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Multi-Disciplinary Optimization for Multi-Objective
Uncertainty Design of Thin Walled Beams

Fangyi Li1, Guangyao Li2,3, Guangyong Sun2, Zhen Luo4 and Zheng Zhang2

Abstract: The focus of this paper is concentrated on multi-disciplinary and
multi-objective optimization for thin walled beam systems considering safety, nor-
mal mode, static loading-bearing and weight, in which the uncertainties of the pa-
rameters are described via intervals. The size and shape of the cross-section are
treated as design parameters during optimization. Considering the lightweight and
safety, the design problem is formulated with two individual objectives to measure
structural weight and maximum energy absorption, respectively, constrained by the
average force, normal mode and maximum stress. The optimization problem with
uncertainties is further transformed into a deterministic optimization based on in-
terval number programming. The approximation models, coupled with the design
of experiment (DOE) technique, are employed to construct objective functions and
constraints. The uncertain optimization problem characterized with these approx-
imation models is performed and applied to a practical thin walled beam design
problems.

Keywords: crashworthiness; multi-disciplinary multi-objective optimization; un-
certainty; interval programming; approximation model

1 Introduction

Thin-walled beams are widely used in automotive industry and other engineering
applications as energy-absorbing components to attenuate the initial kinetic energy
so as to enhance the safety of occupants in the event of the crash accidents (Kurtaran
et al. 2002). Therefore, it is of importance to investigate their energy absorption
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mechanisms and to optimize structural performance responses by considering both
crashworthiness performance and manufacturing costs (e.g. component weight).
However, most conventional design methods are limited to models and parameters
under deterministic assumption, in which all the design variables and parameters
involved are assumed to be certain and no variability in the simulation outputs. In
practical engineering problems, it is noted that the uncertainty and randomness are
most inherent and inevitably involved in stages of structural designs, such as uncer-
tainties and randomness relevant to geometries, boundary and loading conditions
and material properties. In such case, the final design achieved via the deterministic
optimization may not well satisfy the desired goal or sometimes become unfeasi-
ble due to the variability of structural performance. Although the deterministic
method has been successfully applied to a range of practical design problems, there
is an increasing demand to consider non-deterministic factors in the procedure of
real-world structural designs in order to ensure structural safety and to avoid occur-
rence of breakage and collapse in extreme events in the presence of uncertainties
(Schueller and Jensen 2008).

In the past two decades, the finite element analysis oriented optimization has been
developed as an effective tool to seek a desirable crashworthiness design for a full
vehicle or its components (Jansson et al. 2003; Forsberg and Nilsson. 2006; Dud-
deck. 2008). As aforementioned, the dominant optimization techniques by far are
deterministic methods which are used to improve thin-walled beam designs by in-
corporating some unknown variables of size and shape parameters. For instance,
Zarei et al. (2006) studied multi-objective crashworthiness design optimization of
circular aluminum tubes. Hou et al. (2008) proposed a multi-objective optimization
of multi-cell sections for the crashworthiness design, by maximizing the energy
absorption and at the same time minimizing the peak force. Lanzi et al. (2004)
proposed multi-objective optimization of composite absorber shape under crash-
worthiness requirements. However, the uncertainties relevant to gauge thickness,
geometry and material parameters of are not considered in the above mentioned
studies. To obtain a reliable design, uncertainty should be considered in the de-
sign process of the crashworthiness of the thin-walled beams. Zhu et al. (2007)
studied the front side rail lightweight design based on robust optimization method.
Lönn et al. (2009) proposed an approach to robust optimization of impact problem
using meta-models, which are created for both the mean value and the standard
deviation of the response. The above mentioned works all used the probability
method, in which system parameters of uncertainty were treated as stochastic num-
bers based on precise probability distributions. Unfortunately, for design problem
of thin walled beam, it is generally difficult and computationally cost to specify a
precise probability distribution.
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Thus, to overcome the aforementioned difficulty of probability methods, it is grad-
ually important to seek efficient optimization method for the design of thin walled
beams with uncertainties. In recent years, it can be found that the interval method
has been applied to model uncertainties in a wide range of structural design prob-
lems, in which only the bounds of the uncertain parameters are needed rather than
their precise probabilistic distributions. In terms of the interval method, a new fam-
ily of optimization methods for uncertain problems, interval number programming,
has been attracted much attentions. Since most of the practical engineering prob-
lems are nonlinear, it is generally difficult to express interval numbers in an explicit
form based on simulation analysis models. Hence there have been some research
efforts which focus on nonlinear interval number programming (NINP). Ma (2002)
used a deterministic optimization method to obtain the interval of the nonlinear ob-
jective function and then converted it into a three-objective optimization problem.
Jiang et al. (2007a,b,c) recently proposed an NINP model used to transform a gen-
eral NINP problem to a deterministic optimization, and further developed several
efficient algorithms to solve the transformed two-layer optimization problem. Jiang
et al. (2007d) has applied the interval uncertain optimization to thin-walled beams,
in which the approximation models are managed by a sequence of sub-problems
in the uncertain design space. Zhao et al. (2010) proposed a new method of non-
linear interval-based programming problem based on approximation models and a
local-densifying method, which is applied to the pratical thin-walled beams. Li et
al. (2010) studied the thin-walled beam problem using multi-objective uncertain
optimization method, in which the uncertain parameters are modeled by interval
number. These studies have shown the importance and the necessary to introduce
interval programming to the design of thin-walled beams.

However, it is noted that most of the above mentioned methods focus only on sin-
gle disciplinary application of thin-walled structures rather than several different
disciplines. As a matter of fact, there has been a increasingly demand to include
multiple disciplinary measures, such as safety, NVH, durability, and other attribute
performances, into the analysis of the thin walled beam structures. In contrast to a
number of optimization designs of single disciplinary, there are few reported stud-
ies concentrated on the multidisciplinary optimization of the thin-walled structures,
although such structures are mostly characterized with multidisciplinary design re-
quirements. In this study, we only limit the discussion to multidisciplinary de-
sign optimization (MDO) which in most cases can be equivalently represented as a
multi-objective programming scheme. The general approach for a multi-objective
design problem is to convert the multiple individual objectives into an aggregated
single objective function via direct weighting method and other compromising pro-
gramming schemes (Luo et al., 2005), so as to find the desirable Pareto solutions.
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However, it is not easy even for an experienced design engineer to identify a pre-
dominant objective from a long list of design requirements of MDO problem (Wang
et al. 2007). Furthermore, there often exist uncontrollable variations or uncertain-
ties in parameters of MDO problems. Hence, it is necessary to develop a multi-
disciplinary optimization method including uncertainties for multi-objective design
of the thin walled beam structures.

2 Statement of the problem

The optimization problem can be specifically stated as a multidisciplinary problem
involving the “disciplines” of safety, static load-bearing and the first order vibra-
tion mode. In safety discipline, the thinned walled beam is a key part of energy
absorption in the frontal crash and its structural crashworthiness performance is
commonly represented by the deformation mode and the absorbed energy. This
can affect greatly the crash performance of full vehicle. For the human safety is-
sues, the mean crushing force Fa that occurs during the crash should be under cer-
tain criteria, which is very important in the automotive design and manufacturing.
Therefore the structural crashworthiness performance of the front side rail should
be guaranteed primarily in the design process. In static bending discipline, the thin
walled is subjective to the load to test the structure maximum stress. In normal
mode discipline, the first order vibration mode is selected.

Design variables are composed by structural considerations (e.g, sheet metal thick-
ness, geometric shape, etc.). The lightweight design has been treated as an opti-
mization problem in the previous study [zhang et al. (2007); Pan et al. (2009)],
where structure weight is the objective function subject to the structural perfor-
mance constraints. The maximum energy absorption is chosen as objective func-
tion. The average rigid force, normal mode and maximum stress are regarded as
constraints.

The uncertainty widely exists in material property, component structures, impact
speed, etc. As a result, in thin-walled beam design, an uncertain multi-objective
multi-disciplinary optimization for crashworthiness problem can be given in the
following form:

Minmize {W (x,a),E(x,a)}

Subject to:
Safety:

Fa(x,a)≤ [vL
1 ,v

R
1 ]
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Normal mode:

[bL
1 ,b

R
1 ]≤ fq(x,a)≤ [vL

2 ,v
R
2 ]

Static load bearing:

Sm(x,a)≤
[
vL

3 ,v
R
3
]

a ∈ aI = [aL,aR], (1)

ai ∈ aI
i = [aL

i ,a
R
i ], i = 1,2, · · · ,q,

xil ≤ xi ≤ xiu, i = 1,2, · · · ,n

Where x denotes an n-dimensional vector. a is a q-dimensional uncertain vector
which collects all of the uncertain parameters in the thinned wall beam model, and
its uncertainty is modeled by an interval vector aI . The superscripts I represent an
interval, and L and R denote lower and upper bounds of the interval. vI denotes the
allowable interval of the constraint.

For a specific design vector x, the objection functions and constrains will form
intervals, as the uncertain parameters are all intervals, and are nonlinear function
of x and a. In the following sections, an interval programming will be introduced
to solve above complex uncertain optimization problem.

3 Uncertain multi-objective multi-disciplinary optimization based on inter-
val programming method for design of thin walled beam

3.1 The treatment of the objective function

An order relation implies that an interval number is better than another but not that
one is larger than another. In reference [Han et al.(2008); Jiang et al. (2008a,b)], an
order relation ≤mw was adopted to treat objective function. Similarly, the uncertain
objective function in Equation (1) can be transformed into a deterministic multi-
objective optimization problem using the order relation ≤mw:

min
x

[
m(W I(x,a)),w(W I(x,a))

]
min

x

[
m(E I(x,a)),w(E I(x,a))

]
m(W (x,a)) = 1

2(W L(x)+W R(x))
w(W (x,a)) = 1

2(W R(x)−W L(x))
m(E(x,a)) = 1

2(EL(x)+ER(x))
w(E(x,a)) = 1

2(ER(x)−EL(x))
(2)
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Where m and w denote the midpoint and radius of interval, respectively. For each
specific x, the bounds of the objective functions caused by uncertainty can be ob-
tained:

EL(x) = mina∈Γ E(x,a), ER(x) = max
a∈Γ

E(x,a),

W L(x) = mina∈ΓW (x,a), W R(x) = max
a∈Γ

W (x,a),

Γ =
{

a
∣∣aL

i ≤ ai ≤ aR
i , i = 1,2, ...,q

} (3)

Through Equation (3), the uncertain vector a is eliminated and the deterministic
objective functions are obtained.

The midpoint of objective function interval in Equation (3) analogously minimizes
the average value of the uncertain objective function, and the radius analogously
minimizes the deviation. Through minimizing the deviation, the design robustness
can be ensured.

Using linear combination method to deal with the multiple objectives and each
objective can be transformed as following assessment function:

minx fd1(x,a) = (1−β )(m(W (x,a))+ξ )/ϕ +β (w(W (x,a))+ξ )/ψ

fd2(x,a) = (1−β )(m(E(x,a))+ξ )/ϕ +β (w(E(x,a))+ξ )/ψ
(4)

Where 0 ≤ β ≤ 1 is a weight factor, and its different values will lead to differ-
ent optimization. ξ is a number making m and w non-negative. φ and ψ are the
normalization factors of objectives.

3.2 The treatment of the constraint function

The possibility degree of interval number represents certain degree that one inter-
val number is larger or smaller than another. The reference [Jiang et al. (2008c,d)]
gives a definition of the satisfactory degree, which was adopted to deal with con-
straints in this paper. The uncertain constraints in Equation (1) can be transformed
into the following deterministic constraints:

P(CI
i ≥ vI

i )≥ λi, i = 1,2,3

P(bI
1 ≥CI

3)≥ λ3, (5)
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where

CI
1 =

[
FL

a (x),FR
a (x)

]
=

[
min
a∈Γ

FL
a (x,a),max

a∈Γ
FR

a (x,a)
]

CI
2 =

[
f L
q (x), f R

q (x)
]
=

[
min
a∈Γ

f L
q (x,a),max

a∈Γ
f R
q (x,a)

]
CI

3 = [SL
m(x),SR

m(x)] =
[

min
a∈Γ

SL
m(x,a),max

a∈Γ
SR

m(x,a)
] (6)

Γ =
{

a
∣∣aL

i ≤ ai ≤ aR
i , i = 1,2, ...,q

}
Where λi, i = 1,2,3 is predetermined satisfactory degree level of the constraint. CI

i ,
i = 1,2,3 of constraint at x which is caused by the uncertainty. λi, i = 1,2,3 can be
control the feasible field of x. A larger λi, i = 1,2,3 means a stricter restriction to
the constraint and where by a smaller feasible design space.

3.3 Deterministic optimization

Through above treatments, the uncertain optimization problem Equation (1) can be
transformed into a following deterministic multi-objective optimization problem:

minx fd1(x,a) = (1−β )(m(W (x,a))+ξ )/ϕ +β (w(W (x,a))+ξ )/ψ

fd2(x,a) = (1−β )(m(E(x,a))+ξ )/ϕ +β (w(E(x,a))+ξ )/ψ
(7)

s.t. P(CI
i ≥ vI

i )≥ λi, i = 1,2,3

P(bI
1 ≥CI

3)≥ λ3,

xil ≤ xi ≤ xiu£¬i = 1,2, · · · ,n

Where

CI
1 =

[
FL

a (x),FR
a (x)

]
=

[
min
a∈Γ

FL
a (x,a),max

a∈Γ
FR

a (x,a)
]

CI
2 =

[
f L
q (x), f R

q (x)
]
=

[
min
a∈Γ

f L
q (x,a),max

a∈Γ
f R
q (x,a)

]
CI

3 = [SL
m(x),SR

m(x)] =
[

min
a∈Γ

SL
m(x,a),max

a∈Γ
SR

m(x,a)
] (8)

Γ =
{

a
∣∣aL

i ≤ ai ≤ aR
i , i = 1,2, ...,q

}
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4 Uncertain multi-objective multi-disciplinary optimization based on approx-
imation models

Finite simulations with acceptable accuracy are computationally very expensive. To
improve the optimization efficiency, the approximation models have been applied
instead of actual simulation models. Equation (6) can be formulated as a following
approximation optimization problem:

minx f̃d1(x,a) = (1−β )(m(W̃ (x,a))+ξ )/ϕ +β (w(W̃ (x,a))+ξ )/ψ

f̃d2(x,a) = (1−β )(m(Ẽ(x,a))+ξ )/ϕ +β (w(Ẽ(x,a))+ξ )/ψ
(9)

s.t. P(C̃I
i ≥ vI

i )≥ λi, i = 1,2,3

P(bI
1 ≥ C̃I

3)≥ λ3,

xil ≤ xi ≤ xiu, i = 1,2, · · · ,n

where

CI
1 =

[
F̃L

a (x), F̃R
a (x)

]
=

[
mina∈Γ F̃L

a (x,a),max
a∈Γ

F̃R
a (x,a)

]
,

CI
2 =

[
f̃ L
q (x), f̃ R

q (x)
]

=
[

mina∈Γ f̃ L
q (x,a),max

a∈Γ
f̃ R
q (x,a)

]
,

(10)

CI
3 = [S̃L

m(x), S̃R
m(x)]

=
[

mina∈Γ S̃L
m(x,a),max

a∈Γ
S̃R

m(x,a)
]

Γ =
{

a
∣∣aL

i ≤ ai ≤ aR
i , i = 1,2, ...,q

}
Where W̃ (x,a) and Ẽ(x,a) are approximation models of weight and maximum
energy absorption of thin-walled beam, respectively. F̃a(x,a), f̃q(x,a) and S̃m(x,a)
are approximation models of constraint, respectively. f̃d1(x,a) and f̃d2(x,a) are the
assessment functions based on the approximation models of the objective functions
(termed as “approximation assessment functions”). C̃I

i ,i = 1,2,3 are intervals of
approximation constraint functions. Here, the design vector x and uncertain vector
a are both used as input variables in the construction process. Hence W̃ (x,a),
Ẽ(x,a),F̃a(x,a), f̃q(x,a) and S̃m(x,a) are all explicit functions with respect to x and
a, instead of only x as we usually do for deterministic optimization problems.
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Design of experiment (DOE) provides a means to selection of the sampling points
in the space of input variables in a more efficient way when creating approximation
models for objective functions and constraints. There are many different experi-
mental design methods available, such as the factorial, Koshal, composite, Latin
Hypercube and D-optimal design, etc. Here, we made use of the Latin Hypercube
Design (LHD) [Morris and Mitchell (1995)] for its uniformity of sampling in an
unknown design space and uncertain space.

 

Design vector of the kth 
iterative step
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Interval of the objective 
function

Interval of the constraint 
function
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Outer loop

Uncertainty space

Design space

Three disciplines analysis

Figure 1: The optimization chart based on approximation models

Fig.1 shows the flowchart of the optimization. x and a are both used as the input
variables, and sampling points using Latin Hypercube procedure centered at the
design space and uncertain field. After inputting the sampling points into the three
disciplines simulation analysis, then the samples used to construct the approxima-
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tion models of the objective functions and constraints. Obviously, it is two-loop
nesting optimization problem. Here, the Non-dominated Sorting Genetic Algo-
rithm II [Deb (2001); Deb, Pratap, Agarwal and Meyarivan (2002)] and sequential
quadratic programming (SQP) [Boggs and Tolle (1995)] are used as the outer layer
and inner layer optimization solver, respectively. In the outer layer, an amount of
individuals of the design vector x are generated by multi-objective genetic algo-
rithm named NSGA-II, which is employed to optimize the design vector. In the
inner layer, the SQP method for each individual will be called two times to obtain
the intervals of objective functions and constraints based on these approximation
models. Then the approximate assessment function values can be calculated based
on these intervals. As a result, the Pareto set can be obtained.

 

w

h

20

0
.5

Spot-welding points

t

d

Figure 2: A closed-hat beam impacting the rigid wall and its cross section (mm)

Table 1: Details of NSGA-II specific parameters used

GA parameter name Value
Population size 50
Number of generation 200
Probability of crossover 0.9
Probability of mutation 0.1
Distribution index for crossover 2.0
Distribution index for mutation 2.0
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Figure 3: The longitudinal impact model

F=1000N

 

Figure 4: The model with vertical loading condition

5 Application

5.1 Optimization of the thin walled beam

This thin-walled beam problem is modified from the numerical example in refer-
ence [Zhang, Li and Zhong (2009)]. The cross-section geometry and spot-welds
along the length of the section are shown in Fig. 2. In safety discipline, the compu-
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Table 2: Material properties of thin walled beam

Modulus of elasticity E 2.0×105Mpa
Poisson’s ratio ν 0.27
Density ρ 7.85×10−3Kg / mm - 3

Yield stress σs 525 Mpa

Table 3: Accuracy of RS models for the thin walled beam

Approximation model R2
ad j

f̃1 0.998
f̃2 0.985
F̃a 0.954
f̃q 0.998
S̃m 0.995

Table 4: Show the typical Pareto fronts of the optimization result

w(mm) h(mm) d(mm) t(mm) W (kg) −Ed

1 80.00 80.00 31.481 1.742 1.649 -13510
2 80.84 80.23 25.767 1.787 1.700 -13783
3 85.92 80.03 22.368 1.839 1.792 -13849
4 89.54 80.00 19.347 1.912 1.896 -13909
5 93.22 80.30 15.655 1.973 1.993 -13956
6 95.44 80.00 13.207 2.052 2.092 -13991
7 96.5 80.00 12.093 2.145 2.198 -14012
8 96.94 85.30 10.000 2.178 2.290 -14022
9 94.86 104.08 10.000 2.125 2.403 -14036

10 95.24 104.05 10.102 2.198 2.488 -14039

Table 5: The optimization result of the thin walled beam

−Ed w(mm) h(mm) d(mm) t(mm)
Point 10 applied on FEA
for true assessment func-
tion

-13889 95.24 104.05 10.102 2.198

Point 10 on the Pareto front
(optimization)

-14039 95.24 104.05 10.102 2.198

Error percentage 1.07
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tational model is shown in Fig. 3. The initial velocity is 13.8 m/s with the impact
duration time of 40ms. In Fig.4, the model is for the disciplines of normal mode
and static load bearing.

In this study, the thickness t, height h, width w, and space dof each two neigh-
boring spot-welding are taken as design variables. The weight W and maximum
energy absorption Ed are used as objective functions. Material properties of thin
walled beam are listed in Table 2. Because of the manufacturing and measurement
errors, E, υ and σs are treated as uncertain parameters, and the uncertainty level is
±10% off from their nominal values, namely E ∈ [189000MPa,231000MPa],υ ∈
[0.27,0.33],σs ∈ [472.5MPa,577.5MPa].As a result, the uncertain multi-objective
multi-disciplinary optimization problem is formulated as:

Min
t,d,w,h

f1(t,d,w,h,) = W

f2(t,d,w,h,E,ν ,σs) =−Ed

s.t Fa(t,d,w,h,E,ν ,σs)≤ [115KN,125KN]

[450Hz,500Hz]≤ fq(t,d,w,h,E,ν ,σs)≤ [650Hz,750Hz] (11)

E ∈ [189000MPa,231000MPa]
ν ∈ [0.27,0.33]
σs ∈ [472.5MPa,577.5MPa]

0.8mm≤ t ≤ 2.5mm

10mm≤ d ≤ 50mm

80mm≤ w≤ 120mm

80mm≤ h≤ 120mm

In Equation (11), the normal modes were calculated under the free-free condition.
In the multidisciplinary design optimization problem, there are 4 global (system)
thickness design variables including t,d,w,h. The material parameters E,ν ,σs are
treated as shared uncertain parameters. The quadratic polynomial response surface
is used to construct the approximation models for the objective function and con-
straints. The weight W is related to the component geometry and thickness. In
the construction progress,t,d,w,h,E,ν and σs are both used as the input variables
of the polynomial response surface. Therefore, the objective functions and con-
straints are explicit functions with respect to the design vector (t,d,w) and the un-
certain vector (E,ν ,σs), instead of only design vector (t,d,w) as we usually do for
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deterministic optimization. Initial 60 sampling points are selected through LHD
to construct the quadratic response surface approximate models for the objective
functions and constraints within design space and uncertainty space. According to
the classical response surface method (RSM) theory, the larger the values of R2

ad j,
the better the model fits [Fang (2005)]. The regression analysis results are given in
Table 3. The model fits are very good.

 
 

Figure 5: The Finite element model and a possible deformation of the close-hat
beam impacting the rigid wall

In safety disciplines, the Finite Element Method (FEM) simulation is carried out
in the explicit non-linear finite element code LS-DYNA. This finite element model
consists of 5760 shell elements. A 300 kg mass is attached to the free end of these
beams during the crash analysis to supply enough crushing energy. The finite mesh
model and a typical deformation behaviour of the finite element model can be seen
in Fig.5. Fig.6 shows the component of the test thin walled beam and deformation.
In normal mode and static load bearing disciplines, the finite element model as
shown in Fig.7 contains approximately 5940 elements and 6138 nodes. The thin
walled beam is subjected to the vertical force 1000 N. The FEM simulation of
this problem is solved to the first order vibration mode and maximum stress by
Optistruct Software.

The parameters in NSGA-II are specified as the Table 1. The possibility degree
levels λ of the constraint and β are set to 0.90 and 0.5, respectively. ξ , ϕ and ψ

are all specified as 0 for f1 and f2 .
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Figure 6: The component of the test thin walled beam and deformation

 
Figure 7: The Finite element model for the first order vibration mode and maximum
stress
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Figure 8: The Pareto set obtained

5.2 Optimization results and analysis

The outcome of the optimization search is shown in the Pareto front, displayed in
Fig. 8, and the front is composed of 50 points. The weight function value is from
1.649 to 2.488 and the max energy absorbed assessment function value is from
−1.351×104 to −1.404×104. Table 4 shows the typical Pareto fronts of the op-
timization result. According the decision making, considering the lightweight, the
designer may choose the 1th, the 2th. When maximum energy absorption is consid-
ered, the designer can select the 9th, the 10th. In this paper, the maximum energy
absorption is considered. Table 5 shows the optimization result of the thin walled
beam by using finite element analysis (true assessment function value) and the sur-
rogate function (approximation assessment function value). The error percentage
between them is 1.07. It can be found that a fine result is obtained. True assessment
function value is calculated referring to the reference [Jiang et al. (2008d)].
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6 Conclusion

In this paper, the multi-objective multi-disciplinary optimization with interval num-
ber programming is used to design the thin walled beam problem. Three disciplines
are studied, they are: safety discipline, normal mode and static load bearing, re-
spectively. Uncertainties of parameters of material are described by intervals. The
lightweight and maximum energy absorption are treated as objective functions. The
system optimization problem is computationally intensive, involving high finite el-
ement models and analyses for safety, normal mode and static load bearing sub-
systems. The objective functions and constraints are constructed by the response
surface approximation models based on LHD and then uncertain optimization is
performed. The result provides the design engineering with a set of solution on the
Pareto front to help their decision making. The method works well for the exam-
ples presented and the main advantage of the method is that it is well suited for
problems with a small uncertainty.
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