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3D Analyses of the Stability Loss of the Circular Solid
Cylinder Made from Viscoelastic Composite Material

S. D. Akbarov1,2 and S. Karakaya3

Abstract: The 3D approach was employed for investigations of the stability loss
of the solid circular cylinder made from viscoelastic composite material. This ap-
proach is based on investigations of the evolution of the initial infinitesimal im-
perfections of the cylinder within the scope of 3D geometrically nonlinear field
equations of the theory of viscoelasticity for anisotropic bodies. The numerical
results of the critical forces and critical time are presented and discussed. To il-
lustrate the importance of the results obtained using the 3D approach, these results
are compared with the corresponding ones obtained by employing various approx-
imate beam theories. The viscoelasticity properties of the cylinder’s material are
described by the fractional-exponential operator. The numerical results and their
discussion are presented for the case where the cylinder is made of a uni-directional
fibrous viscoelastic composite material. In particular, it is established that the dif-
ference between the critical times obtained by employing 3D and third order refined
beam theories becomes more non-negligible if the values of the external compres-
sive force are close to the critical compressive force which is obtained at t = ∞ (t
denotes a time).

Keywords: critical force, critical time, initial imperfection criterion, stability
loss, cylinder from viscoelastic composite material.

1 Introduction

Investigations into stability loss problems of the elements of construction from
composite materials in many cases require the application of the Three-Dimensional
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Linearized Theory of Stability (TDLTS), the equations and relations of which are
obtained from the exact non-linear equations of the deformable solid body me-
chanics by employing the linearization procedure similarly used by Green et al
(1952), Biot (1965), Guz (1999) and others. Some researchers use the notation
“General Theory of Stability” instead of TDLTS (see, for instance, Green et al
(1952), Biezeno and Hencky (1930) and Southwell (1913)).

Note that from the historical aspect, the equations of TDLTS were first obtained by
Southwell (1913) where physical considerations were used and it was assumed that
the pre-critical stress state was homogeneous. Later the equations of TDLTS were
obtained by Biezeno and Hencky (1930) for the inhomogeneous pre-critical stress
state using the physical considerations. Derivation of the equations and relations of
the TDLTS from non-linear equations and the relations of the theory of elasticity
using a linearization procedure were described in the monographs by Biot (1965)
and Guz (1999).

During the second half of the 20th century there were major contributions to the
development of the TDLTS and its applications to numerous stability problems of
elements of construction from composite materials. A detailed review of the cor-
responding investigations is given by Babich et al (2001), Babich and Guz (2002)
and others. It follows from the research of these and other numerous inquiries that
before the beginning of the 21-th century, applications of the TDLTS were mainly
related to the stability loss of constructions fabricated from time-independent mate-
rials. Furthermore, these investigations were done using the bifurcation (Euler) ap-
proach. It is known that, in general, the Euler approach is not suitable for investiga-
tions of stability loss problems for elements of constructions from time-dependent
materials under static external loading. Therefore in the monograph by Guz (1999)
in order to examine these problems, the dynamic investigation method is suggested.
Note that under application of this method the sought values are presented with the
multiplier exp(iΩt) and the critical parameters of the considered problems are de-
termined from the requirement that ImΩ = 0. However, under application of the dy-
namic investigation method within the framework of TDLTS other difficulties arise:
for the time-dependent material, the coefficients of the equations of the TDLTS de-
pend on t(time) and therefore, in many cases, within the framework of the TDLTS,
representation of the sought values with multiplier exp(iΩt) is impossible. To the
authors’ knowledge, up to the present, no research on stability loss problems on
the time-dependent material within the framework of TDLTS has been carried out
with the use of the dynamical investigation method. Moreover, in the monograph
by Guz (1999) to investigate these problems the critical deformation method by
Gerard and Gilbert (1958) is proposed, according to which, it is assumed that the
critical deformation of the pure elastic and the corresponding viscoelastic problems
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are identical. Therefore, using the results of the pure elastic stability problems, the
critical time is determined from the corresponding constitutive relations of the vis-
coelastic body considered. It is evident that the critical deformation method is a
very approximate one and can be applied in the case where the pre-critical stress
state is homogeneous.

The very reliable and frequently used approach for the investigation of the stability
loss of the elements of constructions made from time dependent materials is the
approach proposed by Hoff (1954). This is based on the study of the growth of
the initial insignificant imperfections of the elements of construction with the flow
of time under fixed external static compressive forces. However, before the final
years of the 20th century in the framework of the TDLTS, the approach based on the
growth of the aforementioned initial infinitesimal imperfections had not been pro-
posed. Such an approach, for the first time, was proposed by Akbarov et al (1997,
1999) for the investigation of the internal stability loss (failure) in the structure of
the unidirectional fibrous and layered composites in compression. In these papers,
the case for which the initial infinitesimal imperfections given to the fibers or layers
starts to increase and grows indefinitely is taken as a criterion for determination of
the failure parameter (the values of a critical force or a critical time). Note that the
results obtained in the papers by Akbarov et al (1997, 1999) were also detailed in
the monograph by Akbarov and Guz (2000). Moreover, in papers by Akbarov and
Kosker (2001, 2004) the approach mentioned was employed for the investigation of
fiber buckling in a viscoelastic matrix. The study of the three-dimensional surface
undulation stability of the viscoelastic half-space covered with a stack of layers in
biaxial compression was reported by Akbarov and Tekercioglu (2007). Also, the
three-dimensional stability loss of the fiber which is near a convex cylindrical sur-
face was studied in papers by Akbarov and Mamedov (2009, 2011). The material
of the cylinder which contains the fiber is taken as a viscoelastic one.

An extension of the foregoing three-dimensional (3D) approach for investigation
of the stability loss problems of the elements of constructions made from linear
viscoelastic composite materials was the subject of the papers by Akbarov (1998)
and Akbarov and Yahnioglu (2001). Note that in these papers, the stability loss of a
simply supported (Akbarov (1998)) and clamped (Akbarov and Yahnioglu (2001))
strip of viscoelastic composite materials was studied. In a paper by Akbarov et al
(2001) the investigations performed in the latter two above-mentioned papers were
developed for the 3D buckling instability of a thick rectangular plate. Two opposite
edges of the plate were simply supported, but the other two were clamped.

A rotationally symmetric undulation instability problem for a circular plate of a
viscoelastic composite material was investigated in a paper by Kutuk , Yahnioglu
and Akbarov (2003). The case of a rectangular plate with all its edges clamped was
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considered by Selim and Akbarov (2003). An analysis of undulation instability for
rotating thick circular and annular discs made from a viscoelastic composite ma-
terial was carried out by Yahnioglu and Akbarov (2002). Moreover, Kutuk (2009)
provided detailed analyses of a simply supported viscoelastic rectangular plate un-
der bi-axial compression in the plate plane.

The foregoing completes a brief review of all investigations carried out up to now
within the scope of the TDLTS and related to the elements of constructions made
from viscoelastic composite materials. It should be noted that in the papers men-
tioned above the corresponding results obtained by the approximate plate theories
based on the Kirchhoff-Love and Kromm (1955) hypotheses are also presented. A
comparison of the corresponding results shows that for pure elastic stability loss
problems, the difference between the results obtained in the framework of the 3D
approach and that of the third order refined plate theory by Kromm (1955) is not
more than 5-6%. However, the difference between the critical times obtained within
the framework of the 3D approach and that of the mentioned refined plate theory
can be more than a few times. Consequently, application of the 3D approach to
the investigations of the stability loss problems of elements of constructions made
from time-dependent materials is more necessary than the application of this 3D
approach to the investigation of those made from the pure elastic composite mate-
rials.

However, as follows from the foregoing discussion, all the studies noted above
relate to 3D stability loss of the viscoelastic composite plate. Consequently, there
is no investigation related to the three-dimensional stability loss problem of the
viscoelastic cylinder which is also used in a lot of elements of constructions. In the
present paper, the first attempt in this field is undertaken and the approach proposed
by Akbarov (1998) is developed for the study of the three dimensional stability
loss of the circular solid cylinder made from viscoelastic composite materials. The
same problem is also solved by using approximate beam theories, and the results
obtained are compared with those given by the 3D approach which is developed
and employed in the present paper.

2 Formulation of the problem

We consider a cylinder which has an initial imperfection in the natural state and
determine the position of the points of this cylinder with the Lagrange coordinates
in the cylindrical Orθz and in the Cartesian Ox1x2x3 system of coordinates (Fig.
1). The noted initial imperfection is given through the following equation of the
middle line of the cylinder:

x3 = t3; x1 = Asin
(

π

`
t3
)

; x2 = 0, (1)



3D Analyses of the Stability Loss 5

where t3 is a parameter and t3 ∈ (0, `), A is the amplitude of the initial imperfection
form.

Figure 1: The geometry of the consid-
ered cylinder.

 

 
Figure 2: The graphs of the dependen-
cies among t ′3D.cr, t ′R f .cr. and dimension-
less intensity of the compressed force
p′.

We assume that the cylinders’ cross section which is perpendicular to its middle
line tangent vector, is a circle of the constant radius, R. Moreover, as in papers by
Akbarov (1998) and Akbarov and Yahnioglu (2001), we assume that A << l and
introduce the small parameter:

ε =
A
`
, 0≤ ε << 1 (2)

We suppose that the material of the cylinder is viscoelastic transversal isotropic,
the symmetry axis of which coincides with the Ox3(Oz) axis. Within the foregoing
assumptions, we investigate the evolution of the infinitesimal initial imperfection
of the cylinder with time for the case where the cylinder is loaded by uniformly
distributed normal compressed forces with intensity p acting on the ends of the
cylinder in the direction of the Oz axis.

This investigation is within the scope of the following field equations:

∂ trr

∂ r
+

∂ tθr

r∂θ
+

∂ tzr

∂ z
+

1
r

(trr− tθθ ) = 0,
∂ trθ

∂ r
+

∂ tθθ

r∂θ
+

2
r

trθ +
∂ tzθ

∂ z
= 0,

∂ trz

∂ r
+

∂ tθz

r∂θ
+

1
r

trz +
∂ tzz

∂ z
= 0, (3a)
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trr = σrr

(
1+

∂ur

∂ r

)
+σrθ

(
∂ur

r∂θ
− uθ

r

)
+σrz

∂ur

∂ z
,

trθ = σrr
∂uθ

∂ r
+σrθ

(
1+

∂uθ

r∂θ
+

ur

r

)
+σrz

∂uθ

∂ z
,

trz = σrr
∂uz

∂ r
+σrθ

∂uz

r∂θ
+σrz

(
1+

∂uz

∂ z

)
,

tθr = σθr

(
1+

∂ur

∂ r

)
+σθθ

(
∂ur

r∂θ
− uθ

r

)
+σθz

∂ur

∂ z
,

tθθ = σθr
∂uθ

∂ r
+σθθ

(
1+

∂uθ

r∂θ
+

ur

r

)
+σθz

∂uθ

∂ z
,

tθz = σθr
∂uz

∂ r
+σθθ

∂uz

r∂θ
+σθz

(
1+

∂uz

∂ z

)
,

tzr = σzr

(
1+

∂ur

∂ r

)
+σzθ

(
∂ur

r∂θ
− uθ

r

)
+σzz

∂ur

∂ z
,

tzθ = σzr
∂uθ

∂ r
+σzθ

(
1+

∂uθ

r∂θ
+

ur

r

)
+σzz

∂uθ

∂ z
,

tzz = σzr
∂uz

∂ r
+σzθ

∂uz

r∂θ
+σzz

(
1+

∂uz

∂ z

)
, (3b)

εrr =
∂ur

∂ r
+

1
2

{(
∂ur

∂ r

)2

+
(

∂uθ

∂ r

)2

+
(

∂uz

∂ r

)2
}

,

εrθ =
1
2

(
∂uθ

∂ r
+

∂ur

r∂θ
− uθ

r

)
+

1
2

{
∂ur

∂ r

(
∂ur

r∂θ
− uθ

r

)
+

∂uθ

∂ r

(
∂uθ

r∂θ
+

ur

r

)
+

∂uz

∂ r
∂uz

r∂θ

}
,

εrz =
1
2

(
∂ur

∂ z
+

∂uz

∂ r

)
+

1
2

{
∂ur

∂ r
∂ur

∂ z
+

∂uθ

∂ r
∂uθ

∂ z
+

∂uz

∂ r
∂uz

∂ z

}
εθθ =

∂uθ

r∂θ
+

ur

r
+

1
2

{(
∂ur

r∂θ
− uθ

r

)2

+
(

∂uθ

r∂θ
+

ur

r

)2

+
1
r2

(
∂uz

∂θ

)2
}

,

εθz =
1
2

(
∂uz

r∂θ
+

∂uθ

∂ z

)
+

1
2

{
∂ur

∂ z

(
∂ur

r∂θ
− uθ

r

)
+

∂uθ

∂ z

(
∂uθ

r∂θ
+

ur

r

)
+

1
r

∂uz

∂θ

∂uz

∂ z

}
,
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εzz =
∂uz

∂ z
+

1
2

{(
∂ur

∂ z

)2

+
(

∂uθ

∂ z

)2

+
(

∂uz

∂ z

)2
}

. (3c)

Here the equation (3a) is an equilibrium equation in terms of the non-symmetric
Kirchhoff stress tensor components trr, tθθ , tzz, trθ , tθr, tzθ , tθz, tzr and trz, the equa-
tion (3b) shows the relation between the components of the non-symmetric Kirch-
hoff stress tensor and the components of the ordinary stress tensor in the cylindrical
system of coordinates and the non-linear relation between the components of the
Green strain tensor and the components of the displacement vector is illustrated by
the equation (3c).

The constitutive relations for the cylinder materials in the cylindrical system of
coordinates are given as follows:

σrr = A∗11εrr +A∗12εθθ +A∗13εzz; σθθ = A∗12εrr +A∗11εθθ +A∗13εzz;

σzz = A∗13εrr +A∗13εθθ +A∗33εzz; σrθ = (A∗11−A∗22)εrθ ;

σrz = 2G∗εrz; σθz = 2G∗εθz,

(4)

where A∗i j and G∗ are the following operators:

{
A∗i j
G∗

}
ϕ (t) =

{
Ai j0
G0

}
ϕ (t)+

t∫
0

{
Ai j1 (t− τ)
G1 (t− τ)

}
ϕ (τ)dτ (5)

Here, Ai j0 and G0 are the instantaneous values of elastic constants and Ai j1 (t)
and G1 (t) are the given functions which determine the hereditary properties of
the cylinder material.

Assume that on the lateral surface S of the cylinder the following conditions are
satisfied:

trr|S nr + trθ |S nθ + trz|S nz = 0, tθr|S nr + tθθ |S nθ + tθz|S nz = 0,

tzr|S nr + tzθ |S nθ + tzz|S nz = 0. (6)

In the natural state, the upper and lower ends of the cylinder are on the inclined
planes with the following unit normal vectors:

−→n0 =
−→
−k− επ

−→
i√

1+ ε2π2
(for the lower end plane),

−→nl =
−→
k − επ

−→
i√

1+ ε2π2
(for the upper end plane) (7)
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where i and k are ort-unit vectors in Ox_1 and Ox_3 axes directions respectively.

Denote the upper (lower) end cross section of the cylinder by S` (S0) and the con-
ditions for the forces on these end cross sections we write as follows:

tzr|S0
n01 + tzθ |S0

n02 + tzz|S0
n03 = p, tzr|S`

n`1 + tzθ |S`
n`2 + tzz|S`

n`3 =−p, (8)

where n0 j
(
n` j
)

is a component of the unit normal vectors defined in (7). The end
conditions for the displacements will be discussed below.

Thus, formulation of the considered problem has been exhausted and it follows
that the evolution of the infinitesimal initial imperfection of the cylinder with time
for the fixed value of the initial compressed force p(for the case where the mate-
rial of the cylinder is viscoelastic) or with initial compressed force p (for the case
where the material of the cylinder is pure elastic) will be investigated within the
framework of the field equations (3), (4) and (5) and boundary conditions (6) and
(8).

3 Method of solution

Now we consider the method of solution of the problem formulated in the previ-
ous section. Note that the method employed below can be briefly summarized as
follows. By employing the boundary-form perturbation techniques, the considered
boundary value problem for the non-linear integro-differential equations (3) – (5) is
reduced to the series boundary-value problems for the corresponding system of the
linear integro-differential equations. Owing to both the expressions of the opera-
tors (5) and the convolution theorem, by using the Laplace transform with respect to
time these series problems are reduced to the corresponding series boundary value
problems for the linear system of differential equations in the Laplace transform
parameter space. For each fixed value of this parameter, the linear problems are
solved by employing the variable-separation method and finally, by applying the
Schapery (1966) inverse transformation method we determine the sought values. It
should be noted that for the case where the material of the cylinder is pure elas-
tic, the operators (5) are replaced by mechanical constants and therefore instead
of the integro-differential equations we obtain differential equations and the cor-
responding problems for these equations are also investigated in the framework of
the above procedure but without employing the Laplace transform.

According to the procedure summarized above and the problem statement, first
we derive the equation for the lateral surface S of the cylinder. According to the
conditions of the cylinder’s cross section, we can conclude that the coordinates of
this surface must simultaneously satisfy the following equations:

ε f ′(t3)(x10− ε f (t3))+ x30− t3 = 0,
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x2
20 +(x30− t3)

2 +(x10− ε f (t3))
2 = R2, (9)

where f (t3) = `sin(πt3/`), f ′ (t3) = π cos(πt3/`); x10, x20, x30 are coordinates
of the surface S. Note that the first equation in (9) is an equation of the plane
perpendicular to the vector which is the tangent vector to the middle line of the
cylinder at the point that corresponds to the fixed value of the parameter, t3; but
the second equation in (9) is an equation of the circle which is counter to the cross
section of the cylinder which rises on the foregoing plane.

Using the relations x10 = r cosθ and x20 = r sinθ we obtain the following equation
for the surface S in the cylindrical system of coordinates Orθz:

r± = r±(θ , t3,ε) = ε f (t3)cosθ
1+ ε2 ( f ′(t3))

2

1+ ε2 ( f ′(t3))
2 cos2 θ

+


(R±)2− ε2 ( f (t3))

2
(

1+ ε2 ( f ′(t3))
2
)

1+ ε2 ( f ′(t3))
2 cos2 θ

+ ε
2 ( f (t3))

2 cos2
θ

(
1+ ε2 ( f ′(t3))

2
)2

(
1+ ε2 ( f ′(t3))

2 cos2 θ

)2


1
2

z± = t3− ε f ′(t3)
(
r±(θ , t3,ε

)
− ε f (t3)), f ′(t3) =

d f (t3)
dt3

. (10)

Using the assumption (2) and the condition (ε f ′ (t3))
2 << 1, after some mathemat-

ical manipulations, we obtain the following equations:

r = R+ ε f (t3)cosθ +O(ε2), z = t3− εR f ′(t3)cosθ +O
(
ε

2) ,
nr =

(
1− ε

2
(

R± f ′′(t3)−
f (t3)
R±

)2

+O(ε3)

)
,

nθ =
(

ε
f (t3)
R±

sinθ +O
(
ε

2)) , nz =
(
−ε f ′(t3)cosθ +O

(
ε

2)) , (11)

where nr, nθ , nz are physical components of the unit normal vector to the surface S.

We write the equation of the planes on which lay the lower and upper inclined ends
of the cylinder as follows:

x3 =−επx1 (for the lower end) x3 = επx1 + ` (for the upper end) (12)

According to Eq. (7), we can also present the expression of the components of the
normal vectors to these ends as follows:

n01 = n`1 =−επ

(
1− 1

2
(επ)2 +O

(
(επ)4)) ,
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n03 =−
(

1− 1
2
(επ)2 +O

(
(επ)4)) ,

n`3 =
(

1− 1
2
(επ)2 +O

(
(επ)4)) . (13)

According to the procedures of the boundary perturbation technique, as in the
works by Akbarov (1998), Akbarov and Yahnioglu (2001) and many others, we
attempt to solve the considered problem by employing the boundary form pertur-
bation method. For this purpose the unknowns are presented in series form in ε

(2):{
σ(i j);ε(i j);u(i)

}
=

∞

∑
q=0

ε
q
{

σ
(q)
(i j);ε

(q)
(i j);u(q)

(i)

}
, (14)

(i j) = rr; rθ ; rz; θz; θθ ; zz, (i) = r; θ ; z.

Substituting Eq. (14) into Eq. (3), we obtain set equations for each approximation
(14). Using Eq. (11) we expand the values of each approximation (14) in series
form in the vicinity of the point {r0 = R0;z0 = t3}. Substituting these last expres-
sions in the boundary conditions in (6) and using the expressions of nr, nθ and nz

given in (11), after some mathematical transformations we obtain boundary con-
ditions which are satisfied at {r = R;z = t3} for each approximation in Eq.(14). It
is evident that for the zeroth approximation, Eq. (3) is valid and condition (6) is
replaced by the same one satisfied at point {r0 = R0;z0 = t3}. We assume that the
non-linear parts of the components of the strain tensor are very small and can be
neglected with respect to their linear parts. According to this assumption, for the
zeroth approximation, we obtain the following system of equations:

∂σ
(0)
rr

∂ r
+

∂σ
(0)
rθ

r∂θ
+

∂σ
(0)
rz

∂ z
+

1
r

(
σ

(0)
rr −σ

(0)
θθ

)
= 0,

∂σ
(0)
θr

∂ r
+

∂σ
(0)
θθ

r∂θ
+

2
r

σ
(0)
θr +

∂σ
(0)
θz

∂ z
= 0,

∂σ
(0)
rz

∂ r
+

∂σ
(0)
θz

r∂θ
+

1
r

σ
(0)
zr +

∂σ
(0)
zz

∂ z
= 0,

ε
(0)
rr =

∂u(0)
r

∂ r
, ε

(0)
rθ

=
1
2

(
∂u(0)

θ

∂ r
+

∂u(0)
r

r∂θ
−

u(0)
θ

r

)
, ε

(0)
rz =

1
2

(
∂u(0)

r

∂ z
+

∂u(0)
z

∂ r

)
,

ε
(0)
θθ

=
∂u(0)

θ

r∂θ
+

u(0)
r

r
, ε

(0)
θz =

1
2

(
∂u(0)

z

r∂θ
+

∂u(0)
θ

∂ z

)
, ε

(0)
zz =

∂u(0)
z

∂ z
, (15)
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and boundary conditions

σ
(0)
rr

∣∣∣
r=R

= 0, σ
(0)
rθ

∣∣∣
r=R

= 0, σ
(0)
rz

∣∣∣
r=R

= 0. (16)

Moreover, we obtain the following end conditions for the zeroth approximation
from (7), (8) and (13):

σ
(0)
zz (r,θ ,0) = σ

(0)
zz (r,θ , `) =−p, (17)

Note that the mathematical procedure, according to which the end condition (17) is
obtained, will be given below.

Taking the last assumption into account, for the subsequent approximations we
obtain the following system of equations:

∂σ
(q)
rr

∂ r
+

∂σ
(q)
rθ

r∂θ
+

∂σ
(q)
rz

∂ z
+

1
r

(
σ

(q)
rr −σ

(q)
θθ

)
+σ

(0)
zz

∂ 2u(q)
r

∂ z2 =

−∂S(q−1)
rr

∂ r
−

∂S(q−1)
rθ

r∂θ
− ∂S(q−1)

rz

∂ z
− 1

r

(
S(q−1)

rr −S(q−1)
θθ

)
,

∂σ
(q)
θr

∂ r
+

∂σ
(q)
θθ

r∂θ
+

2
r

σ
(q)
θr +

∂σ
(q)
θz

∂ z
+σ

(0)
zz

∂ 2u(q)
θ

∂ z2 =

−
∂S(q−1)

θr
∂ r

−
∂S(q−1)

θθ

r∂θ
− 2

r
S(q−1)

θr −
∂S(q−1)

θz

∂ z
,

∂σ
(q)
rz

∂ r
+

∂σ
(q)
θz

r∂θ
+

1
r

σ
(q)
zr +

∂σ
(q)
zz

∂ z
+σ

(0)
zz

∂ 2u(q)
z

∂ z2 =

− ∂S(q−1)
rz

∂ r
−

∂S(q−1)
θz

r∂θ
− 1

r
S(q−1)

zr − ∂S(q−1)
zz

∂ z
,

S(q−1)
rr =

q−1

∑
k=1

{
σ

(k)
rr

∂u(q−k)
r

∂ r
+σ

(k)
rθ

(
∂u(q−k)

r

r∂θ
−

u(q−k)
θ

r

)
+σ

(k)
rz

∂u(q−k)
r

∂ z

}
,

S(q−1)
rθ

=
q−1

∑
k=1

{
σ

(k)
rr

∂u(q−k)
θ

∂ r
+σ

(k)
rθ

(
∂u(q−k)

θ

r∂θ
+

u(q−k)
r

r

)
+σ

(k)
rz

∂u(q−k)
θ

∂ z

}
,

S(q−1)
rz =

q−1

∑
k=1

{
σ

(k)
rr

∂u(q−k)
z

∂ r
+σ

(k)
rθ

∂u(q−k)
z

r∂θ
+σ

(k)
rz

∂u(q−k)
z

∂ z

}
,
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S(q−1)
θr =

q−1

∑
k=1

{
σ

(k)
θr

∂u(q−k)
r

∂ r
+σ

(k)
θθ

(
∂u(q−k)

r

r∂θ
−

u(q−k)
θ

r

)
+σ

(k)
θz

∂u(q−k)
r

∂ z

}
,

S(q−1)
θθ

=
q−1

∑
k=1

{
σ

(k)
θr

∂u(q−k)
θ

∂ r
+σ

(k)
θθ

(
∂u(q−k)

θ

r∂θ
+

u(q−k)
r

r

)
+σ

(k)
θz

∂u(q−k)
θ

∂ z

}
,

S(q−1)
θz =

q−1

∑
k=1

{
σ

(k)
θr

∂u(q−k)
z

∂ r
+σ

(k)
θθ

∂u(q−k)
z

r∂θ
+σ

(k)
θz

∂u(q−k)
z

∂ z

}
,

S(q−1)
zz =

q−1

∑
k=1

{
σ

(k)
rz

∂u(q−k)
z

∂ r
+σ

(k)
zθ

∂u(q−k)
z

r∂θ
+σ

(k)
zz

∂u(q−k)
z

∂ z

}
,

S(q−1)
zr =

q−1

∑
k=1

{
σ

(k)
zr

∂u(q−k)
r

∂ r
+σ

(k)
zθ

(
∂u(q−k)

r

r∂θ
−

u(q−k)
θ

r

)
+σ

(k)
zz

∂u(q−k)
z

∂ z

}

S(q−1)
zθ

=
q−1

∑
k=1

{
σ

(k)
zr

∂u(q−k)
θ

∂ r
+σ

(k)
zθ

(
∂u(q−k)

θ

r∂θ
+

u(q−k)
r

r

)
+σ

(k)
zz

∂u(q−k)
θ

∂ z

}
,

ε
(q)
rr =

∂uq
r

∂ r
+

1
2

q−1

∑
k=1

{(
∂u(k)

r

∂ r
∂u(q−k)

r

∂ r

)
+

(
∂u(k)

θ

∂ r
∂u(q−k)

θ

∂ r

)
+

(
∂u(k)

z

∂ r
∂u(q−k)

z

∂ r

)}
,

ε
(q)
rθ

=
1
2

(
∂u(q)

θ

∂ r
+

∂u(q)
r

r∂θ
−

u(q)
θ

r

)
+

1
2

q−1

∑
k=1

{
∂u(k)

r

∂ r

(
∂u(q−k)

r

∂θ
−u(q−k)

θ

)
+

∂u(k)
θ

∂ r

(
∂u(q−k)

θ

r∂θ
+

u(q−k)
r

r

)
+

∂u(k)
z

∂ r
∂u(q−k)

z

∂θ

}
,

ε
(q)
rz =

1
2

(
∂u(q)

r

∂ z
+

∂u(q)
z

∂ r

)
+

1
2

q−1

∑
k=1

{
∂u(k)

r

∂ r
∂u(q−k)

r

∂ z
+

∂u(k)
θ

∂ r
∂u(q−k)

θ

∂ z
+

∂u(k)
z

∂ r
∂u(q−k)

z

∂ z

}
,

ε
(q)
θθ

=
∂u(q)

θ

r∂θ
+

u(q)
r

r
+

1
2

q−1

∑
k=1

{
1
r2

(
∂u(k)

r

∂θ
−u(k)

θ

)(
∂u(q−k)

r

∂θ
−u(q−k)

θ

)
+

1
r2

(
∂u(k)

θ

∂θ
+u(k)

r

)(
∂u(q−k)

θ

∂θ
+u(q−k)

r

)
+

1
r2

(
∂u(k)

z

∂θ

)(
∂u(q−k)

z

∂θ

)}
,

ε
(q)
θz =

1
2

(
∂u(q)

z

r∂θ
+

∂u(q)
θ

∂ z

)
+

1
2

q−1

∑
k=1

{
1
r

∂u(k)
r

∂ z

(
∂u(q−k)

r

∂θ
−u(q−k)

θ

)
+
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1
r

∂u(k)
θ

∂ z

(
∂u(q−k)

θ

∂θ
+u(q−k)

r

)
+

1
r

∂u(k)
z

∂θ

∂u(q−k)
z

∂ z

}
,

ε
(q)
zz =

∂u(q)
z

∂ z
+

1
2

q−1

∑
k=1

{(
∂u(k)

r

∂ z
∂u(q−k)

r

∂ z

)
+

(
∂u(k)

θ

∂ z
∂u(q−k)

θ

∂ z

)
+

(
∂u(k)

z

∂ z
∂u(q−k)

z

∂ z

)}
(18)

Due to linearity, the constitutive relations (4) are satisfied by each approximation
separately:

σ
(q)
rr = A∗11ε

(q)
rr +A∗12ε

(q)
θθ

+A∗13ε
(q)
zz ; σ

(q)
θθ

= A∗12ε
(q)
rr +A∗11ε

(q)
θθ

+A∗13ε
(q)
zz ;

σ
(q)
zz = A∗13ε

(q)
rr +A∗13ε

(q)
θθ

+A∗33ε
(q)
zz ; σ

(q)
rθ

= (A∗11−A∗22)ε
(q)
rθ

;

σ
(q)
rz = 2G∗ε(q)

rz ; σ
(q)
θz = 2G∗ε(q)

θz ,

(19)

Now we write the boundary conditions given on the lateral surface of the cylinder
for the first approximation by the physical components of the stress tensor:

σ
(1)
(ir) + f1

∂σ
(0)
(ir)

∂ r
+φ1

∂σ
(0)
(ir)

∂ z
+ γθ σ

(0)
(i)θ + γzσ

(0)
(i)z = 0, (20)

where (i) = r,θ ,z. In Eq. (20) replacing (i) with r,θ and z we obtain the ex-
plicit form of the corresponding contact conditions in the considered approxima-
tion. Moreover, in Eq. (20) the following notation is used:

γz =− f ′(t3)cos(θ), f1 = f (t3)cos(θ), φ1 =−R f ′(t3)cos(θ),

γθ =
f (t3)

R
sin(θ), f ′(t3) =

d f (t3)
dt3

, f ′′(t3) =
d2 f (t3)

dt2
3

. (21)

Consider the satisfaction of the end conditions (8). To simplify the discussion we
rewrite these conditions in the Cartesian system of coordinates, Ox1x2x3:

σ3n

(
δ

j
n +

∂u j

∂xn

)∣∣∣∣
S0

n0 j = p; σ3n

(
δ

j
n +

∂u j

∂xn

)∣∣∣∣
S`

n` j =−p (22)

where δ
j

n is the Kronecker symbol. The other notation used in (22) is conventional.
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According to equations (12) and (13), we can write the following expressions from
the conditions (22):

σ3n

(
δ

j
n +

∂u j

∂xn

)∣∣∣∣
S0

n0 j = σ3n(x1,x2,−επx1, t)
(

δ
1
n +

∂u1(x1,x2,−επx1, t)
∂xn

)
n01

+σ3n(x1,x2,−επx1, t)
(

δ
3
n +

∂u3(x1,x2,−επx1, t)
∂xn

)
n03 =−p

σ3n

(
δ

j
n +

∂u j

∂xn

)∣∣∣∣
S`

n` j = σ3n(x1,x2, `+ επx1, t)
(

δ
1
n +

∂u1(x1,x2, `+ επx1, t)
∂xn

)
n`1

+σ3n(x1,x2, `+ επx1, t)
(

δ
3
n +

∂u3(x1,x2, `+ επx1, t)
∂xn

)
n`3 = p

(23)

Using the expansions:

σin(x1,x2,−επx1, t) =
∞

∑
q=0

ε
q
σ

(q)
in (x1,x2,−επx1, t) = σ

(0)
in (x1,x2,0, t)+

ε

(
σ

(1)
in (x1,x2,0, t)+(−πx1)

∂σ
(0)
in (x1,x2,0, t)

∂x3

)
+O

(
(επ)2

)
;

∂um(x1,x2,−επx1, t)
∂x j

=
∞

∑
q=0

ε
q ∂u(q)

m (x1,x2,−επx1, t)
∂x j

=
∂u(0)

m (x1,x2,0, t)
∂x j

+

ε

(
∂u(1)

m (x1,x2,0, t)
∂x j

+(−πx1)
∂ 2u(0)

m (x1,x2,0, t)
∂x3∂x j

)
+O

(
(επ)2

)
;

σin(x1,x2, `+ επx1, t) =
∞

∑
q=0

ε
q
σ

(q)
in (x1,x2, `+ επx1, t) = σ

(0)
in (x1,x2, `, t)+

ε

(
σ

(1)
in (x1,x2, `, t)+(πx1)

∂σ
(0)
in (x1,x2, `, t)

∂x3

)
+O

(
(επ)2

)
;
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∂um(x1,x2, `+ επx1, t)
∂x j

=
∞

∑
q=0

ε
q ∂u(q)

m (x1,x2, `+ επx1, t)
∂x j

=
∂u(0)

m (x1,x2, `, t)
∂x j

+

ε

(
∂u(1)

m (x1,x2, `, t)
∂x j

+(πx1)
∂ 2u(0)

m (x1,x2, `, t)
∂x3∂x j

)
+O

(
(επ)2

)
, (24)

we obtain the following expression for the end conditions in (22):{
−σ

(0)
3k

(
δ

3
k +

∂u(0)
3

∂xk

)
+ ε

[
−πσ

(0)
3k

(
δ

1
k +

∂u(0)
1

∂xk

)
−σ

(0)
3k

(
∂u(1)

3
∂xk

−πx1
∂ 2u(0)

3
∂x3∂xk

)
−

(
σ

(1)
3k −πx1

∂σ
(0)
3k

∂xk

)(
δ

k
3 +

∂u(0)
3

∂xk

)]
+O

(
ε

2)}
(x1,x2,0)

= p

{
σ

(0)
3k

(
δ

3
k +

∂u(0)
3

∂xk

)
+ ε

[
πσ

(0)
3k

(
δ

1
k +

∂u(0)
1

∂xk

)
+σ

(0)
3k

(
∂u(1)

3
∂xk

+πx1
∂ 2u(0)

3
∂x3∂xk

)
+

(
σ

(1)
3k +πx1

∂σ
(0)
3k

∂xk

)(
δ

k
3 +

∂u(0)
3

∂xk

)]
+O

(
ε

2)}
(x1,x2,`)

=−p. (25)

In a similar manner, we can write the following expansions for the physical com-
ponents u(i) of the displacement vector at the ends of the cylinder:

u(0)
(i) (x1,x2,0, t)+ε

u(1)
(i) (x1,x2,0, t)+(−πx1)

∂u(0)
(i) (x1,x2,0, t)

∂x3

+O
(
(επ)2

)
= 0,

u(0)
(i) (x1,x2, `, t)+ ε

u(1)
(i) (x1,x2, `, t)+(πx1)

∂u(0)
(i) (x1,x2, `, t)

∂x3

+O
(
(επ)2

)
= 0.

(26)

(i) = r,θ ,z

We assume that the coefficient of εq in the expansion (26) for (i) = r; θ is equal to
zero. Consequently, according to this assumption, we obtain the end conditions for
the first and subsequent approximations for the displacements ur and uθ .
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Taking the estimation
(

δ 3
k +∂u(0)

3 /∂xk

)
≈ δ 3

k ,
(

δ 1
k +∂u(0)

1 /∂xk

)
≈ δ 1

k and the ex-
pansions (23)-(26) into account, we obtain the following end conditions for the
stresses for the zeroth and first approximations from the condition (22).

For the zeroth approximation:

σ
(0)
33 (x1,x2,0) = σ

(0)
33 (x1,x2, `)− p. (27)

For the first approximation:

πσ
(0)
31 (x1,x2,0, t)+σ

(0)
3k (x1,x2,0, t)

(
∂u(1)

3 (x1,x2,0, t)
∂xk

−πx1
∂ 2u(0)

3 (x1,x2,0, t)
∂x3∂xk

)
+

(
σ

(1)
33 (x1,x2,0, t)−πx1

∂σ
(0)
33 (x1,x2,0, t)

∂x3

)
= 0,

πσ
(0)
31 (x1,x2, `, t)+σ

(0)
3k (x1,x2, `, t)

(
∂u(1)

3 (x1,x2, `, t)
∂xk

+πx1
∂ 2u(0)

3 (x1,x2, `, t)
∂x3∂xk

)
+

(
σ

(1)
33 (x1,x2, `, t)+πx1

∂σ
(0)
33 (x1,x2, `, t)

∂x3

)
= 0. (28)

Thus, rewriting the condition (27) in the cylindrical system of coordinates Orθz we
obtain the condition (17):

According to (15), (16) and (17), the values related to the zeroth approximation are
determined as follows:

σ
(0)
zz =−p, σ

(0)
(i j) = 0, f or (i j) 6= zz, (29)

It follows from (29) that in the zeroth approximation the components of the dis-
placement vector can be presented as follows:

u(0)
r = a(t)r +a0, u(0)

θ
= b0, u(0)

z = c(t)z+ c0, (30)

where a0,b0 and c0 are constants, a(t) and c(t) are functions, t is a time. The
functions a(t) and c(t) can be easily determined from equations (19) and (29).

Now we consider determination of the values related to the first approximation.
Taking the expression (29) into account the following field equations are obtained
from Eq. (18) for this approximation:

∂σ
(1)
rr

∂ r
+

1
r

∂σ
(1)
rθ

∂θ
+

∂σ
(1)
rz

∂ z
+

1
r

(
σ

(1)
rr −σ

(1)
θθ

)
+σ

(0)
zz

∂ 2u(1)
z

∂ z2 = 0,
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∂σ
(1)
rθ

∂ r
+

1
r

∂σ
(1)
θθ

∂θ
+

∂σ
(1)
θz

∂ z
+

2
r

σ
(1)
rθ

+σ
(0)
zz

∂ 2u(1)
θ

∂ z2 = 0,

∂σ
(1)
rz

∂ r
+

1
r

∂σ
(1)
θz

∂θ
+

∂σ
(1)
zz

∂ z
+

1
r

σ
(1)
rz +σ

(0)
zz

∂ 2u(1)
z

∂ z2 = 0.

ε
(1)
rr =

∂u(1)
r

∂ r
, ε

(1)
θθ

=
∂u(1)

θ

r∂θ
+

u(1)
r

r
, ε

(1)
zz =

∂u(1)
z

∂ z
,

ε
(1)
rθ

=
1
2

(
∂u(1)

r

r∂θ
+

∂u(1)
θ

∂ r
−

u(1)
θ

r

)
,

ε
(1)
θz =

1
2

(
∂u(1)

θ

∂ z
+

∂u(1)
z

r∂θ

)
, ε

(1)
zr =

1
2

(
∂u(1)

z

∂ r
+

∂u(1)
r

∂ z

)
. (31)

The following conditions on the lateral surface of the cylinder are obtained from
(20) and (29):

σ
(1)
rr (R,θ , t3, t)= 0, σ

(1)
rθ

(R,θ , t3, t)= 0, σ
(1)
rz (R,θ , t3, t)= 2πσ

(0)
zz cos(αz)cosθ ,

(32)

According to Eqs. (26) and (28), the end conditions for the first approximation can
be written as follows:

σ
(1)
zz (r,θ ,0, t)+σ

(0)
zz

∂u(1)
z (r,θ ,0, t)

∂ z
= 0, u(1)

r (r,θ ,0, t) = 0, u(1)
θ

(r,θ ,0, t) = 0

σ
(1)
zz (r,θ , `, t)+σ

(0)
zz

∂u(1)
z (r,θ , `, t)

∂ z
= 0, u(1)

r (r,θ , `, t) = 0, u(1)
θ

(r,θ , `, t) = 0.

(33)

Thus, the equations (31), (19) and (5) and the conditions (32) and (33) complete
the formulation of the problem for determination of the values of the first approxi-
mation. For the solution to this problem we apply the Laplace transform:

ψ̄ =
∞∫

0

ψ (t)e−stdt (34)
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with parameter s > 0, to all equations and relations related to the first approxima-
tion. After this application to equation (31), the boundary conditions (32) (in which
σ

(0)
zz must be replaced with σ

(0)
zz /s) and (33) are valid for the Laplace transforms

of the corresponding sought-for quantities, whilst the constitutive relations (19) are
transformed to the following ones:

σ̄
(1)
rr = Ā∗11ε̄

(1)
rr + Ā∗12ε̄

(1)
θθ

+ Ā∗13ε̄
(1)
zz ; σ̄

(1)
θθ

= Ā∗12ε̄
(1)
rr + Ā∗11ε̄

(1)
θθ

+ Ā∗13ε̄
(1)
zz ;

σ̄
(1)
zz = Ā∗13ε̄

(1)
rr + Ā∗13ε̄

(1)
θθ

+ Ā∗33ε̄
(1)
zz ; σ̄

(1)
rθ

=
(
Ā∗11− Ā∗22

)
ε̄

(1)
rθ

;

σ̄
(1)
rz = 2Ḡ∗ε̄(1)

rz ; σ̄
(1)
θz = 2Ḡ∗ε̄(1)

θz ,

(35)

where{
Ā∗i j
Ḡ∗

}
ϕ̄ (s) =

{
Ai j0
G0

}
ϕ̄ (s)+

{
Āi j1 (s)
Ḡ1 (s)

}
ϕ̄ (s) (36)

As has been noted above, Eqs. (31) - (36) coincide with the corresponding equa-
tions of the TDLTS. Therefore, to solve the obtained equation systems, according
to the monograph by Guz (1999), in the cylindrical system of coordinates we can
use the following representations:

ū(1)
r =

1
r

∂

∂θ
ψ− ∂ 2

∂ r∂ z
χ, ū(1)

θ
=− ∂

∂ r
ψ− 1

r
∂ 2

∂θ ∂ z
χ,

ū(1)
z =

(
Ā∗13 + Ḡ∗

)−1
(

Ā∗11∆1 +
(

Ḡ∗+σ
(0)
zz

)
∂ 2

∂ z2

)
χ, ∆1 =

∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂ 2

∂θ 2 .

(37)

The functions ψ and χ are determined from the equations:(
∆1 +ξ

2
1

∂ 2

∂ z2

)
ψ = 0,

(
∆1 +ξ

2
2

∂ 2

∂ z2

)(
∆1 +ξ

2
3

∂ 2

∂ z2

)
χ = 0, (38)

where

ξ
2
1 =

2Ḡ∗

Ā∗11− Ā∗12
, ξ

2
2,3 = c±

c2−

(
Ā∗33 +σ

(0)
zz

)(
Ḡ∗+σ

(0)
zz

)
Ā∗11Ḡ∗


1
2

,

2Ā∗11Ḡ∗c = Ā∗11

(
Ā∗33 +σ

(0)
zz

)
+ Ḡ∗

(
Ḡ∗+σ

(0)
zz

)
−
(
Ā∗13 + Ḡ∗

)2
. (39)
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Taking the expressions of the right sides of the conditions (32) and (33) we find the
solution to the equation (38) as follows:

ψ = B1I1(ξ1αr)sin(αz)sinθ , χ = [B2I1(ξ2αr)+B3I1(ξ3αr)]cos(αz)cosθ ,

(40)

where I1(x) is the first order Bessel function of a purely imaginary argument and
B1, B2 and B3 are unknown constants.

Substituting these solutions into relations (37) and (35) we obtain the following
expressions for Laplace transform of the south values:

ū(1)
r =

[
B1

1
r

I1(ξ1αr)+B2ξ2α
2I′1(ξ2αr)+B3ξ3α

2I′1(ξ3αr)
]

sin(αz)cosθ ,

ū(1)
θ

=
[
−B1ξ1αI′1(ξ1αr)− α

r
B2I1(ξ2αr)− α

r
B3I1(ξ3αr)

]
sin(αz)sinθ ,

ū(1)
z =

[
B2D2α

2I1(ξ2αr)+B3D3α
2I1(ξ3αr)

]
cos(αz)cosθ ,

D2 =
Ā∗11ξ 2

2 − Ḡ∗−σ
(0)
zz

Ā∗13 + Ḡ∗
, D3 =

Ā∗11ξ 2
3 − Ḡ∗−σ

(0)
zz

Ā∗13 + Ḡ∗

σ̄
(1)
rr =

{
B1

[
−
(
Ā∗11− Ā∗12

) 1
r2 I1(ξ1αr)+

(
Ā∗11− Ā∗12

) ξ1α

r
I′1(ξ1αr)

]
+

B2

[
Ā∗11α

3
ξ

2
2 I
′′
1(ξ2αr)+ Ā∗12

(
−α

r2 I1(ξ2αr)+
ξ2α2

r
I′1(ξ2αr)

)
− Ā∗13D2α

3I1(ξ2αr)
]
+

B3

[
Ā∗11α

3
ξ

2
3 I
′′
1(ξ3αr)+ Ā∗12

(
−α

r2 I1(ξ3αr)+
ξ3α2

r
I′1(ξ3αr)

)
− Ā∗13D3α

3I1(ξ3αr)
]}

sin(αz)cosθ ;

σ̄
(1)
rθ

=
{

B1

[
1
2
(
Ā∗11− Ā∗12

)(
−ξ

2
1 α

2I
′′
1(ξ1αr)− 1

r2 I1(ξ1αr)+
ξ1α

r
I′1(ξ1αr)

)]
+
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B2

[(
Ā∗11− Ā∗12

)(α

r2 I1(ξ2αr)− ξ2α2

r
I′1(ξ2αr)

)]
+

B3

[(
Ā∗11− Ā∗12

)(α

r2 I1(ξ3αr)− ξ3α2

r
I′1(ξ3αr)

)]}
sin(αz)sinθ ;

σ̄
(1)
rz =

{
B1Ḡ∗

α

r
I1(ξ1αr)+B2Ḡ∗α3

ξ2I′1(ξ2αr)(1+D2)+

B3Ḡ∗α3
ξ3I′1(ξ3αr)(1+D3)

}
cos(αz)cosθ ;

σ̄
(1)
zz ={
B2

[
Ā∗13

(
ξ

2
2 α

3I
′′
1(ξ2αr)− α

r2 I1(ξ2αr)+
α2ξ2

r
I′1(ξ2αr)

)
− Ā∗33D2α

3I1(ξ2αr)
]

+

B3

[
Ā∗13

(
ξ

2
3 α

3I
′′
1(ξ3αr)− α

r2 I1(ξ3αr)+
α2ξ3

r
I′1(ξ3αr)

)
− Ā∗33D3α

3I1(ξ3αr)
]}

sin(αz)cosθ . (41)

Here the notation I′(x) = dI(x)/dx, I′′(x) = d2I(x)/dx2 is used. The solution
(41) to the problem under consideration satisfies automatically the end condition
(33). Replacing the unknowns B1, B2 and B3 with α2B1 (= C1), α3B2(= C2)
and α3B3(= C3), respectively, we obtain the following algebraic equation from
the boundary condition (32) for determination of these unknowns:

σ̄
(1)
rr (R,θ , t3, t) = 0 ⇒C1a11 (αR)+C2a12 (αR)+C3a13 (αR) = 0,

σ̄
(1)
rθ

(R,θ , t3, t) = 0 ⇒C1a21 (αR)+C2a22 (αR)+C3a23 (αR) = 0,

σ̄
(1)
rz (R,θ , t3, t) = 2πσ

(0)
zz

1
s
⇒C1a21 (αR)+C2a22 (αR)+C3a23 (αR) = 2πσ

(0)
zz

1
s
,

(42)
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Note that expressions for the coefficients ai j(i; j = 1,2,3) can be easily obtained
from equation (41). Thus, with the foregoing we determine completely the Laplace
transforms of the values related to the first approximation. The Laplace transform
of the values of the second and subsequent approximations in (14) can also be
determined as the values of the first approximation by taking the obvious changes
into account. However, as shown in the works by Akbarov (1998), Akbarov and
Yahnioglu (2001) and others, for stability loss problems, consideration of only the
zeroth and first approximation is sufficient, because accounting for the second and
subsequent approximations does not change the values of the critical parameters.

The original of the south values is determined by employing the method by Schapery
(1966), according to which, for instance, the original of the displacement u(1)

r (r,θ , t3, t)
is determined through the expression:

u(1)
r (r,θ , t3, t)≈

(
sū(1)

r (r,θ , t3,s)
)∣∣∣

s=1/(2t)
(43)

Now we consider the selection of the stability loss criterion. In the present investi-
gation, the case will be understood under stability loss, where:

max
t3 ∈ (0, `)
r ∈ (0,R)

θ ∈ (0,2π)

∣∣∣u(1)
r (r,θ , t3, t)

∣∣∣→∞ as t→ tcr. (or as p→ pcr. for the pure elastic case).

(44)

Thus, the values of the critical time or the values of the critical force are determined
from the initial imperfection criterion (44).

4 Approximate Equations of the Stability Loss of the Cylinder-Beam ob-
tained from 3D equations (31) - (36) by average-integrating procedure

4.1 Bernoulli Beam Theory

For the case under consideration the approximate stability loss equations for the
cylinder-beam can be derived from equations (31)-(36) by using the Bernoulli hy-
pothesis, according to which, the displacements of the cylinder are presented as
follows:

u(1)
r = u(1)

r (θ ,z, t) = w(z)cosθ ,u(1)
θ

= u(1)
θ

(θ ,z, t) =−w(z)sinθ ,

u(1)
z = u(1)

z (r,θ ,z, t) =−r
dw(z)

dz
cosθ . (45)
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In writing the expression (45), it is assumed that the elongation of the middle line of
the cylinder is very small with respect to the term−rdw(z)/dzcosθ and is ignored.
Thus, according to (31) and (45), we obtain: ε

(1)
zz = −r cosθ

d2w(z)
dz2 , ε

(1)
(i j) = 0 for

(i j) 6= zz, σ
(1)
rr = σ

(1)
θθ

= σ
(1)
rθ

= 0,

σ
(1)
zz = E∗3 ε

(1)
zz =−r cosθE∗3

d2w(z)
dz2 , (46)

where E∗3 is an operator and E∗3 ϕ (t) = E30ϕ (t)+
t∫

0
E31 (t− τ)ϕ (τ)dτ , where E30

is the instantaneous value of the modulus of elasticity in the direction of the Oz axis
of the cylinder material and E31(t) is a function which determines the relaxation of
this material.

Assume that:

σ
(1)
rz 6= 0, σ

(1)
θz 6= 0. (47)

Taking the relations (46) and (47) into account we obtain the following equation
from (31):

∂σ
(1)
rz

∂ z
+σ

(0)
zz

d2w
dz2 cosθ = 0,

∂σ
(1)
θz

∂ z
−σ

(0)
zz

d2w
dz2 sinθ = 0,

∂σ
(1)
rz

∂ r
+

1
r

∂σ
(1)
θz

∂θ
+

1
r

σ
(1)
rz +

∂σ
(1)
zz

∂ z
+σ

(0)
zz

d3w
dz3 (−r cosθ) = 0. (48)

Using the expressions of the equations in (48) we can write the presentations:

σ
(1)
rz = s(1)

rz cosθ , σ
(1)
θz = s(1)

θz sinθ , σ
(1)
zz = s(1)

zz cosθ , (49)

according to which, we obtain the following equations from (48) and (49):

ds(1)
rz

dz
+σ

(0)
zz

d2w
dz2 = 0,

ds(1)
θz

dz
−σ

(0)
zz

d2w
dz2 = 0. (50)

Multiplying the last equation in (48) with r2 cosθ and integrating with respect to
r in the interval [0,R] and with respect to θ in the interval [0,2π] we can write the
following transformations:

R∫
0

2π∫
0

1
r

∂σ
(1)
θz

∂θ
r2 cosθdrdθ = π

R∫
0

s(1)
rz rdr;

R∫
0

2π∫
0

1
r

σ
(1)
rz r2 cosθdrdθ = π

R∫
0

s(1)
rz rdr;
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R∫
0

2π∫
0

∂σ
(1)
rz

∂ r
r2 cosθdrdθ = π

R∫
0

ds(1)
rz

dr
r2dr = π

 R∫
0

d
dr

(
s(1)

rz r2
)

dr −2
R∫

0

s(1)
rz rdr

=

π s(1)
rz

∣∣∣
r=R

R2−2π

R∫
0

s(1)
rz rdr = πσ

(0)
zz R2 cos(αz)−2π

R∫
0

s(1)
rz rdr,

R∫
0

2π∫
0

∂σ
(1)
zz

∂ z
r2 cosθdrdθ = π

R∫
0

E∗3
d3w
dz3 (−r3)dr =−πR4

4
E∗3

d3w
dz3 =−JE∗3

d3w
dz3 ,

(51)

J =
πR4

4
.

Here, the last condition in (32), i.e. the condition:

σ
(1)
rz (R,θ , t3, t) = 2πσ

(0)
zz cos(αz)cosθ ,⇒ s (1)

rz

∣∣∣
r=R

= 2πσ
(0)
zz cos(αz)

is used. Thus, taking the calculations given in (51), the equation (50) and the
estimation

∣∣∣σ (0)
zz

∣∣∣ << |E∗3 1| into account we obtain the following equation for the
displacement w(z) from the last equation in (48):

−E∗3 J
d4w
dz4 +πR2

σ
(0)
zz

d2w
dz2 = R2

ασ
(0)
zz sin(αz) (52)

Applying the presentations (45) and (46) to the end conditions (33) and doing the
integration over the area of the end cross sections we obtain the following ones for
the approximate Bernoulli approach:

w|z=0;` = 0,
d2w
dz2

∣∣∣∣
z=0;`

= 0. (53)

Thus, using the notation P =−πR2σ
(0)
zz we obtain the classical stability loss equa-

tion of the Bernoulli beam from which the Euler critical force within the scope of
the initial imperfection criterion is obtained.
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For the solution to the boundary value problems (52) and (53) we apply the Laplace
transform (34) to these equations. Using the convolution theorem for transforma-
tion of the term E∗3 d4w/dz4 we obtain the same equation and end conditions written
for w̄. For instance, after this transformation we obtain the following equation in-
stead of equation (52):

−Ē∗3 J
d4w̄
dz4 +πR2

σ
(0)
zz

d2w̄
dz2 =

1
s

R2
ασ

(0)
zz sin(αz) (54)

According to the end condition (53), the solution to the equation (54) is taken as
follows:

w̄ = Ā(s)sinαz (55)

Substituting (55) into (54) and doing some mathematical calculations we obtain the
following expression for the unknown Ā(s):

Ā(s) =− P`

sπ2

[
P−

π2Ē∗3 J
`2

]−1

, P =−πR2
σ

(0)
zz . (56)

Employing the method by Schapery (1966), the original of Ā(s) is determined as
follows:

A(t) =
(
sĀ(s)

)∣∣
s=(1/(2t)) (57)

For the cases where the cylinder material is pure elastic we obtain from (56) the
following expression:

A =−P`

π2

[
P− π2E3J

`2

]−1

. (58)

According to (44), the stability loss criterion for the Bernoulli beam can be ex-
pressed as follows:

A(t)→ ∞ as t→ tcr(for the case where the cylinder material is viscoelastic),

A→ ∞ as P→ Pcr(for the case where the cylinder material is pure elastic). (59)

The following expression follows from (58) and (59) for the critical force which
coincides with the Euler critical force:

PEu.cr =
π2E3J

`2 (60)
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4.2 Third Order Refined Beam Theory

For the third order refined beam theory we use the same modification of the theory
by Kromm (1955) for the cylinder-beam, according to which, the displacements
u(1)

r and u(1)
θ

are presented as in (45), but the displacement u(1)
z is presented as

follows:

u(1)
z = u(1)

z (r,θ ,z, t) =−r
dw(z)

dz
cosθ +

1
4

(
R2r cosθ − 1

3
r3 cos3

θ

)
φ(z). (61)

Substituting the expressions for u(1)
r , u(1)

θ
and u(1)

z into equations (31) we obtain the
expression for strains and stresses given below:

ε
(1)
rz =

1
8

R2 cosθ

(
1− r2

R2 cos2
θ

)
φ(z), ε

(1)
θz =−1

8
R2 sinθ

(
1− r2

R2 cos2
θ

)
φ(z),

ε
(1)
zz =−r cosθ

d2w(z)
dz2 +

1
4

(
R2r cosθ − r3 cosθ

3

)
dφ

dz
, ε

(1)
rr = ε

(1)
θθ

= ε
(1)
rθ

= 0,

σ
(1)
rr = σ

(1)
θθ

= σ
(1)
rθ

= 0, σ
(1)
rz = 2G∗ε(1)

rz = G∗
1
4

R2 cosθ

(
1− r2

R2 cos2
θ

)
φ(z),

σ
(1)
θz = 2G∗ε(1)

θz =−G∗
1
4

R2 sinθ

(
1− r2

R2 cos2
θ

)
φ(z),

σ
(1)
zz = E∗3 ε

(1)
zz = E∗3

(
−r cosθ

d2w(z)
dz2 +

1
4

(
R2r cosθ − r3 cosθ

3

)
dφ

dz

)
. (62)

It follows from the expressions given in (62) that the equations (48) and (49) also
hold for the considered case. First, we apply the Laplace transformation to the
equations (48), (49) and (62) and doing the integration procedure in the previous
case we obtain the following equation for the function w̄(z,s):

−E∗3 J

[
1+

32
27

σ
(0)
zz

G∗

]
d4w̄(z,s)

dz4 +πR2
σ

(0)
zz

d2w̄(z,s)
dz2 =

αR2

s
σ

(0)
zz sinαz, (63)

Note that the estimation
(

1+σ
(0)
zz /E∗3

)
≈ 1 has also been taken into account in

obtaining the equation (63). Thus, using the presentation (53) we obtain from (63)
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the following expression for Ā(s):

Ā(s) =− P`

sπ2

[
P

(
1+

8
27

E∗3
G∗

(
πR
`

)2
)
−

π2E∗3 J
`2

]−1

, P =−πR2
σ

(0)
zz . (64)

By employing the method (57) we determine the functionA(t). For determination
of the values of the critical parameters we can also use the expression (59). The
following expression can be written for the unknown A from equation (64) for the
case where the material of the cylinder is pure elastic:

A =−P`

π2

[
P

(
1+

8
27

E3

G

(
πR
`

)2
)
− π2E3J

`2

]−1

. (65)

From (65) the following expression for the critical force for the case where the
cylinder’s material is a pure elastic one can be written:

Pcr. =
π2E3J

`2

(
1+

8
27

E3

G

(
πR
`

)2
)−1

. (66)

5 Numerical results and discussions

We assume that the cylinder is made from viscoelastic unidirectional fibrous com-
posite material and its fibers lie along the Oz axis. In the discussions below, the
values related to the matrix and the fibers will be denoted by upper indices (1)
and (2), respectively. The material of the fibers is supposed to be pure elastic with
Young’s modulus E(2), Poisson coefficient ν(2) and shear modulus µ(2), but the
material of the matrix is supposed to be linearly viscoelastic with operators:

E∗(1)
φ = E(1)

0

[
φ(t)−ω0Π

∗
β
(−ω0−ω∞)φ

]
,

ν
∗(1)

φ = ν
(1)
0

[
φ(t)+

1−2ν
(1)
0

2ν
(1)
0

ω0Π
∗
β
(−ω0−ω∞)φ

]
,

µ
∗(1)

φ = µ
(1)
0

[
φ(t)− 3

2(1+ν
(1)
0 )

ω0Π
∗
β
(− 3

2(1+ν
(1)
0 )

ω0−ω∞)φ

]
, (67)

where E(1)
0 , ν

(1)
0 are the instantaneous values of Young’s modulus and the Poisson

coefficient, respectively, µ
(1)
0 is the instantaneous value of shear modulus, β , ω0
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and ω∞ are the rheological parameters of the matrix material, Π∗
β

is the fractional
exponential operator of Rabotnov (1977), and this operator is determined as:

Π
∗
β
(x)φ =

t∫
0

Πβ (x, t− τ)dτ, (68)

where

Πβ (x, t) = tβ
∞

∑
n=0

xntn(1+β )

Γ((1+n)(1+β ))
, −1 < β < 0, (69)

where Γ(x) is the Gamma function.

We introduce the dimensionless rheological parameter ω (= ω∞/ω0) and the di-
mensionless time t ′

(
= ω

1/(1+β )
0 t

)
and assume that ν(2) = ν

(1)
0 = 0.3, η(2) = 0.5,

where η(2) is the fiber concentration in the composite under consideration.

It is known that, within the scope of the continuum approach this composite can
be taken as a homogeneous transversal isotropic one, the isotropy axis of which
coincides with the Oz axis. According to Christensen (1979) and many others, by
replacing the mechanical constants of the components of a composite with Laplace
transform of the corresponding operators in the expressions of the effective me-
chanical properties, we determine the Laplace transform of the effective operators.
Therefore, in the Laplace transform of the constitutive relations (35), instead of
Ā∗i j and Ḡ∗ we write these expressions. For the considered composite material, the
expressions for Ā∗i j and Ḡ∗ are determined as follows:

Ā∗33 = Ē∗3 +4(ν̄∗31)
2 K̄∗21, Ā∗13 = 2ν̄

∗
31K̄∗12, Ā∗11 = µ̄

∗
12 + K̄∗12, Ā∗12 =−µ̄

∗
12 + K̄∗12,

Ḡ∗ = µ̄
(1) µ(2)(1+η(2))+ µ̄(1)(1−η(2))

µ(2)(1−η(2))+ µ̄(1)(1+η(2))
, (70)

where

K̄∗12 = K̄(1)+
1
3

µ̄
(1)+η

(2)

[(
1
3

(
µ

(2)− µ̄
(1)
)

+K(2)− K̄(1)
)−1

+

(
1−η(2)

)
K̄(1) + 4

3 µ̄(1)

]−1

,

Ē∗3 = η
(2)E(2) +(1−η

(2))Ē(1)+

4η(2)(1−η(2))(ν(2)− ν̄(1))2µ̄(1)

(1−η(2))µ̄(1)(K(2) + µ(2)/3)−1 +η(2)µ̄(1)(K̄(1) + µ̄(1)/3)−1 ,

ν̄
∗
31 = η

(2)
ν

(2) +(1−η
(2))ν̄(1)+
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4η(2)(1−η(2))(ν(2)− ν̄(1))
[
µ̄(1)(K̄(1) + µ̄(1)/3)−1− µ̄(1)(K(2) + µ(2)/3)−1

]
(1−η(2))µ̄(1)(K(2) + µ(2)/3)−1 +η(2)µ̄(1)(K̄(1) + µ̄(1)/3)−1 ,

µ̄
∗
12 = µ̄

(1)

1+η
(2)

[
µ̄(1)

µ(2)− µ̄(1) +
K̄(1) +7µ̄(1)/3
K̄(1) +8µ̄(1)/3

]−1
 . (71)

Here the following notation is used:

K̄(1) =
Ē(1)

3(1−2ν̄(1))
, K(2) =

E(2)

3(1−2ν(2))
, µ

(2) =
E(2)

2(1+ν(2))

Ē∗(1) = E(1)
0

[
1− Π̄β (−ω)

]
, ν̄

∗(1) = ν
(1)
0

[
1+

1−2ν
(1)
0

2ν
(1)
0

Π̄(−ω)

]
,

µ̄
∗(1) = µ

(1)
0

[
1− 3

2(1+ν
(1)
0 )

Πβ (− 3

2(1+ν
(1)
0 )
−ω)

]
, Π̄β (−x) =

1
s1+β + x

.

(72)

Thus, within the framework of the foregoing preparation we consider the numerical
results and first examine the pure elastic stability loss under t ′ = 0 and t ′ = ∞,
because in the viscoelastic stability loss of the cylinder the intensity of the external
compressed force p must satisfy the inequality:

pcr.∞ < p < pcr.0, (73)

where pcr.0(pcr.∞) is the critical force obtained at t ′ = 0(t ′ = ∞).
We compare the results obtained within the scope of the TDLTS with the corre-
sponding ones obtained within the scope of the Bernoulli beam theory and within
the scope of the third order refined beam theory. Through p′3D.c.0

(
= p3D.cr.0/E(1)

0

)
and p′3D.c.∞

(
= p3D.cr.∞/E(1)

0

)
we denote the critical values of the intensity of the

dimensionless forces obtained by employing TDLTS. Here, and below, the sub-
indices 0 and ∞ indicate that the critical values of the forces are calculated at t ′ = 0
and at t ′ = ∞ respectively. According to the equations (60) and (66), the corre-
sponding critical values of the intensity of the compressed forces obtained within
the scope of the Bernoulli beam theory (denoted by p′E.c.0 and p′E.c.∞) and within
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the scope of the third order refined beam theory (denoted by p′R.c.0 and p′R.c.∞) can
be calculated by the use of the following expressions:

p′E.c.0 =
E30

4E(1)
0

(
πR
`

)2

, p′R.c.0 =
E30

4E(1)
0

(
πR
`

)2(
1+

8
27

E30

G0

)−1

,

p′E.c.∞ =
E3∞

4E(1)
0

(
πR
`

)2

, p′R.c.∞ =
E3∞

4E(1)
0

(
πR
`

)2(
1+

8
27

E3∞

G∞

)−1

, (74)

where E30 = Ē∗3 |s=∞
, E3∞ = Ē∗3 |s=0, G0 = Ḡ∗

∣∣
s=∞

and G∞ = Ḡ∗
∣∣
s=0.

Also, introduce the parameter ρ (= πR/`) and consider the cases where ρ = 0.1,
0.2 and 0.3.

Table 1 shows the values of p′3D.c.0, p′R.c.0 and p′E.c.0. But Tables 2, 3 and 4 show
the values of p′3D.c.∞, p′R.c.∞ and p′E.c.∞ calculated under ω = 0.5, 1.0 and 2.0 re-
spectively. These values are obtained for various values of E(2)/E(1)

0 and ofρ . It
follows from these results that the values of p′R.c.0(p′R.c.∞) are very near to the corre-
sponding values of p′3D.c.0(p′3D.c.∞) and the difference between them is insignificant.
However the values of p′E.c.0(p′E.c.∞) are greater than the corresponding values of
p′3D.c.0(p′3D.c.∞) and the difference between them becomes more significant with
E(2)/E(1)

0 and ρ .

Consequently, it can be concluded from the foregoing results that for the pure elas-
tic stability loss problems of the considered cylinder, the third order refined beam
theory gives results which are sufficiently close to the corresponding ones obtained
within the scope of the TDLTS.

Now we consider the case where the cylinder material is viscoelastic and analyze
the critical time t ′cr. To compare the values of t ′cr.given by the TDLTS with those
given by approximate beam theories, we must select the values of p′

(
= p/E(1)

0

)
which fall in the intervals [p′E.c.∞, p′E.c.0], [p′R.c.∞, p′R.c.0] and [p′3D.c.∞, p′3D.c.0] simul-
taneously. However, as follows from the data given in Tables 1- 4, in many cases
such common values of p′

(
= p/E(1)

0

)
exist only for the intervals [p′R.c.∞, p′R.c.0]

and [p′3D.c.∞, p′3D.c.0]. For this reason, we will compare only the critical time ob-
tained by employing TDLTS (denoted by t ′3D.cr.) with that obtained by employing
the third order refined beam theory (denoted by t ′R f .cr.).

Thus, consider the data given in Tables 5 – 7 which show the values of the t ′3D.cr.
and t ′R f .cr. obtained for the cases where ρ = 0.1, 0.2 and 0.3 respectively for var-

ious values of p′ and β under ω = 0.5, E(2)/E(1)
0 = 5. Moreover, for a clearer

illustration of the results related to the critical time in Fig. 2 the graphs of the
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Table
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values
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R
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dependencies among t ′3D.cr., t ′R f .cr. and p′ are given for various values of β in the
case where ρ = 0.1, ω = 0,5. It follows from the results given in Fig. 2 and from
the other numerical results (which are not given here) that the graphs of the ana-
lyzed dependencies constructed for various values of β have a common intersection
point. Before (after) this intersection point the increase in the absolute values of β

causes an increase (decrease) in the values of the critical time. Fig. 3 illustrates the
parts of the graphs which appear after the mentioned intersection point.

 

 Figure 3: The parts of the graphs given
in Fig. 2 which arise after the intersec-
tion point

 

 
Figure 4: The graphs of the dependen-
cies among t ′3D.cr, t ′R f .cr. and dimension-
less intensity of the ompressed force p′

constructed for various values of rheo-
logical parameter ω .

Note that the parameter β is one of the rheological parameters of the matrix mate-
rial and characterizes the mechanical behavior of this viscoelastic material around
the initial state of the deformation, i.e. in the near vicinity of t ′ = 0. But the other
dimensionless rheological parameter ω characterizes the mechanical properties of
the matrix material around t ′ = ∞. Thus, the values of E(1)

∞ (ν(1)
∞ ) increase (de-

crease) with ω . According to the well-known mechanical consideration, it can be
predicted that the values of p′cr.∞ must increase with ω . This prediction is proved
by the data given in Tables 2 – 4. Moreover, the influence of the parameter ω on the
graphs of the dependencies among t ′3D.cr., t ′R f .cr. and p′ is illustrated by the graphs
given in Fig. 4.

Analyses of the results given in Tables 5 – 7 show that in the case under considera-
tion, i.e. in the case where E(2)/E(1)

0 = 5, ω = 0.5, ρ = 0.1, 0.2 and 0.3 the values
of t ′R f .cr. are greater than the corresponding values of t ′3D.cr.. The difference between
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Table 5: The values of t ′3D.cr.(upper number) and t ′R f .cr.(lower number) obtained for

various values of p′ and β under ρ = 0.1, ω = 0.5 and E(2)/E(1)
0 = 5.

β

p′×102

0.637 0.650 0.660 0.670 0.680 0.690 0.700 0.710 0.720
t ′3D.cr./t ′R f .cr.

-0.3 10.59
11.24

3.341
3.508

1.726
1.810

0.967
1.015

0.561
0.590

0.328
0.346

0.187
0.199

0.100
0.108

0.046
0.051

-0.5 35.92
39.06

7.143
7.648

2.835
3.030

1.259
1.347

0.588
0.631

0.277
0.299

0.126
0.138

0.052
0.058

0.018
0.020

-0.7 620.9
713.9

42.05
47.13

9.015
10.07

2.331
2.609

0.655
0.738

0.187
0.212

0.050
0.058

0.011
0.014

0.0019
0.0025

t ′R f .cr. and t ′3D.cr. depends not only on the rheological parameters ω and β , but also
on the values of the intensity of the external compressive forces p′ and, as can be
predicted, there exist the following relations:

t ′3D.cr→ 0 as p′→ p′3D.c.0; t ′3D.cr→ ∞ as p′→ p′3D.c.∞,

t ′R f .cr→ 0 as p′→ p′R.c.0; t ′R f .cr→ ∞ as p′→ p′R.c.∞. (75)

Table 6: The values of t ′3D.cr.(upper number) and t ′R f .cr.(lower number) obtained for

various values of p′ and β under ρ = 0.2, ω = 0.5 and E(2)/E(1)
0 = 5.

β

p′×102

2.250 2.300 2.350 2.400 2.450 2.500 2.550 2.600 2.650
t ′3D.cr./t ′R f .cr.

-0.3 5.704
5.998

3.465
3.660

2.227
2.366

1.475
1.578

0.990
1.068

0.664
0.724

0.439
0.486

0.282
0.318

0.173
0.200

-0.5 15.10
16.20

7.517
8.117

4.049
4.408

2.275
2.501

1.301
1.447

0.743
0.840

0.417
0.480

0.225
0.266

0.113
0.139

-0.7 146.4
165.7

45.79
52.04

16.33
18.81

6.247
7.315

2.462
2.941

0.969
1.187

0.370
0.468

0.132
0.174

0.042
0.059

The results given in Tables 5 – 7, and many other results (which are not given
here), show that the insignificant difference between p′3D.c.0 and p′R.c.0, as well as
the insignificant difference between p′3D.c.∞ and p′R.c.∞, causes the significant dif-
ference between the values of t ′3D.cr. and t ′R f .cr.. In this case, if p′3D.c.0 > p′R.c.0(or if
p′3D.c.0 < p′R.c.0) then the values of t ′3D.cr.obtained for p′which are close to the p′3D.c.0
or to the p′R.c.0, are greater (less) than the corresponding values of t ′R f .cr.. Moreover,
if p′3D.c.∞ > p′R.c.∞(or if p′3D.c.∞ < p′R.c.∞) then the values of t ′3D.cr.obtained for the
p′which is close to the p′3D.c.∞ or to the p′R.c.∞, are greater (less) than the corre-
sponding values of t ′R f .cr.. The results illustrated in Tables 5 – 7 correspond to the
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Table 7: The values of t ′3D.cr.(upper number) and t ′R f .cr. (lower number)obtained for

various values of p′ and β under ρ = 0.3, ω = 0.5 and E(2)/E(1)
0 = 5.

β

p′×102

4.100 4.200 4.300 4.400 4.500 4.600 4.700 4.800 4.900
t ′3D.cr./t ′R f .cr.

-0.3 8.151
8.208

5.634
5.730

4.074
4.178

3.035
3.137

2.308
2.403

1.779
1.866

1.383
1.462

1.080
1.151

0.843
0.908

-0.5 24.89
25.13

14.84
15.20

9.428
9.769

6.246
6.541

4.257
4.504

2.957
3.161

2.078
2.247

1.469
1.608

1.040
1.153

-0.7 336.9
342.4

142.3
148.0

66.80
70.87

33.62
36.31

17.74
19.50

9.670
10.81

5.373
6.119

3.015
3.504

1.695
2.013

case where p′3D.c.0 < p′R.c.0 and p′3D.c.∞ < p′R.c.∞. Therefore in the all cases consid-
ered in these tables the values of t ′3D.cr. are less than the corresponding values of
t ′R f .cr..

Consider the numerical results related to the other aforementioned cases, namely
the case where p′3D.c.0 < p′R.c.0 and p′3D.c.∞ > p′R.c.∞. The results given in Tables 1
and 2 show that the values ofp′3D.c.0, p′R.c.0, p′3D.c.∞ and p′R.c.∞ obtained, for example
for the case whereρ = 0.1, E(2)/E(1)

0 = 10 and ω = 0.5 satisfy these inequalities.
The corresponding values of t ′3D.cr. and t ′R f .cr.obtained for the case mentioned are
given in Table 8. Consequently, according to the foregoing discussion, the follow-
ing relations must occur:

t ′3D.cr. > t ′R f .cr. for p′ which is close to the values of p′3D.c.0 or p′R.c.0;

t ′3D.cr. < t ′R f .cr. for p′ which is close to the values of p′3D.c.∞ or p′R.c.∞. (76)

The analysis of the results given in Table 8 proves the reliability of the relation (76).

Table 8: The values of t ′3D.cr.(upper number) and t ′R f .cr.(lower number) obtained for

various values of p′ and β under ρ = 0.1, ω = 0.5 and E(2)/E(1)
0 = 10.

β

p′×102

1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23
t ′3D.cr./t ′R f .cr.

-0.3 73.51
68.95

27.39
26.73

14.47
14.35

8.865
8.869

5.881
5.920

4.094
4.141

2.937
2.984

2.148
2.191

1.588
1.627

-0.5 541.1
494.7

135.8
131.34

55.61
54.96

28.00
28.02

15.76
15.91

9.493
9.648

5.964
6.098

3.849
3.958

2.522
2.608

Compare the values of t ′3D.cr. with the corresponding ones calculated by employ-
ing the critical deformation method by Gerard and Gilbert (1958). According to
this method, it is assumed that the critical deformation of the viscoelastic cylinder
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is equal to the critical deformation of the corresponding elastic cylinder. Conse-
quently, using this assumption the critical deformation for the pure elastic cylinder
is determined within the scope of the TDLTS. Note that in the considered case
the critical deformation mentioned corresponds to p′3D.c.0. According to this de-
termination, using the relation p′3D.c.0 = p/E∗3 the critical time is determined for
the selected values of p. The values of the dimensionless critical time (denoted
by t ′cdm.cr.) determined by employing the critical deformation method are given in
Table 9. These values are calculated for the case where ρ = 0.1, E(2)/E(1)

0 = 5 and
ω = 0.5. At the same time, in this table the corresponding values of t ′3D.cr. are also
illustrated. Comparison of the values of t ′cdm.cr.with the corresponding values of
t ′3D.cr. shows that the critical deformation method is not acceptable for determina-
tion of the critical time for the stability loss of the cylinder made from viscoelastic
composite material.

Table 9: The values of t ′cdm.cr.(upper number) and t ′3D.cr.(lower number) obtained for
various values of p′ and β under ρ = 0.1, ω = 0.5 and E(2)/E(1)

0 = 5.

β

p′×102

0.660 0.670 0.680 0.690 0.700 0.710 0.720
t ′cdm.cr./t ′3D.cr.

-0.3 52.77
1.726

52.77
0.967

1.179
0.561

0.532
0.328

0.262
0.187

0.127
0.100

0.055
0.046

-0.5 340.2
2.835

7.577
1.259

1.662
0.588

0.545
0.277

0.202
0.126

0.074
0.052

0.023
0.018

-0.7 26326
9.015

46.40
2.331

3.701
0.655

0.578
0.187

0.110
0.050

0.020
0.011

0.0029
0.0019

6 Conclusions

In the present paper, within the scope of the three-dimensional geometrically non-
linear field equations of the theory for viscoelastic transversal isotropic bodies, an
approach has been developed

for 3D stability loss analyses of the solid cylinder made from viscoelastic com-
posite material. It is supposed that the cylinder has an initial infinitesimal imper-
fection and a time for which this infinitesimal imperfection starts to increase and
grows indefinitely, is taken as a critical time for viscoelastic problems. To study the
corresponding non-linear boundary value problem, the boundary-form disturbance
method and small parameter method are employed simultaneously. As a result of
these applications, the solution to the mentioned non-linear problem is reduced to
the solution to the corresponding series linear problem. By direct verification it
is proven that the equations and relations related to the first and subsequent ap-
proximations coincide with the equations and relations of the well known TDLTS.
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Based on the previous work of the first author it is noted that for investigation of
the stability loss problem it is enough to use only the zeroth and first approxima-
tions. By the average-integrating procedure the corresponding approximate stabil-
ity loss equations within the scope of the Bernoulli and third order refined beam
theories is derived from the equations and relations of the mentioned first approxi-
mations. The final numerical results are obtained by employing Laplace transform
and variation separation methods for the case where the cylinder is made from the
viscoelastic composite consisting of the viscoelastic matrix and unidirectional elas-
tic fibers lying along the cylinder. At first, the numerical results related to the pure
elastic stability loss of the cylinder at t = 0 and t = ∞ are considered. It is estab-
lished that the critical forces obtained within the scope of the third order refined
beam theory are very close to the corresponding results obtained within the scope
of the 3D approach. However, the critical time obtained within the scope of the
3D approach can be significantly greater or less than the corresponding values of
the critical time obtained within the scope of the third order refined beam theory.
The difference between the critical times obtained by employing 3D and third or-
der refined beam theories becomes more non-negligible if the values of the external
compressed force are close to the critical compressed force obtained at t = ∞. Con-
sequently, to investigate the stability loss of the cylinders made from viscoelastic
composites, it is necessary in many cases to use the 3D approach developed in the
present paper.

The approach developed in the present paper can be easily extended for investi-
gation of the stability loss of cylinders made from more complicated-type time-
dependent materials.
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