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Study of Poisson Ratios of Single-Walled Carbon
Nanotubes based on an Improved Molecular Structural

Mechanics Model
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Abstract: The Poisson ratio is a very important mechanical parameter for both
single-walled carbon nanotubes (SWCNTs) and graphene. But, the Poisson ratios
of SWCNTs and graphene can not be determined by the direct measurement on the
nanoscale specimen, and Poisson ratios of SWCNTs and graphene predicted by dif-
ferent models vary in a huge range. An improved molecular structural mechanics
model, where the bond angle variations are modeled by the flexible connections of
framed structures, is employed in this paper to predict the Poisson ratios of SWC-
NTs and monolayer graphene sheets. The present results indicate that the Poisson
ratios of both SWCNTs and graphene are chirality dependent, as the Poisson ra-
tio of zigzag monolayer graphene sheet is 0.301, and that of armchair graphene is
0.277. The various values of Poisson ratios of SWCNTs and graphene predicted by
different models are summarized and discussed in this paper. The values of these
Poisson ratios reported in the literature vary from 0.06 to 1.414 although the longi-
tudinal Young’s moduli or tensile stiffness of SWCNTs given by these models are
quite close to each other. There is no a standard value of the Poisson ratio of SWC-
NTs and graphene recognized by researchers up to now, and it can be concluded
that the accurate prediction of both size and chirality dependent Poisson ratios of
SWCNTs and graphene is still an unsolved issue.

Keywords: Single-walled carbon nanotubes, graphene, Poisson ratio, molecular
mechanics, structural mechanics, chirality dependence.

1 Introduction

Because of their unique mechanical and electronic properties, carbon nanotubes
(CNTs) and graphene have engendered much excitement for their potential appli-
cations in various industries, particularly as a ‘device-friendly’ material for NEMS
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[Horing (2010)] and nano-reinforcements in advanced composite materials [Wernik
and Meguid (2010); Kim, Abdala and Macosko (2010)]. Consequently, CNTs and
graphene have attracted a great deal of attentions from researchers in recently years.
The investigation of accurate characterizations of mechanical properties of CNTs is
very important for the applications of CNTs and graphene [Qian, Wagner and Liu
(2002); Shen and Atluri (2004)]. The experimental, theoretical and computational
approaches that are used in the mechanical behavior study of macroscale materials
all can be used to study the effective elastic constants of the nanoscale materials
of CNTs and graphene. All these different methods for the elastic constant analy-
sis of CNTs or graphene could yield quite good longitudinal Young’s modulus or
stretching stiffness of CNTs and graphene. Unfortunately, the predicted Poisson
ratios by different analysis models range from 0.06 [Li and Chou (2003); Chen,
Cheng and Liu (2010)] to 1.44 [Sakhaee-Pour (2009)]. Obviously, these predicted
Poisson ratios are scattered unrealistically, and it can be said that the prediction of
the correct values of the Poisson ratios of CNTs and graphene is still an unsolved
issue up to now.

The mechanics of composite materials of multiple scales [Tong and Mei (1992)]
shows that the Poisson ratios of both the matrix and fiber affect the effective moduli
of the fiber reinforced composite. The dissimilarity of the Poisson ratios of the
fiber and matrix would play a more important role in the study of the interfacial
failure between the fiber and matrix. Therefore, it is very important to correctly
determine the Poisson ratios of CNTs and graphene for the proper design of NEMS
and CNTs/graphene-based composites.

One main reason for the confusion of the proper Poisson ratios of CNTs and graphene
is that the Poisson ratios of CNTs and graphene can not be directly measured from
the deformations of nanoscale specimens of CNTs and monolayer graphene sheets.
The method of experimental measurements of nanoscale materials is not only of
high cost, the measured results are also highly scattered because of the techni-
cal difficulties involved in the manipulation of nanoscale specimens, which would
make the direct determination of their mechanical properties a rather challenging
task. The first experiment on the mechanical properties of CNTs was reported by
Treacy et al. (1996). They determined the Young’s modulus of CNTs by correlat-
ing the amplitude of the thermal vibrations of the free ends of anchored nanotubes
as a function of temperature with the Young’s modulus. They obtained an average
of 1.8 TPa for Young’s modulus, though there was significant scatter in the data
(from 0.4 to 4.15 TPa). Nevertheless, it has to be pointed out that Treacy et al. did
not measure the Poisson ratio, but they assumed a value of 0.3 for the Poisson ratio
to calculate of the Young’s modulus in terms of the Gaussian vibrational-profile.
The strategy of the assumption of the Poisson ratio was also used by Krishnan et
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al. (1997) as well Chopra and Zettl (1998) in the measurement of the Young’s mod-
ulus of CNTs. Another way to probe the mechanical properties of CNTs is to use
the tip loading of an AFM (atomic force microscope) to bend anchored CNTs while
simultaneously recording the forces at the pinning tip versus the displacement from
its equilibrium configurations, from which one can calculate the Young’s modulus
of the nanotube. Based on such measurements Wong, Sheehan and Lieber (1997)
obtained a mean value of 1.28 ±0.59 TPa of the Young’s modulus for MWCNTs.
A similar procedure was also used by Salvetat et al. (1999), where the Poisson ratio
of 0.16 is taken from ab initio calculations. Poncharal et al. (1999) presented an
alternative experiment method for calculating the mechanical properties of CNTs
which is based on a resonant electrostatic deflection of a carbon nanotube under
an external ac-field, and this method has been widely adopted by many other in-
vestigators. In spite of significant progress in experiments on the determination of
Young’s modulus of CNTs, a direct and reliable measurement on the Poisson ratios
remains an important challenge for nanotechnology and materials physics.

There are many theoretical models available to predict the effective elastic con-
stants of SWCNTs and graphene. The widely used theoretical models include the
classical molecular dynamics (MD) [Yakobson, Brabec and Bernholc (1996)], the
tight-binding molecular dynamics (TBMD) [Hernández, Goze, Bernier and Rubio
(1999)], the density functional theory (DFT) [Sanchez-Portal, Artacho and Soler
(1999)] and the lattice-dynamical model [Popov, Van Doren and Balkanski (2000)].
As aforementioned, the Young’s modulus of CNTs predicted by these different the-
oretical models could reasonably agree to each other, but the Poisson ratios given
by these different models are scattered widely. For example, the Poisson ratio
predicted by Yakobson et al. is 0.19; the Poisson ratio of zigzag CNT given by
Hernández et al. is 0.27; the Poisson ratio given by Popov et al. is 0.21; and a
value of 0.412 for the Poisson ratio of graphene was obtained by Huang, Wu and
Hwang (2006) based on Brenner Potential. The Poisson ratio of the bulk graphite,
νgt , was also used by some researchers to predict the size dependent elastic con-
stants of CNTs. For instance, νgt = 0.14 was used by Odegard, Gates, Nicholson
and Wise (2002) in their equivalent truss model and plate model for SWCNTs, and
νgt = 0.16 was used by Chang and Gao (2003) in their stick-spiral model of CNTs.
A value of 0.25 for Poisson ratio was used by Wang, Tan and Zhang (2006) in a
Timoshenko beam model for free vibration analysis of CNTs.

The computer-based numerical models, the continuum mechanics models in par-
ticular, are powerful tools to simulate the mechanical properties of nanoscale mate-
rials with various loading and boundary conditions [Qian, Wagner and Liu (2002);
Shen and Atluri (2004)]. The molecular structural mechanics (MSM) model pro-
posed by Li and Chou (2003) is one of the simplest and most efficient models to
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simulate the static and dynamic behavior of CNTs. The basic idea in the MSM
model of Li and Chou is to use an equivalent rigidly connected space-frame to
evaluate the mechanical properties and flexural frequencies of CNTs. Based on the
MSM model of Li and Chou, a number of modified MSM models were presented
recently [Sakhaee-Pour (2009); Chen, Cheng and Liu (2010) among others]. In
all these modified MSM models, the framed structures with rigid connections are
used to model the lattices structures of CNTs/graphene. Although these different
MSM models could predict quite good longitudinal Young’s modulus of CNTs or
grapheme, they yield totally different values of Poisson ratios from those given by
other types of analysis models for CNTs and graphene. For example, the Pois-
son ratio of the SWCNTs with large diameter predicted by the MSM model of Li
and Chou (2003) is 0.06 [Chen, Cheng and Liu (2010)], and the Poisson ratio of
graphene given by Sakhaee-Pour (2009) is 1.414.

One major deformation in the lattice of the C-C bonds of a CNT is the bond an-
gle variations between neighboring bonds. The rigid connections in the original
MSM model and related modified MSM models are not capable of charactering the
bond angle variations between the C-C bonds at all. As it will be shown later, the
deformation, particular the lateral deformation, given by all these MSM models is
not correct, consequently the Poisson ratios predicted by these MSM model are not
accurate. Based on molecular mechanics and the concept of flexible connection
used in structural mechanics, Yan and Shi (2010) proposed a flexibly connected
space-frame model, named as the improved MSM model, for the simulation of size
dependent Young’s moduli and dynamic behavior of SWCNTs and good results
were achieved by using this improved MSM model.

There are two-fold objectives in this paper, one is to numerically simulate the Pois-
son ratios of both SWCNTs and monolayer graphene sheets, and the other is to
summarize and discuss the various values of Poisson ratios predicted by different
models reported in the literature. The improved MSM model proposed by Yan and
Shi (2010) is adopted in this work to simulate the Poisson ratios of SWCNTs and
graphene. The Poisson ratios of the armchair and zigzag SWCNTs and graphene
are computed. The accuracy of the improved MSM model in the mechanical anal-
ysis of SWCNTs and graphene is evaluated by comparing the present results with
other published data. The Poisson ratios given in this paper clearly indicate that
the Poisson ratios of SWCNTs depend on not only the radii of CNTs but also the
chirality of CNTs, and they converge to the Poisson ratios of the corresponding
monolayer graphene sheets. The present results also show that the improved MSM
model with flexible connections is a simple and efficient computational model for
the mechanical property prediction of CNTs. The Poisson ratios of SWCNTs and
graphene predicted by different theories and methods vary in an unbelievably wide
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range, and the correct Poisson ratio of monolayer graphene sheet has not been
reached yet among researchers. It seems that whether a monolayer graphene sheet
is anisotropic and that is the correct Poisson ratios of graphene and SWCNTs can
be answered only by the sophisticated nano-experiments in future.

2 Structural Mechanics Model for the Mechanical Analysis of SWCNTs

2.1 Molecular mechanics

Molecular mechanics is a powerful and to some extent efficient model to char-
acterize the mechanical properties of nanoscale materials composed of atomic or
molecular clusters. When the electrostatic energy is neglectable, the total molecu-
lar potential energy, U , for a covalent bond system takes the form [Rappe, Casewit
and Colwell (1992)].

U = ∑Ur +∑Uθ +∑Uϕ +∑Uω +∑UvdW (1)

where Ur, Uθ , Uϕ , Uω and UvdW are, respectively, the bond-stretching energy, the
bond-angle variation energy, the dihedral-angle torsional energy, the inversion en-
ergy and the van de Waals interaction energy. These terms are schematically shown
in Fig. 1.

 
Figure 1: Energy terms in molecular mechanics.
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In the figure above, ∆r is a bond elongation between two nearest atoms I and J as
illustrated in Fig. 1a; ∆θ stands for the bond angle variation between the nearest
two bonds shown in Fig.1b; ϕ denotes the torsional angle of the central bond I− J
of the corresponding four-body interactions as depicted in Fig. 1c and the inversion
angle variation ω is defined the angle of the new location of atom I with respect to
the plane formed by atoms J, K and L as depicted in Fig. 1d, respectively.

There has been a wealth of literature in molecular mechanics devoted to define
the interatomic potentials. Generally, for covalent systems, the main contributions
to the total static energy are stemmed from the first four terms in Eq. (1), which
include the potentials of the four-body interactions. However, it needs only to take
the first two energy terms, namely the bond stretching and in-plane bond angle
variations, when only the in-plane mechanical properties of SWCNTs need to be
investigated [Chang and Gao (2003)]. Under the assumption of small deformation,
the harmonic function approximation is adequate enough for characterizing each of
these two energy terms, and they take the following forms.

1) Bond stretching energy Ur can be accurately written in harmonic form as:

Ur =
1
2

kr(r− r0)2 =
1
2

kr(∆r)2 (2)

where kr is the bond stretching force field constant.

2) Angle variation energy resulting from a bond angle variation can be expressed
as:

Uθ =
1
2

kθ (θ −θ0)2 =
1
2

kθ (∆θ)2 (3)

where kθ is the force constant associated with bond angle variation energy.

2.2 Molecular structural mechanics model

Based on molecular mechanics and structural mechanics, Li and Chou (2003) pro-
posed a molecular structural mechanics model to analyze the mechanical properties
of SWCNTs. The basic idea in MSM model is to use a beam member to represent
the mechanical behavior of a C-C bond in CNTs, and the mechanical properties
of the beam is determined by the energy equivalence of the interatomic potential
with the strain energy of a single beam. Consequently, the mechanical properties
of the beam can be expressed in terms of the bond length and the force constants
in molecular mechanics. In the case of plane bending, the stretching strain energy
UA and the bending strain energy UM of a beam under the action of stretching and
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bending take the forms{
UA = 1

2
∫ L

0
N2

EA dL = 1
2

N2L
EA = 1

2
EA
L (∆L)2

UM = 1
2
∫ L

0
M2

EI dL = 2EI
L α2 = 1

2
EI
L (2α)2 (4)

where∆L and α stand for, respectively, the axial elongation and the rotational angle
at the ends of the beam subjected to a constant axial force N as well as a pure
bending moment of a beam. The rotational angle α can also be interpreted as a half
of the rotational angle at the free end of a cantilevered beam subjected to a bending
moment M at the beam tip shown in Fig.2b. The definition of the rotational angle
depicted in Fig. 2b implies that the rigid connection is assumed in the MSM model
of Li and Chou (2003).

 
Figure 2: Comparisons of the modeling of the energy associated with the bond
angle variation used in different molecular structural mechanics models

When a beam is used to characterizing a C-C bond, it can be seen that both Ur

and UA represent the stretching energy of the C-C bond and both Uθ and UM are
relevant to the bending energy of the C-C bond. As a result, the energy equivalence
between those in Eqs. (2) and (3) given by the molecular mechanics and those in
Eq. (4) given by the structural mechanics leads to that:

EA
L

= kr,
EI
L

= kθ (5)

The rigidly connected frame model with the beams of circular cross-section pro-
posed by Li and Chou (2003) is quite simple and computationally efficient. Never-
theless, one can find it by comparing the deformation patterns shown in Fig. 2a and
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Fig. 2b that the rigidly connected frame model can not correctly characterize the
bond angle variations of CNTs. The modified MSM models presented respectively
by Sakhaee-Pour (2009) as well as by Chen, Cheng and Liu (2010) are not able
to model the bond angle variations either because the same rigid connections are
adopted in these modified MSM models.

2.3 An improved MSM model with flexible connections

2.3.1 Flexible connections for the modeling of the bond angle variations

The original structural mechanics model proposed by Li and Chou (2003) is simple
and efficient. The model is a space-frame structure with rigid connections. Thus, as
mentioned in previous sections, the bond-angle changes under bending conditions
cannot be described correctly in this original space-frame model.

The deformation pattern of the bond angle variations in CNTs or monolayer graphene
sheets depicted in Fig. 2a is very similar to that of the rotational angles taking
place at the flexible joint of a cantilevered rigid beam with a flexible connection.
Therefore, the concept of the flexible connection used in the analysis of flexibly
connected frames [Shi and Atluri (1989)] can be used to model the bond angle
variations in the lattices of graphene and CNTs. Shi and Atluri (1987 and 1989)
proposed two models to characterize the behaviors of the nonlinear flexible connec-
tion in space-framed structures. Among these two models, the short flexible beam
model for the rotational spring illustrated in Fig. 3c [Shi and Atluri (1987)] can
be easily implemented with any existing finite element codes. Based on molecular
mechanics and the flexible connection model of short flexible beams, Yan and Shi
(2010) proposed an improved MSM model to study the mechanical properties of
SWCNTs, where all the C-C bonds in a CNT are modeled as beams flexibly con-
nected to the joints of the equivalent flexibly jointed frame of the CNT depicted in
Fig. 3. The improved MSM model presented by Yan and Shi (2010) is used in this
paper to evaluate the effective Poisson ratios and Young’s moduli of both SWCNTs
and graphene. It should be noted that the main beams in Fig. 3b and Fig. 3c are
rigid in bending but deformable in tension. The short flexible beam used between
the carbon nuclei and the main beam for the C-C bond shown in Fig. 3c has the
same stretching stiffness as the main beam. These type deformations of the equiv-
alent beam are in good agreement with the real deformations of the covalent bond
between carbon atoms of CNTs and graphene.

2.3.2 The mechanical properties of the beams representing a C-C bond

The mechanical properties of the beams representing the C-C bond in the improved
MSM model can be determined by the energy equivalence between the strain en-
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Figure 3: Modeling of bond angle variation based on flexible connection

ergy of the beams and the interatomic potential of graphene lattice. For example,
the flexural rigidity of the short beam used to model the bond angle variation in the
improved MSM model can be evaluated by the energy equivalence of the potential
energy associated with the bond angle variation shown in Fig. 4a and the strain en-
ergy of the beams for the flexible connections depicted in Fig. 4b. As illustrated in
Fig. 4a, the in-plane bond angle variation ∆θ at atom I is defined as angle change
between bond I− J with bond I−K, one of its nearest neighboring bonds. When
two short flexible beams with equal length l1 shown in Fig. 4b are used for the
flexible connections, the angle variation for bond I-J is defined by the angle be-
tween the line connecting atom I and atom J′ in the deformed configuration and the
undeformed bond I− J as illustrated in Fig. 4b.

It can be seen from Fig. 4b that the rotation angle taking place at each short flexible
beam is a half of the angle variation ∆θ as in the case of the rotation angles at

 
Figure 4: Modeling of in-plane bond angle variation by the combination of short
flexible beams and a rigid beam (rigid in bending only)
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the two ends of a beam subjected to pure bending. As aforementioned, there is no
bending strain energy contributed from the main beam as it is rigid in bending. If
let (EI)1 be the flexural rigidity of the short beam, then the relevant bending strain
energy UM of the beams for the C-C bond shown in Fig. 4b is of the form:

UM = 2 · 1
2

(EI)1
l1

(
1
2

∆θ

)2

=
1
4

(EI)1
l1

(∆θ)2 (6)

The bending stain energy of the beams for the C-C bond is associated with the short
beams only. However, the length of a C-C bond should be used in the evaluation of
the stretching stiffness of the short beam and the main beam shown in Fig. 4. The
mechanical properties of the beams in the improved MSM model are determined in
terms of the length and force constants of the C-C bond and the length of the short
flexible beam as following:{

(EA)1
L = (EA)2

L = kr
(EI)1

l1
= 2kθ , (EI)2 = ξ (EI)1

(7)

where the subscript 2 represents the main beam; ξ is a scalar and should be large
enough, i.e. ξ = 106, to ensure that there is no bending occurring on the main
beam. It should be pointed out that the beams with the mechanical parameters
defined in Eq. (7) are anisotropic and their mechanical properties are characterized
by its stretching stiffness (EA)1 & (EA)2 and flexural rigidities (EI)1 & (EI)2, e.g.
(EA)1 is a single parameter and can not be interpreted as the product of the Young’s
modulus and the cross-section area of the equivalent beam for the C-C bond.

Therefore, the mechanical properties of the equivalent anisotropic beam for a C-C
bond can be determined provided that the force constants kr and kθ are given by
molecular mechanics.

2.3.3 The computational model given by the improved MSM model

The basic idea of the improved MSM model is that a C-C bond of graphene is mod-
eled as a load carrying beam member that is flexible in stretching and rotation but
stiff in bending and all the structural members are connected at the carbon nuclei
of the graphene through the rotational springs. Consequently, the bond angle varia-
tions of a monolayer graphene sheet or a SWCNT are characterized by the flexible
connections at the nuclei of the corresponding lattice. The computational model of
a SWCNT given by the improved MSM model is illustrated in Fig. 5, in which the
SWCNT is modeled by a flexible connected frame composed of anisotropic beams.
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Figure 5: The computational model of flexibly connected space-frame in the im-
proved MSM model

The typical Bernoulli-Euler beam element can be used in the improved MSM
model. When the equivalent rotational springs of short flexible beams are adopted,
the computational model of SWCNTs depicted in Fig. 5 can be solved by any finite
element codes.

3 Result and Discussion

In this paper, two typical chiralities of SWCNTs, the armchair type and zigzag type
shown in Fig.6 are established and their longitudinal Young’s moduli and Poisson
ratios are investigated using the flexibly connected frame model presented in the
previous sections combining with ANSYS. The relevant mechanical properties of
both chirality types of monolayer graphene sheet are also calculated.

The length l1 of the short and highly flexible beam is taken as 1/100 of the C-C
bond length L. The accuracy of this length ratio was verified with some mechanical
properties simulations of SWCNTs. It was shown that to make the short flexible
beam representing the rotational spring further shorter will not improve the accu-
racy of the resulting Young’s moduli of CNTs. Consequently, it can be concluded
that the improved MSM model with the selected length ratio of the short flexible
beam to the C-C bond as l1/L = 1/100 is accurate enough in predicting the elastic
properties of graphene and SWCNTs.
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Figure 6: Typical chiralities of SWCNTs

3.1 The selection and influences of the force constants

The computational accuracy of the improved model presented in previous sections
strongly depends on the force constants used to characterize the mechanical prop-
erties of the equivalent beam for the C-C bond. Although quite a number of Po-
tential Functions and Force Fields have been proposed in the past twenty years,
little agreement has been reached in modeling the atomic bonds of graphite [Xiao
and Hou (2006); Wang and Zhang (2008)]. For instance, different force constant
kr for bond stretching and force constant kθ for bond angle variation were used,
respectively, by Odegard et al (2002) as well as Chang and Gao (2003).

The values of the force constants used, respectively, in the original MSM model
of Li and Chou (2003) and in the stick-spiral model presented by Chang and Gao
(2003) are considered In this study. The force constants given by Chang and Gao
(2003) were determined by fitting the predicted results with the experimental data
of Young’s modulus 1.06TPa and Poisson ratio 0.16 of graphite. These force con-
stants are summarized in Table 1. The corresponding tensile stiffness and flexural
rigidity of the beams used in the improved MSM model can be determined by Eq.
(7).

If let εx be the axial strain under the action of axial loading and εr be the radical
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Table 1: The force constants used in different studies

Authors
Force constants

kr(nN/nm) kθ (nN nm/rad2)
Chang & Gao (2003) 742 1.42

Li & Chou (2003) 652 0.876

strain induced by the axial loading, then the Poisson ratio can be defined as ν =
−εr/εx. The results of Young’s moduli and Poisson ratios of monolayer graphene
sheets predicted by the improved MSM model corresponding to the two groups of
force constants in Table 1 are tabulated in Tab.2. The effective thickness of both
SWCNTs and graphene in this study is taken as 0.34 nm, which is used by most of
CNTs studies. The effective elastic constants of graphene are size dependent, but
they converge to constant values when the size of the sheet model is big enough.
The size of monolayer zigzag graphene sheet in the present study is 19.43nm×
42.46nm and the size of armchair graphene sheet is 16.75nm×43.93nm.

Table 2: The Young’s moduli and Poisson ratios of graphene predicted by the
present model by using different force constants

Authors of the Zigzag Armchair
force constants Young’s Poisson Young’s Poisson

modulus (TPa) ratio modulus (TPa) ratio
Chang & Gao (2003) 0.908 0.277 1.002 0.301

Li & Chou (2003) 0.676 0.463 0.709 0.407

Chang and Gao (2003) as well as Li and Chou (2003) did not distinguish the differ-
ence of the elastic constants on the graphene chirality. The Young’s modulus and
the Poisson ratio used by Chang and Gao for the parameter fitting are, respectively,
1.06 TPa and 0.16 which were determined by the measurement of graphite sheet
specimens. The Young’s modulus predicted by Li and Chou is 1.033 TPa and the
convergent value of the Poisson ratio of SWCNTs given by the MSM model is 0.06
[Chen, Cheng and Liu (2010)]. It can be seen from the results in Table 2 that the
Young’s moduli predicted by the present improved MSM model using the force
constants given by Chang and Gao agree with the experimental result of graphite
sheets, while the Poisson ratio predicted with the same force constants is larger than
0.16 which is the Poisson ratio of the bulk graphite. On the other hand, the present
improved MSM model predicts much smaller Young’s moduli but larger Poisson
ratios for both of zigzag and armchair type graphene sheets than the original MSM
model of Li and Chou (2003) when the force constants used by Li and Chou are
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adopted. The graphene sheet behaves as an isotropic material, then a question will
be raised, does a monolayer graphene sheet also behave isotropically? The present
study shows that both graphene and CNTs are not isotropic.

The significant difference between the effective elastic constants of graphene pre-
dicted by the present improved MSM model and those given by the original MSM
model results from the different deformation patterns in the two models. The defor-
mations of a typical hexagonal cell in a zigzag graphene sheet subjected to in-plane
compression predicted respectively by these two models are depicted in Fig.7. It
is obvious as shown in Fig. 7b that the lateral deformation resulting from the con-
straint of the constant angles at the joints in the rigid frame model is very much
smaller than that in the flexibly connected frame model. Since the bond angle vari-
ation is one the most important deformation characters in CNTs and graphene, it
can be concluded that the rigid frame model used in the various MSM models is
not capable of predicting the correct Poisson ratios of CNTs and graphene.

 
Figure 7: The different deformation patterns in different MSM models

The selection of the appropriate force constants for CNTs and graphene in the
molecular structural mechanics models is still an unsolved issue. For instance,
as mentioned earlier the force constants in various models of molecular mechan-
ics are totally different [Xiao and Hou (2006); Wang and Zhang (2008)]. Kasti
(2007) showed that for a zigzag carbon nanotube to undergo the same longitudi-
nal deformation, the flexural rigidity of the beam representing a C-C bond in the
rigid frame model of Li and Chou (2003) should be a half of the force constant
associated with the bond angle variation in the corresponding molecular mechanics
model, i.e. EI/L = kθ /2. The flexibly connected frame in the present improved
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MSM model is quite similar to the stick-spiral model proposed by Chang and Gao
(2003), therefore the values of the force constants used by Chang and Gao (2003)
will be adopted in this study.

3.2 The Poisson ratios of SWCNTs and graphene

The Poisson ratios of armchair type CNTs and monolayer graphene sheets pre-
dicted by the improved MSM model are plotted in Fig. 8, some relevant results are
also shown in the figure for comparison. The Poisson ratios of zigzag CNTs and
graphene given by the improved MSM model together with other relevant results
are displayed Fig. 9. It can be seen from Fig. 8 and Fig. 9 that the Poisson ratios
of the SWCNTs predicted by the present improved MSM model decrease as the in-
crease of the tube radius for both armchair and zigzag SWCNTs, and they converge
to the Poisson ratios of the corresponding monolayer graphene sheets. However, on
the other hand, the Poisson ratios given by the original MSM model of Li and Chou
(2003) are much smaller than the Poisson ratios of the monolayer graphene sheets.
Furthermore, the curves in Fig. 8 indicate that the Poisson ratio of the armchair
type graphene is different from that of the zigzag type graphene shown in Fig. 9,
that is, the Poisson ratios of the SWCNTs and graphene are chirality dependent.

 
Figure 8: Poisson ratios of armchair type SWCNTs and graphene

The various results of Poisson ratios of SWCNTs and graphene predicted by differ-
ent theories and models are summarized in Table 3. The tensile stiffness of SWC-
NTs or monolayer graphene sheet which is defined as the product of the longitu-
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Figure 9: Poisson ratios of zigzag type SWCNTs and graphene

dinal Young’s modulus and the thickness of SWCNTs or graphene is also given in
the table. The reason to use the tensile stiffness instead of the longitudinal Young’s
modulus is to avoid the confusion of the different representive thicknesses of SWC-
NTs used in different analysis models, the interlayer spacing of graphite 0.34 nm
is used as the thickness of graphene in the present study.

It can be seen from Table 3 that the dependence of the elastic constants of both
CNTs and graphene on the chirality is not considered in most studies. As a fact of
fact, CNTs and graphene are treated as an isotopic material in most of experimental
and theoretical approaches.

The data in Table 3 show that the tensile stiffness given by most studies reasonably
agree to each other, which vary in a range from 0.231 TPa·nm to 0.363 TPa·nm.
However, the values of the Poisson ratios of SWCNTs and graphene reported in the
literature are highly scattered as they vary in a huge range of from 0.06 to 1.414.
Because of the difficulty of the measurement of the lateral deformation of nanoscale
specimen, the Poisson ratio of SWCNTs in some experimental investigations (e.g.
Treacy et al. (1996) and Krishnan et al. (1998)) was simply given by an assumption
instead of the real measurement. In some analytical studies, the Poisson ratio of
graphene was set the measured value of the bulk specimen of graphite sheet; for
instance, a value of 0.16 was used by Chang and Gao (2003). It is interesting to
notice that both of the two extremes of the Poisson ratios shown in Table 3 were
obtained from the rigidly connected frames of the MSM models proposed by Li



Study of Poisson Ratios of Single-Walled Carbon Nanotubes 163

Table 3: Comparison of the Poisson ratios and tensile stiffness of SWCNTs or
graphene given by different investigators

Authors
Convergent value Tensile Analysis
of Poisson ratios stiffness (TPa nm) approaches

zigzag armchair zigzag armchair
Present 0.301 0.277 0.3087 0.3407 Improved MSM

Blakslee et al. (1970) 0.160 0.342 Experiment
Treacy et al. (1996) 0.300 0.612±0.306 Experiment (thermal vibration)

Yakobson et al. (1996) 0.190 0.363 MD simulation
Lu (1997) 0.282 0.331 Empirical potentials

Krishnan et al. (1998) 0.300 0.418-0.119/+ 0.153 Experimental, TEM
Hernández et al. (1998) 0.27 (10,0) 0.24∼0.26 0.422 Tight-binding
Sanchez-Portal (1999) 0.19 (10,0) 0.12∼0.16 0.354 ab initio calculation
Salvetat et al. (1999) 0.160 0.207 a Experiment, AFM (bending)
Popov et al. (2000) 0.210 0.341 The lattice-dynamical model
Kudin et al. (2001) 0.150 0.345 ab initio calculation

Tu & Ou-Yang (2002) 0.340 0.353 Local density approx. model
Chang & Gao (2003) 0.160 0.360 Molecular mechanics

Li & Chou (2003) 0.06 b 0.343 MSM
Shintani & Nrita (2003) 0.150 N/A Atomistic simulation
Caillerie et al. (2006) 0.260 0.277 Equivalent macroscopic model

Huang et al. (2006)
0.412 0.236 Brenner potential
0.397 0.243 2nd-generation Brenner potent.

Guo et al. (2006) 0.434 0.55 0.231c Continuum modeling theory
Hemmasizadeh (2008) 0.190 0.124 Equivalent continuum model

Zhou et al.(2008) 0.240 0.377 Tight-binding model
Tsai & Tu (2009) 0.261 0.310 MD simulation

Sakhaee-Pour (2009) 1.414 1.285 0.354 0.354 MSM

Scarpa et al. (2009)
0.509 0.523 0.342 0.517 MSM, honeycomb (AMBER)
0.517 0.551 0.408 0.546 MSM, honeycomb (Morse)

Chen et al. (2010) 0.10 0.10 0.359 0.375 Modified MSM

a an approximate value from the relevant reference
b computed result cited from the paper of Chen et al. (2010)
c a convergent value

and Chou (2003). The smallest value of 0.06 was evaluated from the definition of
Poisson ratio ν = −εr/εx, while the largest value of 1.41 given by Sakhaee-Pour
(2009) was evaluated from the expression of Poisson ratio ν = (Ex− 2G)/(2G)
where Ex and G are the Young’s modulus and shear modulus respectively. It has
to be pointed out that the formula used to calculate Poisson ratio by Sakhaee-Pour
is valid for the isotropic material only. Therefore, the unrealistic Poisson ratio
calculated by the expression for isotropic material suggests that graphene and CNTs
should not be treated as isotropic materials. When the extreme values predicted
by the rigidly connected frames of the MSM models are disregarded, the Poisson
ratios tabulated in Table 3 are ranged from 0.12 to 0.55 which are still scatted in a
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wide range. Unfortunately, researchers are still not able to reach an agreement on
the standard value of the Poisson ratio of monolayer graphene sheet. It seems that
whether a monolayer graphene sheet is anisotropic and what is the accurate Poisson
ratios of graphene and SWCNTs can be answered only by the sophisticated nano-
experiments in future.

The results in Table 2 and given by Huang, Wu and Hwang (2006) also indicate
that the Poisson ratios of graphene depend on not only the analysis model, but also
the force constants used to characterize the interatomic potential of the lattice of
graphene. For a given molecular mechanic model, accurate force field constants
are essential for a MSM model to accurately predict the mechanical properties of
CNTs and graphene.

4 Conclusions

The longitudinal Young’s moduli and Poisson ratios of SWCNTs and graphene are
evaluated by using the improved MSM model in which the bond angle variations
are modeled by the flexible connections of framed structures. The comparison of
the present results with other results reported in the literature show that the im-
proved MSM model with flexible connections is a simple and efficient computa-
tional model for the mechanical property prediction of CNTs. The various Poisson
ratios predicted by different models are summarized and discussed in the paper.
The following conclusions can be draw from the present study.

The Poisson ratios predicted by the improved MSM model in this paper indicate
that both of the Young’s moduli and the Poisson ratios of SWCNTs are not only
size dependent but also chirality dependent, and the Poisson ratios of SWCNTs
converge to the Poisson ratios of the corresponding monolayer graphene sheets,
0.301 for zigzag type and 0.277 for armchair type. The effective elastic constants
given in this study suggests that both SWCNTs and monolayer graphene sheets
should be treated as a type of orthotropic material as their effective elastic constants
along the two principal directions of the lattice are different.

The proper modeling of the bond angle variations in the MSM models is very cru-
cial in the prediction of the Poisson ratios of SWCNTs and graphene. The rigidly
connected frame model of SWCNTs might manage to predict good Young’s moduli
for SWCNTs and graphene, but it results in unrealistic smaller Poisson ratios as the
deformation pattern resulting from the rigid connection is not correct.

The Poisson ratios of SWCNTs and graphene predicted by different models vary in
a huge range from 0.06 to 1.414 although the tensile stiffness given by these models
reasonably agree to each other. Since the Poisson ratio of a monolayer graphene
sheet can not be determined directly from the measurements on nanoscale speci-
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men at the time being, the standard values for the Poisson ratios of SWCNTs and
monolayer graphene sheet have not been reached yet among researchers. Conse-
quently, the prediction of both size and chirality dependent Poisson ratios of CNTs
is still an unsolved issue, and it seems that the correct Poisson ratios of SWCNTs
and graphene can only be clarified by sophisticated nano-experiments in future.
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