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Viscous Equations of Fluid Film Dynamics

Pavel Grinfeld1

Abstract: We model viscosity in the framework of the exact nonlinear equa-
tions of fluid film dynamics. The proposed approach yields monotonic dissipation
of energy and guarantees that viscous forces are not engaged when the film under-
goes rigid motion. With the addition of viscosity, the governing system has all the
essential elements – inertia, surface tension, interaction with the ambient medium,
influence of external fields and, now, viscosity – for accurate prediction and inter-
pretation of experimental observations.
The fluid film is modelled as a two-dimensional manifold. The film’s thickness is
represented by a surface density function. The resulting system is the fluid film
equivalent of the classical Navier-Stokes equations. The domain of definition of
the fluid film equations is a deforming manifold which makes computer simulation
the mostly likely course for obtaining solutions.

1 Introduction

The exact system of fluid film dynamics arose from the Least Action Principle
with a natural Lagrangian. That is, it arose in a manner that was prized during
the era when analytical methods reigned supreme. Yet only the most fundamental
properties of this system can be established by analytical methods. The system is
defined on a deforming manifold, which makes pursuit of closed form solutions
rather challenging. However, when allied with modern computational methods,
this system may hold significant potential for accurate prediction and interpretation
of physical effects.

Thin fluid films are as fascinating as they are important. A soap film is one of the
simplest systems of this kind and has for centuries attracted interest among math-
ematicians, physicists, chemists and even artists. In a monograph devoted to the
mathematical aspects of capillary effects Finn (1986), Robert Finn follows the his-
tory of fluid film investigations from the year 1712. His captivating review contains
a plethora of information about the contributions of such giants of mathematical
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physics as Laplace, Young, Poincare, and Rayleigh. The book by Cyril Isenberg
Isenberg (1992) contains an overview more narrowly focused on soap films.

Fluid films continue to play an important role in the calculus of variations, and in
the study of minimal surfaces. New interesting problems, some rooted in physical
experiments Jacobsen (2007), continue to emerge. Setting aside the fundamental
nature of fluid films differential geometry and topology, the modeling of fluid films
is of paramount importance in numerous applications. In respiratory physiology,
the lung tissue if frequently modeled as a fluid film. In particular, the pulmonary
alveoli, where the gas exchange takes place in the lung in some way act like soap
bubbles. Modeling of fluid film dynamics is essential in foams. Surface tension
flows play an important role in manufacturing, such as fabrication of glass tubing
Griffiths and Howell (2009).

Fluid films display an astonishing array of physical effects: static and dynamic,
macroscopic and nanoscale – at times, simultaneously in a single film. Static ef-
fects go well beyond the study of minimal surfaces, as films display variations in
thickness, surfactant density, and interaction with external fields Dean and Hor-
gan (2002). Predictably, the dynamics is even richer. Fluid films display turbu-
lence Rivera et al (1998), Martin et al (1998), tremendous variations in thickness
Greffier et al (2002), Rivera et al (1998), Nierop et al (2008), the Marangoni ef-
fect Tran et al (2009), draining and reverse draining Moulton and Pelesko (2010),
ejection of droplets Drenckhan et al (2008), rupture Debregeas et al (1995), self-
adaptation Boudaoud et al (1999), and chaotic behavior Gilet and Bush (2009). In
this paper, we provide a governing system of equations that has all the essential
elements required to explain the experimental findings mentioned in the preceding
paragraph. The exact nonlinear system of inviscid equations was presented in Grin-
feld (2009), Grinfeld (2010a), and Grinfeld (2010b). Interaction with the ambient
gas was added in Grinfeld and Grinfeld (2010). Heretofore, the last missing crucial
element has been viscosity. It is the goal of this paper to present a model of vis-
cosity within the framework of the existing system. The proposed approach results
in equations that are a fluid film analogue of the classical Navier-Stokes equations.
A most complete system is given in equations (49a)-(49c) for a rather general ma-
terial model of the fluid film, and in equations (52a)-(52c) for the most common
material model. We believe that a numerical simulation based on this system can
faithfully simulate the remarkable experiment being performed by a remarkable
experimentalist in Figure 1.
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Figure 1: A girl blowing bubbles: a remarkable experiment by a remarkable ex-
perimentalist. In order to simulate this complicated physical system, the governing
equations must combine intertial effects, surface tension, interaction with the am-
bient medium and viscosity. Source:Wikimedia

2 Exact nonlinear inviscid dynamic equations

2.1 Assumptions and notation

In recent publications Grinfeld (2009), Grinfeld (2010a) and Grinfeld (2010b), the
author proposed an exact system for the dynamics of fluid films modeled as two
dimensional manifolds. The thickness of the fluid film is captured by two dimen-
sional density τ , the total mass M of the fluid film represented by the manifold S
being

M =
∫

S
τdS (1)

We decompose the fluid film velocity field V into the normal component C and
the two tangential component V α , α = 1,2. The relevant notation is illustrated in
Figure 2.

3 Material model

The energy density function e represents the material model of the fluid film. Many
of the material properties of fluid films can be captured by energy density function



242 Copyright © 2010 Tech Science Press CMC, vol.19, no.3, pp.239-253, 2010

Figure 2: Illustration of the notation. C is the normal component of the velocity
field, V 1 and V 2 are the two tangential components, and τ is the surface density that
in actuality captures the variable thickness of the film.

that depends only on τ

e≡ e(τ) (2)

In some important applications, including biological membranes and crystalline
films, more detailed models are required and the argument list of e may need to be
amended with other geometric parameters, such as curvature, or external parame-
ters, such as a director vector. We note that e is density per unit mass. Thus, the
total internal energy I is

I =
∫

S
τe(τ)dS. (3)

The standard static model of surface tension, in which the total potential energy
stored in a fluid film is directly proportional to its total area, corresponds to

e(τ) =
σ

τ
, (4)

where σ is the surface tension density. We refer to this model is the Laplace model,
since Laplace is believed to be first to analyze fluid films from the variational point
of view and to associate fluid films with minimal surfaces.



Viscous Equations of Fluid Film Dynamics 243

Let the derivative of ε be denoted by eτ

eτ =
de(τ)

dτ
. (5)

In classical barotropic models, the quantity τ2eτ is associated with pressure. We
therefore introduce the fluid film pressure P(τ) according to

P(τ) = τ
2eτ . (6)

For the classical choice (4), the resulting pressure is a negative constant

P(τ) =−σ . (7)

In the following discussion we let Pτ be the derivative of P(τ):

Pτ (τ) =
dP(τ)

dτ
. (8)

4 The inviscid equations

We use the full framework of tensor calculus in our presentation of the fluid film
equations. The ambient space is referred to arbitrary curvilinear coordinates. The
two dimensional manifold S that represents the fluid film is referred to its own arbi-
trary coordinate system which arbitrarily evolves in time in differentiable fashion.
The symbol ∇α denotes the covariant surface derivative, Bα

β
is the curvature tensor

and Bα
α , that is mean curvature, is its trace. The indices are lowered and raised with

the help of the co- and contravariant metric tensor Sαβ and Sαβ . Finally, the δ/δ t-
derivative as a generalization of the partial time derivative ∂/∂ t that is at the heart
of the calculus of moving surfaces. It produces tensors out of tensors and, among
a number of other remarkable properties, satisfies the product rule and commutes
with contraction.

The exact nonlinear system for the dynamics of fluid films consists of two scalar
and one vector equations:

δτ

δ t
+∇α (τV α) = τCBα

α (9a)

τ

(
δC
δ t

+2V α
∇αC +BαβV αV β

)
=−PBα

α (9b)

τ

(
δV α

δ t
+V β

∇βV α −C∇
αC−2CV β Bα

β

)
=−∇

αP (9c)

The first equation (9a) is analogous to the continuity equation and is responsible
for conservation of mass. The second equation (9b) is Newton’s second law for the
normal component of the velocity. The last equation (9c) has two components and
represents Newton’s second law for the tangential components.
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4.1 Fundamental properties

The fundamental properties of the exact system (9a)-(9c) follow from its Hamil-
tonian nature. The system can be derived by the Least Action Principle from the
natural Lagrangian

L =
1
2

∫
S

τ
(
C2 +V 2)dS−

∫
S

τe(τ)dS. (10)

As a result, the equations conserve the total energy

E =
1
2

∫
S

τ
(
C2 +V 2)dS−

∫
S

τe(τ)dS, (11)

circulation Γ around a closed material loop γ

Γ =
∮

γ

V ·dγ (12)

and the scaled vorticity ω/τ at each material point, where vorticity ω is defined as

ω = ε
αβ

∇αVβ (13)

Proofs of these properties can be found in Grinfeld (2009).

4.2 Normal coordinates

The exact equations (9a)-(9c) rely on the δ/δ t-derivative from the calculus of mov-
ing surfaces which is essential in achieving invariance under a change of surface
coordinates. However, if we restrict ourselves to a particular family of coordinate
systems, known as normal coordinates, then we can replace the δ/δ t-derivative
with the partial time derivative ∂/∂ t.

Normal coordinates, illustrated in Figure 3, are constructed as follows. At the
initial moment, the coordinate system is chosen arbitrarily. Thereafter, the system
is evolved in such a way that lines of constant coordinates are orthogonal to the
surface. Thus, the evolution of this coordinate system depends on the entire history
of membrane configurations and must be constructed continuously as the evolution
takes place. The advantages offered by normal coordinates come from the fact
that, in a sense, normal coordinates are orthogonal in time. In normal coordinates,
provided that the ambient space is referred to affine coordinates, the governing
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Figure 3: A normal coordinate system. At the initial moment, the coordinate system
is chosen arbitrarily. Thereafter, the system is evolved in such a way that lines of
constant coordinates are orthogonal to the surface.

equations read

∂τ

∂ t
+∇α (τV α) = τCBα

α (14a)

τ

(
∂C
∂ t

+2V α
∇αC +BαβV αV β

)
=−PBα

α (14b)

τ

(
∂V α

∂ t
+V β

∇βV α −C∇
αC−2CV β Bα

β

)
=−∇

αP. (14c)

Normal coordinates are a natural choice for collocation numerical methods: when
a surface marker is advanced in the normal direction with a rate proportional to C
and is allowed to retain its surface coordinates, the result is a discrete analogue of
normal coordinates.

4.3 Equivalence to the Euler equations for a planar flow

Consider the special motion of a fluid film that originates and remains flat. In this
case, we have Bαβ = 0, C = 0 and the governing system reduces to one scalar and
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one vector equation

δτ

δ t
+∇α (τV α) = 0 (15a)

τ

(
δV α

δ t
+V β

∇βV α

)
=−∇

αP. (15b)

This system is completely equivalent to Euler’s classical hydrodynamic equations.
When we introduce viscosity and consider a planar flow, we expect a system equiv-
alent to the Navier-Stokes equations.

5 Introduction of Viscosity

In constructing our model of viscosity, we aim to satisfy two key properties: 1. that
viscous forces are not engaged when the film undergoes rigid motion and 2. that
the total energy monotonically diminishes with time. In order to satisfy the first
desired property, we postulate that the viscous force is proportional to the rate of
strain tensor Eαβ , defined as

Eαβ =
1
2
(
∇αVβ +∇βVα −2CBαβ

)
. (16)

The tensor Eαβ vanishes when the film undergoes rigid motion thus assuring that
the viscous forces vanish as well. Let the viscous force T i be

T i = ∇β

(
Zi

αMαβγδ Eγδ

)
, (17)

where the tensor Mαβγδ is symmetric in the first two and the last two indices:

Mαβγδ = Mβαγδ (18)

Mαβγδ = Mαβδγ , (19)

and is positive definite in the sense that

Mαβγδ xαβ xγδ > 0 (20)

for any nontrivial xαβ . A viable possibility for Mαβγδ is the Newtonian form

Mαβγδ = λSαβ Sγδ + µ

(
SαγSβδ +Sαδ Sβγ

)
. (21)

We would like to decompose T i in the normal and tangential components T (N) and
T α . To this end, apply the product rule to the definition (17) of T i:

T i = NiMαβγδ Bαβ Eγδ +Zi
α∇β

(
Mαβγδ Eγδ

)
. (22)
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Therefore, the normal and the tangential components of T i are

T (N) = NiMαβγδ Bαβ Eγδ (23)

T α = ∇β

(
Mαβγδ Eγδ

)
(24)

The Newtonian Mαβγδ (21) vanishes under the covariant surface derivative, there-
fore

T (N) = NiMαβγδ Bαβ Eγδ (25)

T α = Mαβγδ
∇β Eγδ . (26)

We will now present the full viscous system for fluid film dynamics.

5.1 The full system

The governing system for fluid film dynamics that incorporates the influences of
viscous forces reads

δτ

δ t
+∇α (τV α) = τCBα

α (27a)

τ

(
δC
δ t

+2V α
∇αC +BαβV αV β

)
=−PBα

α +T (N) (27b)

τ

(
δV α

δ t
+V β

∇βV α −C∇
αC−2CV β Bα

β

)
=−∇

αP+T α . (27c)

In the following sections, we will show that this system reduces to the Navier-
Stokes equations for planar flows and leads to a monotonic decay of the total en-
ergy.

5.2 Equivalence to the Navier-Stokes equations for a planar flow

Let us once again consider the special case of a planar flow characterized by Bαβ =
0 and C = 0. For a general Mαβγδ , we have

δτ

δ t
+∇α (τV α) = 0 (28a)

τ

(
δV α

δ t
+V β

∇βV α

)
=−∇

αP+∇β

(
Mαβγδ Eγδ

)
. (28b)
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Furthermore, for the proposed form (21) of Mαβγδ , the system reads

δτ

δ t
+∇α (τV α) = 0 (29a)

τ

(
δV α

δ t
+V β

∇βV α

)
=−∇

αP+λ∇
α

∇βV β + µ

(
∇

α
∇βV β +∇β ∇

βV α

)
.

(29b)

This system is equivalent to compressible Navier-Stokes equations. Upon the fur-
ther assumption of incompressibility

∇βV β = 0 (30)

this system becomes

δτ

δ t
+∇α (τV α) = 0 (31a)

τ

(
δV α

δ t
+V β

∇βV α

)
=−∇

αP+ µ∇β ∇
βV α . (31b)

which is equivalent to the classical incompressible Navier-Stokes equations. We
note that P in equation (31b) is determined by the system (31a)-(31b) in combina-
tion with boundary conditions, rather than by equation (6).

5.3 Rate of dissipation

We calculate the rate of dissipation of the total energy by following the approach
presented in Grinfeld (2009), where energy conservation was demonstrated in the
inviscid case. The key to deriving the rate of change of the total energy E is the
formula that governs time evolution of surface integrals

d
dt

∫
S

FdS =
∫

S

δF
δ t

dS−
∫

S
CBα

αFdS. (32)

Let q be the absolute value of total velocity:

q2 = C2 +VαV α . (33)

In terms of q, the total energy E is given by

E =
∫

S
τ

(
1
2

q2 + e
)

. (34)

The evolution of E is obtained by analyzing this integral according to equation (32):

dE
dt

=
∫

S

(
δτ

δ t
− τCBα

α

)(
1
2

q2 + e
)

+ τ

(
q

δq
δ t

+ eτ

δτ

δ t

)
. (35)
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The quantity δτ/δ t is available from the mass conservation equation (9a). The
analysis of δq/δ t is based on the application of the dynamic equations. First,
apply the δ/δ t-derivative to the definition of q, equation (33). By the product rule,
we have

q
δq
δ t

= C
δC
δ t

+
1
2

(
δVα

δ t
V α +

δV α

δ t
Vα

)
, (36)

and we observe that quantities that need to be determined are δC/δ t, δVα/δ t and
δV α/δ t. Equation (9b) gives us δC/δ t

δC
δ t

=−1
τ

PBα
α +

1
τ

NiT i−2V α
∇αC−BαβV αV β . (37)

The quantity ∂V α/δ t comes from equation (9c):

δV α

δ t
=−1

τ
∇

αP+
1
τ

T α −V β
∇βV α +C∇

αC +2CV β Bα

β
. (38)

By lowering the index α , it follows that

δVα

δ t
=−1

τ
∇αP+

1
τ

Tα −V β
∇βVα +C∇αC. (39)

Combining equations (37)-(39), we obtain the quantity qδq/δ t:

q
δq
δ t

=−1
τ

Vα∇
αP− 1

τ
PCBα

α −
1
2

V β
∇β q+

1
τ

T αVα . (40)

We are now able to express dE/dt in terms of the primary elements of the dynamic
system:

dE
dt

=−
∫

S

(
∇α

(1
2 q2τV α

)
+∇α (τV α)+Vα∇αP

+ 1
τ
P∇α (τV α)−T αVα −CNiT i

)
dS (41)

The rest of the analysis proceeds by a repeated application of Gauss’s theorem. The
first term in the integrand yields∫

S
∇α

(
1
2

q2
τV α

)
dS =

∫
γ

1
2

q2
τV αnαdγ, (42)

where γ is the stationary contour of the fluid film and nα is the normal (that lies in
the tangent plane to S) to the contour γ . Since V α at the boundary must point along
the contour γ , is orthogonal to the normal nα . Thus, the integrand is identically
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zero and this term vanishes. An application of Gauss’s theorem to the second term
leads to∫

α

∇α (τV α)e dS =−
∫

S
τV α

∇αe dS =−
∫

S
τV αeτ∇ατ dS. (43)

Regarding the remaining terms, elementary calculus shows that they form a single
divergence expression

−τV αeτ∇ατ +Vα∇
α
(
τ

2eτ

)
+ τeτ∇α (τV α) = ∇α

(
τ

2eτV α
)
.

The integral of this term vanishes by Guass’s theorem. We have therefore shown
that
dE
dt

=
∫

S

(
T αVα +CT (N)

)
dS, (44)

or
dE
dt

=
∫

S

(
∇β

(
Mαβγδ Eγδ

)
Vα +CMαβγδ Bαβ Eγδ

)
dS. (45)

Assuming that the gradient of ∇β Mαβγδ vanishes (as it does for Mαβγδ given by
equation (21)), we have

dE
dt

=−
∫

S
Mαβγδ Eγδ

(
∇βVα −CBαβ

)
dS (46)

Recalling the definition (16) of the rate of strain tensor Eαβ and the postulated
symmetries of Mαβγδ , we have

dE
dt

=−2
∫

S
Mαβγδ Eαβ Eγδ dS, (47)

which is nonpositive because Mαβγδ is assumed positive definite. We have there-
fore proven that the total energy E monotonically diminishes in the course of evo-
lution of the fluid film.

5.4 Boundary conditions

The viscous system (24a)-(24c) is a second order system of partial differential equa-
tions. We must therefore specify an additional boundary condition. By analogy
with three-dimensional hydrodynamics, we add the condition of traction. The full
set of three boundary conditions reads

C = 0 (48a)

V 1 = 0 (48b)

V 2 = 0. (48c)
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5.5 A most complete system

In this section, we combine all the available elements to present a system that has a
most complete list of necessary elements for explaining and predicting experimen-
tal data. The included physical influences are

1. Surface tension and related surface influences captured by the internal energy
density function e(τ)
2. Influences of external conservative forces represented by the potential function
U

3. Viscosity effects introduced in this paper

4. Interaction with the ambient medium. We suppose that the ambient medium is
a liquid or a gas governed by the classical equation of hydrodynamics. Depend-
ing on the physical problem, the ambient medium can be assumed compressible
on incompressible, viscous or inviscid. Let p denote the pressure of the ambient
medium and [p] be the discontinuity jump in p across the surface of the fluid film.

The system that includes these elements reads

δτ

δ t
+∇α (τV α) = τCBα

α (49a)

τ

(
δC
δ t

+2V α
∇αC +BαβV αV β

)
=−PBα

α +T (N)− ∂U
∂N

+[p] (49b)

τ

(
δV α

δ t +V β ∇βV α

−C∇αC−2CV β Bα

β

)
=−∇

αP+T α −∇
αU. (49c)

Finally, we present the system for the Laplace choice of the internal energy

e(τ) =
σ

τ
(50)

and for the Newtonian model of viscosity (21). We note that the Laplace model
of surface tension is the simples material model of fluid films. It leads to internal
energy I that is directly proportional to the total surface area S

I = σS. (51)

This form of energy captures a broad range of dynamical effects, but also leads
to a defect (discussed in Grinfeld (2010a) and Grinfeld (2009)) with regard to the
equilibrium density distribution.

For the Laplace material model of surface tension (50) and Newtonian viscosity
(21), the full governing system reads
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δτ

δ t
+∇α (τV α) = τCBα

α (52a)

τ

(
δC
δ t

+2V α
∇αC +BαβV αV β

)
=


σBα

α − ∂U
∂N +[p]

+λBα
α

(
∇βV β −CBβ

β

)
+2µBα

β

(
∇αV β −CBβ

α

)
 (52b)

τ

(
δV α

δ t +V β ∇βV α

−C∇αC−2CV β Bα

β

)
=
(
−∇αU +λ∇α∇βV β

+µ
(
∇α∇βV β +∇β ∇βV α

) ) . (52c)

We believe that this system is capable of explaining the existing experimental data
as well as predicting real physical phenomena.

6 Conclusion

In Section 5, we presented a way to introduce viscosity into the exact equations
of fluid film dynamics. The resulting system, that is the fluid film analogue of the
classical Navier-Stokes equations is given in equations (27a)-(27c). The boundary
conditions that describe a viscous fluid film that spans a stationary contour are
given in equations (48a)-(48c). The addition of viscosity, in a sense, completes
the essential puzzle of realism and opens the door to comparison with experiment.
The full system (49a)-(49c) combines inertial effects material properties that can
be captured by an internal energy density function e(τ) that is a function only of
the two dimensional density τ , with viscosity, interaction with the ambient medium
and the influence of external conservative forces.
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