density of states. When the nanofilms are subjected to the positive
stress, the phonon energy and the phonon group velocity are decreased and the
density of states turns greater. With the same magnitude for the stresses, the pos-
itive ones have more contributions on the phonon performance than the negative
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ones have. Moreover, the influences of tress fields on the phonon properties for SA
modes and AS modes is weaker than the ones for SH modes. The results presented
in this paper can provide an alternative methodology to tune the phonon properties
so as to enhance the performance of various semiconductor-based nanoelectronic
devices by controlling the preexisting stress fields.
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