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Parallel Finite Element Method and Time Stepping
Control for Non-Isothermal Poro-Elastic Problems

Wenqing Wang1, Thomas Schnicke2 and Olaf Kolditz3

Abstract: This work focuses on parallel finite element simulation of thermal
hydraulic and mechanical (THM) coupled processes in porous media, which is
a common phenomenon in geological applications such as nuclear waste reposi-
tory and CO2 storage facilities. The Galerkin finite element method is applied to
solve the derived partial differential equations. To deal with the coupling terms
among the equations, the momentum equation is solved individually in a mono-
lithic manner, and moreover their solving processes are incorporated into the solv-
ing processes of nonisothermal hydraulic equation and heat transport equation in
a staggered manner. The computation task arising from the present method is in-
tensive if the method is applied to model a real geological application. Therefore,
we present a parallel finite element method and a time stepping method with PI
(proportional and integral feedback) automatic control to improve the computation
efficiency. For parallel computing, the domain decomposition method is unitized
to partition both computation tasks of the equation assembly and the linear solve,
and the establishment of a global system of equations is thoroughly avoided. More-
over, an object-oriented concept of sparse matrix and iterative linear solver for large
scale parallel and sequential simulation is developed. By simulating a real applica-
tion with THM coupled processes, we show that the present parallel finite element
method works fine for both monolithic and staggered scheme within coupling itera-
tions, and furthermore we show the efficiency of the present method by the speedup
we have achieved in the simulation.
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1 Introduction

For many geo-engineering problems such as the safety assessments of geothermal
reservoirs, CO2 storage and nuclear waster disposal (Doughty and Pruess, 2004;
Stephansson, Hudson, and Jing, 2004; Alonso, Alcoverro), the time dependent par-
tial differential equations (PDEs) arising from them are highly nonlinear coupled
and have to be solved numerically (Lewis and Schrefler, 1998; Rutqvist, Börges-
son, Chijimatsu, Kobayashi, Nguyen, Jing, Noorishad, and Tsang, 2001; Rutqvist,
Barr, Datta, Gens, Millard, Olivella, Tsang, and Tsang, 2005; Sanavia, Pesavento,
and Schrefler, 2006; Wang and Kolditz, 2007). One of the most frequently used
and the most robust numerical methods for solving such highly nonlinear coupled
PDEs is the finite element method (Lewis and Schrefler, 1998). Usually, the com-
putation task of the finite element analysis of real geo-engineering problems is
expensive. There are several ways to improve the computational efficiency, e.g.
more efficient numerical algorithms, optimization of memory management in the
code, and parallelization techniques. In the numerical analysis of time dependent
thermo-hydraulic processes in porous media, the time stepping is a crucial issue
for numerical stability and computational efficiency. Practically, the fixed time
step size does not often satisfy the stability and efficiency requirements in solving
problems that exhibit complexity in geometry and nonlinearity in material proper-
ties. Therefore, adaptive time stepping methods taking high-order integration into
account have been developed and are widely applied (Hairer and Wanner, 1996).
Among the available adaptive time stepping methods, the well-known techniques
for prediction of the time step size h are e.g. Courant number approach based
on Courant-Friedrichs-Lewy condition (Courant, Friedrichs, and Lewy, 1967) for
the finite difference method, primary variable based prediction (e.g. (Minkoff and
Kridler, 2006; Ouyang and Tamma, 1996)) and local error control methods (e.g.
(Gustafsson, 1991, 1994; Hairer and Wanner, 1996)). The local error control meth-
ods especially those based on theoretical control ideas are problem independent for
any numerical methods for ODEs (Gustafsson, 1991, 1992; Söderlind and Gustafs-
son, 1997; Hairer and Wanner, 1996). For nonlinear equations, the theory based
automatic controls such as P (proportional feedback) or PI (proportional and inte-
gral feedback) permit stable and efficient time stepping (Söderlind and Gustafsson,
1997; Hairer and Wanner, 1996) for numerical solver. In addition to the efficient
numerical algorithms, parallel finite element computing provides the most powerful
speed-up (Salinger, Xiao, Zhou, and Derby, 1994; Topping and Khan, 1996; Fuji-
sawa, Inaba, and Yagawa, 2003; Tezduyar and Sameh, 2006; Wang, Kosakowski,
and Kolditz, 2009) if the required hardware is available. The present work is sub-
jected to incorporate the parallel finite element method and the adaptive time step-
ping with automatic control for the analysis of thermal hydraulic and mechanical
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coupled processes in porous media.

For the adaptive time stepping, we present an approach of PI (proportional and in-
tegral feedback) automatic time stepping for modeling the problems with different
coupled physical processes. With the present time stepping approach, each pro-
cess uses the time step size predicted by the PI control of itself to guarantee the
stability of the simulation of each process under coupling. For the parallel finite
element method computing, the local and global assembly, solving linear equation
system are the most time consuming parts. The discretization of the weak form
of an initial-boundary-value problem in the finite element space results in linear
equation systems with sparse matrices. More large grid posed to the finite element
analysis means a more large sparse stiffness matrix, and also definitely means more
computational expense. There are many references about the algorithms to solve
sparse linear equation systems (e.g. (Ortega, 1988; Saad, 2003)). Regarding to the
parallel linear solver, there are popular standalone and portable packages available
such as PETSc (Balay, Buschelman, Gropp, Kaushik, and McInnes, 2007), Aztec
(Tuminaro, Heroux, Hutchinson, and Shadid, 1999), PSBLAS (Filippone and Co-
lajanni, 2000), AMG (specifically for multigrid method) (Henson and Yang, 2002)
to mention a few. Despite the availability of these packages, there are still good rea-
sons to develop specific solvers for memory management, easy code maintaining
and developing for new parallel algorithm. Based on the domain decomposition,
the present work develops an parallel finite element method in the frame work of
object oriented programming, with which the sparse matrices and the associated it-
erative linear solvers can be handled in a cheap way for parallel and sequential finite
element simulation of mutli-field problems. The present methods are implemented
in the framework of OpenGeoSys (http://www.opengeosys.net), a scientific open
source object-oriented parallel FEM simulator (Wang and Kolditz, 2007; Wang,
Kosakowski, and Kolditz, 2009), and they are verified with a real application in
this work.

2 Theoretical background of multi-field problem

We treat the partially saturated porous media as multi-phase system composed of
constitutes with the voids of the solid skeleton filled with water and gas. We as-
sume that capillary pressure pc, gas pressure pg, absolutely temperature T , and
displacement u are primary variables to describe the state of the porous media. The
governing equations are given hereafter.

2.1 Mass balance equation

Consider two fluid flow in porous media, e.g liquid (denoted by l) and gas (denoted
by g). For each phase in multi-phase fluid flow in deformable porous media, the
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governing equation of flow field can be derived (Kolditz and de Jonge, 2004; Wang,
Rutqvist, Görke, Birkholzer, and Kolditz, 2011) by taking account of deformation
in mass balance:
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where k denotes the components of the fluid, e.g air (k = a) and water (k = w), S
is saturation, ρ stands for phase density, n is the porosity, J is total flux, u is the
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According to the Darcy’s equation, the advective part of the total flux can be written
as
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where k is the intrinsic permeability, kγ

rel is the relative permeability of the phase,
and µγ is the viscosity.

The diffusion part of the total flux is given by Fick’s law as
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Consider water-air mixture. We expand the mass balance equation (2.1) with the
flux defined in equations (2.2) based upon the above equations (2.2, 2.3, 2.4). For
water component, the diffusion part of the total flux takes the form
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Obviously, Dl
w = 0. Therefore, the mass balance equation for water component can

be written as follows
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Since the capillary pressure pc is chosen as one of the two unknowns of equation
(2.1) and Sg = 1−Sl , equation (2.7) becomes
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Similar to the previous procedure, the diffusion part of the total flux of air compo-
nent can be written as
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The density shift from air component to liquid ρ l
a is very small and can be omitted

anyway. Therefore, we can assume JD
l
a ≈ 0. As a consequence, the mass balance

equation for air component is derived as:
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Expending the temporary derivative term of equation (2.10) yields
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Mass balance equations (2.8) and (2.11) are exactly the same as that described in
the paper by Sanavia, Pesavento, and Schrefler (2006).

ρ
g
w is the so called water vapor density. As an example, we give its expression based

on the Claperon equation of perfect gas and Dalton’s law as follows
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g
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w = ρ
g
wRT/Mw
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a + pw

a , ρ
g = ρ

g
a +ρ

g
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In the partially saturated zone, the equilibrium water vapor pressure pgw can be
derived from the Kelvin-Laplace equation

pg
w = pgws exp

(
− pcMw

ρ l
wRT

)
(2.13)

Hereby, we use empiric water vapor saturation function, pgws, as

pgws =
10−3 pcMw

RT
exp(19.84−4975.9/T ) (2.14)

2.2 Energy balance equation

We consider the convective transport, i.e. the transport of heat by flow. The energy
balance equation of the porous media is
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where ρ is the density of porous media, Cp is the effective specific heat capacity,
Ke is the heat conductivity of the porous media.

2.3 Deformation process

Deformations in porous media can be described by the momentum balance equation
in the terms of stress under the assumption of solid grains being incompressible
(Lewis and Schrefler, 1998),

∇ ·
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where σσσ denotes the effective stress of porous medium, I stands for identity tensor.
In the present study, the traditional sign convention for stress and fluid pressure is
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used. Density of porous media consists of the portion contributed by liquid l and
by the portion contributed of solid as ρ = n(ρw +ρa)+(1−n)ρs,. Displacement u
is the primary variable to be solved by substituting the constitutive law for stress-
strain behavior

σσσ = C(εεε−αT ∆T I)

εεε =
1
2
(∇u+(∇u)T)

(2.17)

with C, a forth order material tensor, αT the thermal expansion coefficient, εεε the
strain, and ∆T the temperature increment. Superscript T means the transpose of
matrix.

3 Finite element method

Although mass balance equation (2.8, 2.11), energy balance equation (2.15) and
momentum equation (2.17) are different in equation types, we can represent them
by a general time dependent partial differential equation as

mu̇+L u = f , ∀x ∈Ω⊂ Rn, n = 1,2,3 (3.1)

where m is the mass parameter, L denotes a linear operator, f is the source/sink
term, and u is the unknown field function to be solved. The concept of the finite
element method is to solve a weak form of equation (3.1) numerically. Assuming
v ∈V := C1(Ω)∩C0(Ω̄) is a test function, the weak form of equation (3.1) can be
given as follow:

(mu̇,v)+(L u,v) = ( f ,v) (3.2)

where (,) is a bilinear form. We solve equation (3.2) based on the Galerkin method.
By choosing a finite element subspace Vh ⊂ V , which is typically spanned by a
convenient set of shape functions hi(i = 1,2, · · · ,n) with n the number of element
nodes, we can solve the equation (3.2) by searching an approximate solution uh ∈Vh
such that

(mu̇h,v)+(L uh,v) = ( f ,v), ∀v ∈Vh (3.3)

For equations of the present model problem, the derived element matrices and vec-
tors can be classified into following types (Table 3.1)
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Type Name Equations∫
Ω

NNNT
1M NNN1 dΩ Mass matrix M (2.8), (2.11), (2.15)∫

Ω
(NNN1)TM ∇NNN1 dΩ Advection matrix (2.8), (2.11), (2.15)∫

Ω
(∇NNN1)TM ∇NNN1 dΩ Laplace matrix K (2.8), (2.11), (2.15)∫

Ω
BTM BdΩ Tangential matrix (2.17)∫

Ω
M BTmNNN1 dΩ Displacement coupling matrix (2.17)∫

Ω
M NNNT

1 mTBdΩ Pressure coupling matrix (2.17))∫
Ω

QNNN1 dΩ ,
∫

Ω
QNNN2 dΩ Source term vector (2.8), (2.11), (2.15),(2.17)∫

Γ
qNNNΓ dΓ Neumann vector (2.8), (2.11), (2.15),(2.17)

Table 3.1: Matrix and vector types with material variable M

where M are a process-specific material functions, B = L NNN2 is so called strain-
displacement matrix, m is mapping vector defined as.

m =

{
(1, 1, 1, 0, 0, 0), 3D problem

(1, 1, 1, 0), 2D problem

Such classification provides an easy way of implementation (Wang and Kolditz,
2007). After assembly of all element level matrices and vectors, we obtain a system
of linear equations to be solved:

Auh = b (3.4)

The stiffness matrix A is s sparse type matrix , which is populated primarily with
zeros.

4 Adaptive time stepping with automatic control

In this section, we describe the development and the implementation of the adaptive
time stepping for thermo-hydraulic processes in porous media.

4.1 Temporal discretization

We use the backward Euler or implicit method to approximate the solutions of
ordinary differential equations (3.3). Considering a relaxation for the Laplacian
related term, we can discretize equations (3.3) as follows

M(uh|n+1−uh|n)/∆t +K [αuh|n+1 +(1−α)hu|n] = f (4.1)

where f is the right hand side including the contributions from the source/sink term,
Neumann boundary conditions and the advection term, n and n + 1 indicate the
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previous and current time steps,respectively, ∆t denotes time step size tn+1− tn,
α ∈ [0,1] is a relaxation parameter.

The fixed point or the Picard method is adopted to linearize equation (4.1). There-
fore, for each Picard iteration k +1, the solutions of equations (4.1) are given by

uh|k+1
n+1 =

[
Mk/∆t +αKk

]−1
( f k +Mkuh|n/∆t− (1−α)Kk

puh|n) (4.2)

where k indicates the previous Picard iteration. Hereafter, for the sake of consis-
tency of symbols with that used in the theory of automatic control, we denote time
step size ∆t as h.

4.2 Automatic control of time stepping

We employ the PI (proportional and integral feedback) (Gustafsson, Lundh, and
Söderlind, 1988) classic time control method, which provides a stable and efficient
time stepping for the numerical solution of PDEs. The idea behind PI control is
the elementary local error control theory, i.e. the next time step size, hn+1, can be
predicted by the local error estimation en as (Gustafsson, Lundh, and Söderlind,
1988; Hairer and Wanner, 1996; Söderlind, 2002)

hn+1

hn
= η (4.3)

where η is the constant of time step size factor. In the present work, we apply
the PI automatical control provided in (Hairer and Wanner, 1996) to calculate η .
Denoting ζ = ε/en as the error excess, the time step size factor takes the form

η = max

c1,
min

(
c2,

4
√

ζ

)
c f

 (4.4)

where c1,c2,c3 are the constants, ε is the error of solution uk+1
n+1 in current nonlinear

iteration, en = eA + ermax(uk+1
n+1,un) with an absolute tolerance eA and a relative

tolerance er.

Alternatively, if previous time step n− 1 is accepted, the calculation of time step
factor (4.4) can be combined with the predictive control presented in (Gustafsson,
1992) as

ηg = max
(

c1, min(c2,
hn−1

hn

4
√

ζ 2/max(ζn−1,10−2)/c f )
)

η = max(η , ηg)
(4.5)
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4.3 Time stepping for coupled processes

Frequently staggered scheme are applied for the numerical simulations of the cou-
pled problems. By this approach the dimension of the system of equations (degree
of freedom) can be reduced. In regard to adaptive time stepping, the time step sizes
of different processes predicted by PI control can be very different. To enable dif-
ferent process uses different step size and meanwhile keep time synchronization
is therefore essential for numerical simulations of coupled process in a staggered
manner. In the present study, we present a scheme that uses PI control to predict
time step size for each coupled process and in addition synchronizes time step for
data output at given times.

We consider a coupled problem has m processes, a set of specific times tl, l =
1, · · · , lmax for output or some other purposes, and the predicted time step size of
process i is hi

n+1, i = 1, · · · ,m after time tn. In current step tn+1, a time step size h is
selected such that h is the smallest predicted time step size of all coupled processes
as

h = min(hi
n+1, i = 1, · · · ,m)

Concerning to each process i, we set a variable hi
c to accumulate the step size h

such as

hi
c =

{
hi

c +h if h<
c hi

n+1,
hi

c else
(4.6)

This means if the predicted step size of process hi is larger than the selected time
step size h, we skip the action on the process and increase the accumulation, hi

c,
with h, and we only perform the analysis of the process if the accumulation is
larger than or equals to hi

n+1.

5 Parallelization

The geometric parallelism is considered, with which all CPU nodes of a parallel
machine run the same code. To partition the computational task of the finite ele-
ment method, we use the domain decomposition approach. In the present parallel
strategy, the parallel computing incorporated with PI automatic time step control
takes the following steps:

• Before time stepping

1. Partition the finite element method into several subdomains.

2. Construct topological data of subdomain concurrently by each CPU.
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• In each time step for individual physical equation

1. Build local system of equations of subdomain concurrently by each
CPU using local tropologic data of the mesh.

2. Solve linear equation by iterative solver, where the product of the stiff-
ness matrix and vectors is performed on subdomain by each CPU, and
MPI communication is involved to collect norms of the result vectors
before convergence and to collect the solution after convergence (Wang,
Kosakowski, and Kolditz, 2009).

3. Predict time step size by using PI control.

• After time step, synchronize times from each coupled equations by the ap-
proach described in section 4.3.

With the present parallel method, we successfully avoid building a global system
of equations for each physical equations.

5.1 Sparsity and mesh topology

Sparsity of matrices results arises from the mesh topology of the finite element
method. Making use of sparsity features is very important for both reduction of
memory consumption for matrix storage and fast data access to matrix entries for
computational efficiency. Shape functions of the finite element method are local
and they have small support, i.e.

hi(ξk) =

{
1, i = k

0, i 6= k
, k = 1,2, · · · ,ne (5.1)

where i and k stand for node indices, ξk are local coordinates. This leads to a fact
that most of the entries of the stiffness matrix A of the linear equation arising from
equation (3.3) are zero ones. Moreover, the sparse pattern of a stiffness matrix from
the finite element method is determined by the topology of the element mesh.

The local (element-by-element) assembly procedure results in following dependen-
cies of the global stiffness matrix:

• Each row of the global matrix is related to each node index.

• Non-zero entries of a row are determined by the nodes of all elements that
are connected to a node, which is associated with this row.
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5.2 Storage scheme of sparse matrix and object oriented programming

The storage scheme of sparse matrices is aimed at minimization of memory con-
sumption and maximization of computational efficiency. To this purpose, only the
non-zero entries are stored and used for algebraic matrix operations. This can
be easily done by using the topology of the finite element mesh (Section 5.1).
Proven storage types are sparse vector, coordinate storage, compressed row stor-
age, compressed column storage, compressed diagonal storage, jagged diagonal
storage (JDS), block compressed row storage and skyline storage schemes (Saad,
2003). Since the JDS is very efficient at the cost of a gather/scatter operation, we
utilize this type of matrix storage for the code implementation.

The sparse matrix pattern arising from the finite element method is resulting from
mesh topology. For multi-field problems, however, the individual OPDEs may
have different degree of freedom of the unknowns (i.e. scalar or vector quanti-
ties). Moreover, different interpolation schemes are necessary for the finite ele-
ment method in order to guarantee numerical accuracy and stability. This type of
multi-field problems leads to more complex sparsity pattern. The idea is that sim-
ply uses the number of element nodes as a shift to access sparse matrix entries.
This prompts that the sparse matrix is better to be abstracted into two individual
data objects: (1) for sparse matrix structure and (2) for matrix data entries as well
as related algebraic operations. An important and novel aspect of the present work
is the development of sparse matrix concept for multi-field problems. Moreover, a
large flexibility for coupling schemes is introduced based on the object-orientated
matrix concept.

• SparseTable: holds the sparse pattern of the stiffness matrix and two over-
loaded constructors, for sequential with the global mesh topology as an ar-
gument and parallel simulations with the subdomain mesh topology as an
argument, respectively.

• SparseMatrix: contains values of matrix entries according to sparsity and
degree of freedom per node, as well as provides methods algebraic matrix
operations,

• Solver: Krylov-type subspace solver using the matrix operations provided
by SparseMatrix.

6 Example

To investigate the computational efficiency of the present parallel scheme and time
stepping approach for coupled PDEs, we conduct parallel simulations of the THM
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coupled processes in the FEBEX type repository defined in the DECOVALEX-
THMC project (Barr, Birkholzer, Rutqvist, and Sonnenthal, 2004; Rutqvist, Barr,
Birkholzer, Chijimatsu, Kolditz, Liu, Oda, Wang, and Zhang, 2008; Rutqvist, Barr,
Birkholzer, Fujisaki, Kolditz, Liu, Fujita, Wang, and Zhang, 2009). The parallel
computing involves a number of CPUs up to thirty.

Fig. 6.1 depicts the near field model of the FEBEX type repository, in which the
specified observation points are given. 6.1. Fig. 6.1 depicts the definition of the
benchmark, The linear element is adopted for hydraulic and heat transport equa-

0 200 400 600 800 1000
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400
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Figure 6.1: Left: Near field of the repository model(Barr, Birkholzer, Rutqvist, and
Sonnenthal, 2004). Right: Finite element mesh

tions, while the quadratic element is used for deformation equation. This makes
the dimension of linear equation of deformation much larger than that of the other
coupled equations. Detailed description of the material parameters and model set-
up can be found in the paper by Wang and Kolditz (2007).

For PI time stepping, all parameters are assigned with their default values except
eA = 10−10, er = 10−4 for hydraulic and heat transport equation. Since deformation
is elastic and time only exists in coupled terms, the time step size for the deforma-
tion equation is specified manually. The simulation duration is one million year,
and the initial time step sizes are set as 0.001 year for hydraulic equation and 0.01
year for heat transport equation.

We measure the speed-up for this simulation based on wall clock time measure-
ments on the SUN X4600 cluster. The achieved speedup of total time consuming
by the linear solver and by the entire simulation is shown in Fig. 6.2. A nearly op-
timal speed-up can be achieved for up to 16 CPU nodes, then the parallel efficiency
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goes down. We can see that there is no significant speedup for linear solver of linear
element approach owing to very few CPU time is consumed by this solver. Com-
pared to the quadratic element approach, the linear element approach gives small
dimension of linear equation, and its time consuming is dominated by inter-node
communication. We also can find that the most important factor in speedup is the
behavior of the linear solver for quadratic element. Since there is inter-computer-
node communication in the parallel solver algorithm, an increasing number of it-
erations causes larger communication latency. Therefore, the overall speed-up is
affected by the number of solver iterations. The inter-computer-node communica-
tion takes place on subdmain border nodes during each solver iteration and once
on all mesh nodes after solver convergence is achieved. The number of subdmain
border nodes is monotonically increasing with the increase of sub-domain num-
bers. If the number of subdmain border nodes becomes close to the number of the
whole mesh nodes, the communication between border nodes will limit the speed-
up. In other words, if we decompose a mesh into too many sub-domains, we can
not achieve a further speed-up for the parallel simulation.
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Figure 6.2: Speed-up of parallel finite simulation.

In the parallel computing, the PI control based algorithm for coupling equations
performs a perfect time stepping for this thermal hydraulic coupled nonlinear prob-
lem. The simulation is finished in only 66 steps with only one rejected step, and
its total non-linear iterations is 660. Fig. 6.3 shows variations of time step size of
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the two coupling equations in the synchronized time. It shows that time step sizes
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Figure 6.3: Time steps of non-isothermal Richard’s problem

increase to a certain number until 1year and do not change much from 1 year to 100
year. This is because the temperature experiences its peak value, and consequently
the water in the bentonite undergoes vaporizing. This phenomena is duplicated
numerically by the present simulation, which is demonstrated by Fig. 6.4 for tem-
perature and saturation variations at observation point V3 (see Fig. 6.1), which
locates in the bentonite buffer just above the top of the canister.

The present temperature results are not only compared with that of our previous
study but also with those by using TOUGH and ROCMAS by LBNL, and this is
demonstrated in Fig. 6.4.

7 Conclusions

In the present study, we presented a high performance computing scheme for mod-
eling the non-isothermal poro-elastic problems, which represent thermal hydraulic
and mechanical coupled processes in porous media. The scheme combines an adap-
tive time stepping with automatic control and a parallel finite element method. The
adaptive time stepping allows individual PDE of physical process use its own pre-
dicted time step size. While the parallel finite element scheme based on the domain
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Figure 6.4: Left: Temperature variation at points V1, V2 and V5. Middle: Temper-
ature variation at points V1. Right: Variation of horizontal stress

decomposition method and it is realized with MPI implementation. The sparsity of
the derived stiffness matrix and its relates linear solver are handled in the objected
oriented manner such that the memory consuming and inter-node communication
are moderated. The present scheme was successfully verified by modeling a well
known thermal hydraulic and mechanical coupled problem arising from nuclear
waster disposal engineering.
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