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Direct Coupling of Natural Boundary Element and Finite
Element on Elastic Plane Problems in Unbounded

Domains
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Abstract: The advantages of coupling of a natural boundary element method and
a finite element method are introduced. Then we discuss the principle of the direct
coupling of NBEM and FEM and its implementation. The comparison of the re-
sults between the direct coupling method and FEM proves that the direct coupling
method is simple, feasible and valid in practice.
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1 Introduction

The finite element method (FEM) is one of the most widely used methods in com-
putational mechanics. It is a convenient way to solve problems of nonlinear equa-
tions or asymmetric media with high precision [Wang and Shao (2001)]. But
the FEM method is not directly designed to account for problems in unbounded
domains, which are usually solved in bounded domains, but only approximately,
causing large errors. In order to overcome this shortcoming, some scholar devel-
oped a type of coupling between the boundary element method (BEM), which can
be used to solve problems in unbounded domains and the FEM method. This cou-
pling method of BEM and FEM was studied to calculate wave forces [Liu and
Zai (2004)]. The Navier-Stokes equation was solved with the coupling method
[He (2002)] and linear exterior boundary value problems were solved with a do-
main decomposition method based on BEM and FEM [Gatica, Hsiao and Mellado
(2001)]. It is very difficult to construct a required rigidity matrix and the results
from coupling are not very ideal, since several good properties cannot be retained
during boundary reduction. A new type of boundary element method, the natural
boundary element method (NBEM)[Yu (1993)], was developed. The NBEM has
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not only the advantage of solving problems in exterior domains, but has additional
advantages such as direct derivation, a unique form of equations, small calculation
requirements and an energy function which remains unchanged before and after
the boundary reduction. Especially NBEM and FEM are based on the same vari-
ational principle, which can lead to a direct and natural coupling. The coupling
method was applied to study a torsion problem of a square cross-section bar with
cracks [Zhao, Dong and Cao (2000)]. A parabolic equation was studied with nat-
ural boundary reduction [Du (2000)]. Outside China, the NBEM is also referred
to as the Dirichlet-to-Neumann (DtN) mapping method. Variational formulations
of transmission problems were studied via FEM, BEM and DtN mappings [Gatica
(2000)]. The DtN mapping method was uesd to solve three-dimensional elastic
waves [Gächter and Grote (2003)]. Exterior problems of wave propagation were
solved by an iterative variation of local DtN operators [Miroslav and Igor (2004)].
In our study, we focused on solving an elastic plane problem in an unbounded do-
main by the direct coupling of NBEM and FEM.

2 Principle of Coupling NBEM and FEM

Consider the following boundary problem in the domain denoted in Figure 1(a):
µ∆~u+(λ + µ)grad div~u = 0 in Ω

2
∑
j=1

σi jn j~g on Γ
(1)

 
(a) Unbounded domain with hole       (b) Decomposed domain 

 
Figure 1: Problem solving domain
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Let

D(~u,~v) =
∫∫
Ω

2

∑
i, j=1

σi j(~u)εi j(~v)d p

F(v) =
∫

Γ

~g ·~vds

Then the boundary problem (1) is equivalent to the following variational problem:{
Find ~u ∈W 1

0 (Ω)2 such that
D(~u,~v) = F(~v), ∀~v ∈W 1

0 (Ω)2 (2)

where

W 1
0 (Ω)2 =

{
u√

1+ r2 ln(2+ r2)
∈ L2(Ω),

∂u
∂xi
∈ L2(Ω), i = 1,2, r =

√
x2

1 + x2
2

}
For an elastic plane problem in an unbounded domain, the zero-strain state contains
only rigid translational displacement. Let

ℜ = {(C1, C2) |C1, C2 ∈ R}

Then the variational problem (2) has a unique solution in quotient space W 1
0 (Ω)2/ℜ.

A circle Γ′ is drawn with radius R to divide the domain Ω into two parts, Ω1 and
Ω2. Sub-domain Ω2 shown in Figure 1(b) is an exterior circular domain. At the
same time the acting domain of a bilinear form D(~u,~v) is decomposed into Ω1 and
Ω2. Hence, new bilinear forms Di(~u,~v), i = 1,2 are obtained, where:

D(~u,~v) = D1(~u,~v)+D2(~u,~v) (3)

The FEM method can be used directly in domain Ω1 to construct a rigidity matrix
while the NBEM method is applied to the exterior domain Ω2. Let K be a natural
integral operator of the elastic plane problem in an exterior domain outside the
circle with radius R and obtain:

D2(~u,~v) =
∫

Γ′
~v0 ·K~u0ds

Then the variational problem (2) is equivalent to the following variational problem:{
Find ~u ∈W 1

0 (Ω)2, such that
D(~u,~v) = F(~v), ∀~v ∈W 1

0 (Ω)2 (4)
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3 Implementing Direct Coupling of NBEM and FEM

The rigidity matrix from FEM can be obtained by discretizing D1 in domain Ω1,
which we will not describe in detail. Our focus is on implementing the natural
boundary reduction in domain Ω2 for D2.

Divide the artificial boundary Γ′ into N equal parts. The piecewise linear basis
function can then be expressed as:

Li(θ)


N(θ −θi−1)/2π, θi−1 ≤ θ ≤ θi,

N(θi+1−θ)/2π, θi ≤ θ ≤ θi+1

0, other

(5)

Let

uh
r0(θ) =

N

∑
j=1

U jL j(θ), uh
θ0(θ) =

N

∑
j=1

VjL j(θ), (6)

where U j and Vj ( j=1,2,. . . ..,N) are undetermined coefficients. Then the rigidity
matrix of NBEM in an exterior circle domain is:

Q =
[

Q11 Q12
Q21 Q22

]
(7)

where

Qlm =
[
q(lm)

i j

]
i, j=1,...,N,

l, m = 1, 2

q(11)
i j = D̂(L j, 0; Li, 0), q(12)

i j = D̂(0, L j; Li, 0),

q(21)
i j = D̂(L j, 0; 0, Li), q(22)

i j = D̂(0, L j; Li 0),

i, j=1, 2, . . . , N.

Using the method of a series of integral kernels and the following formula:

− 1
4sin2 θ

2

=
∞

∑
n=1

ncosnθ ,
1
2

ctg
θ

2
=

∞

∑
n=1

sinnθ ,
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the matrix Q can be calculated as follows:

Q11 = Q22 =

2ab
a+b

((a0,a1, ...,aN−1))+
2πb2

3N(a+b)
((4,1,0, ...,0,1))+

4πab
N2(a+b)

((1, ..., 1))

Q12 =−Q21 =
2ab

a+b
((0, d1 ..., dN−1))+

b2

a+b
((0, 1, 0, ..., −1)),

where

ak =
4N2

π3

∞

∑
j=1

1
j3 sin4 jπ

N
cos

jk
N

2π,

dk =
4N2

π3

∞

∑
j=1

1
j3 sin4 jπ

N
sin

jk
N

2π,

k=0, 1, 2, . . . , N-1.

Clearly, Q11 and Q22 are symmetric circulant matrices, while Q12 and Q21 are anti-
symmetric circulant matrices and Q is a semi-positive defined symmetric matrix.

The so-called direct coupling of NBEM and FEM has the property that the domain
in which NBEM is applied, is regarded as a special element of FEM while coupling.
So the total rigidity matrix can be constructed by direct addition of the rigidity
matrix from FEM and that from NBEM. In the end, the linear algebraic equations
can be solved.

4 Examples

Example 1 An elastic plane problem in unbounded domain with a square hole is
shown in Fig. 2. Let the modulus of elasticity E=40 GPa and the Poisson’s ratio
µ=0.3. A uniformly distributed load q=100 kN/m is acting on the edges of the
square hole.

In order to guarantee the uniqueness of the solution and the symmetry of the con-
straint, some conditions are generally added. We assumed the displacements at
point (-2,0) and point (2,0) to be zero. Hence, we can only take one quarter of the
model for our study because of the symmetry of its structure, constraints and loads.

Several different values of R were taken to solve numerically the problem by the
coupling of NBEM and FEM. We first obtained the displacement of domain Ω1 and
compare these results with those obtained by FEM. The programs of the coupling
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 Figure 2: Elastic plane problem in unbounded domain with a square hole

method and FEM are coded by the MATHACAD software. Their meshing styles
are the same and their mesh density similar. The two following tables show the
difference of these results at point (2,2), obtained by the coupling method and FEM
respectively.

Table 1: Displacement (10−8m) along x axis at point (2, 2)

Radius/m 5 15 30 50 100
Coupling Method 1.4273 1.3354 1.3234 1.3175 1.3126

FEM 1.1101 1.3452 1.3268 1.3187 1.3126

Table 2: Displacement (10−8m) along y axis at point (2, 2)

Radius/m 5 15 30 50 100
Coupling Method 4.0836 4.5311 4.4490 4.4185 4.3964

FEM 2.2245 4.1284 4.3462 4.3815 4.3965

From Tables 1 and 2, it can be seen that the results from the coupling of NBEM
and FEM can easily approximate the convergence value with a small R. The FEM
can also approximate this convergence value, but would require more computa-
tional complexity with a larger R. The results from these two methods are about
the same when R=100 m. This shows that results with sufficient precision can
be obtained with a small solution domain, which is the actual significance of the
coupling method.

Example 2 Given the same model as in example 1, we assumed a concentrated
force F =100 kN acting at the midpoint of the top edge.
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The load is not symmetrical. Can we produce ideal results by the coupling method?
Let us see the results. The results at point (2,2) are chosen for a comparison in the
following tables.

Table 3: Displacement (10−7m) along x axis at point (2,2)

Radius/m 5 15 30 50 100
Coupling Method -6.0862 -5.4047 -5.1977 -5.1559 -5.1352

FEM -2.2684 -4.1022 -4.3859 -4.4824 -4.5540

Table 4: Displacement (10−6m) along y axis at point (2,2)

Radius/m 5 15 30 50 100
Coupling Method -6.0862 -5.4047 -5.1977 -5.1559 -5.1352

FEM -2.2684 -4.1022 -4.3859 -4.4824 -4.5540

The results in Tables 3 and 4 show that the tendency of convergence of the coupling
method is the same with FEM. But these two methods do not converge to the same
value. What is the reason? We want to know which result is better. Hence, the
same problem is studied with a different solution domain and a different meshing
style by the ANSYS software.

(1) Let R, the radius of the solution domain, be 50 m. We used the item ‘Smart-
size’ in Meshtool with a mesh density up to grade 1. Given these conditions, the
value of the displacement at point (2,2) along the x axis is -4.9989×10−7m, which
approximates -5.1352×10−7 m, the value from the coupling method. The value,
1.6987×10−6m, of the displacement at point (2,2) along the y axis is approximately
1.7723×10−8 m, the value from the coupling method.

(2) Let R be 50 m while using ‘Smartsize’ in Meshtool with a mesh density up to
grade 1. We refined the elements near the square hole with a refining grade up to 3.
Given these conditions, the value of the displacement at point (2,2) along the x axis
is -5.0169×10−7m The difference between this value and that from the coupling
method has become smaller.

From these two examples it can be seen that the stability of the coupling method
is better than that of the FEM and that the precision of the coupling method is also
higher. The FEM would need more computational complexity to reach a similar
value.
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5 Conclusions

Based on our study, we draw the following conclusions:

(1)The procedure for the coupling of NBEM and FEM is simple and direct. The
sub-domain in which the NBEM is applied can be regarded as a special element of
the FEM which is based on the same variational principle. The total rigidity matrix
can be easily constructed.

(2) The results from the coupling method can approximate values with ideal preci-
sion when R is very small. It will save a large number of finite elements. So the
computational efficiency of the coupling method is higher than that of the FEM.
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